1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
|
.. _neuron_rxd:
Basic Reaction-Diffusion
========================
Overview
--------
NEURON provides the ``rxd`` submodule to simplify and standardize the specification of
models incorporating reaction-diffusion dynamics, including ion accumulation. To load
this module, use:
.. code::
python
from neuron import rxd
Note: In older code, you may find ``from neuron import crxd as rxd`` but this is equivalent to the above as ``crxd`` has been an alias for ``rxd`` for several years.
In general, a reaction-diffusion model specification involves answering three conceptual questions:
1. :ref:`Where <rxd_where>` the dynamics are occurring (specified using an :class:`rxd.Region` or :class:`rxd.Extracellular`)
2. :ref:`Who <rxd_who>` is involved (specified using an :class:`rxd.Species` or :class:`rxd.State`)
3. :ref:`What <rxd_what>` the reactions are (specified using :class:`rxd.Reaction`, :class:`rxd.Rate`, or :class:`rxd.MultiCompartmentReaction`)
Another key class is :class:`rxd.Parameter` for defining spatially varying parameters.
Integration options may be specified using :func:`rxd.set_solve_type`.
Related resources
~~~~~~~~~~~~~~~~~
See also our `reaction-diffusion tutorials <../../../rxd-tutorials/index.html>`_,
the discussion about :ref:`ion accumulation <ion_channel_accumulation_bio_faq>` and
:ref:`ion diffusion <ion_diffusion_bio_faq>`, and the 2021 NetPyNE course
:ref:`lecture and exercise <netpyne_neuron_rxd_video>` videos on reaction-diffusion in NEURON.
.. _rxd_where:
Specifying the domain
---------------------
NEURON provides two main classes for defining the domain where a given set of reaction-diffusion rules
applies: :class:`rxd.Region` and :class:`rxd.Extracellular` for intra- and extracellular domains,
respectively. Once defined, they are generally interchangeable in the specification of the species involved,
the reactions, etc. The exact shape of intracellular regions may be specified using any of a number of
geometries, but the default is to include the entire intracellular space.
Intracellular regions and regions in Frankenhauser-Hodgkin space
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. class:: rxd.Region
Declares a conceptual intracellular region of the neuron.
Syntax:
.. code::
python
r = rxd.Region(secs=None, nrn_region=None, geometry=None, dimension=None, dx=None, name=None)
In NEURON 7.4+, ``secs`` is optional at initial region declaration, but it
must be specified before the reaction-diffusion model is instantiated.
Here:
* ``secs`` is any Python iterable of sections (e.g. ``soma.wholetree()`` or ``[soma, apical, basal]`` or ``h.allsec()``)
* ``nrn_region`` specifies the classic NEURON region associated with this object and must be either ``"i"`` for the region just inside the plasma membrane, ``"o"`` for the region just outside the plasma membrane or ``None`` for none of the above.
* ``name`` is the name of the region (e.g. ``cyt`` or ``er``); this has no effect on the simulation results but it is helpful for debugging
* ``dx`` deprecated; do not use
* ``dimension`` deprecated; do not use
.. property:: rxd.Region.nrn_region
Get or set the classic NEURON region associated with this object.
There are three possible values:
* ``'i'`` -- just inside the plasma membrane
* ``'o'`` -- just outside the plasma membrane
* ``None`` -- none of the above
*Setting requires NEURON 7.4+, and then only before the reaction-diffusion model is instantiated.*
.. property:: rxd.Region.secs
Get or set the sections associated with this region.
The sections may be expressed as a NEURON :class:`SectionList` or as any Python
iterable of sections.
Note: The return value is a copy of the internal section list; modifying
it will not change the Region.
*Setting requires NEURON 7.4+ and allowed only before the reaction-diffusion model is instantiated.*
.. property:: rxd.Region.geometry
Get or set the geometry associated with this region.
Setting the geometry to ``None`` will cause it to default to ``rxd.geometry.inside``.
*Added in NEURON 7.4. Setting allowed only before the reaction-diffusion model is instantiated.*
.. property:: rxd.Region.name
Get or set the Region's name.
*Added in NEURON 7.4.*
For specifying the geometry
###########################
NEURON provides several built-in geometries for intracellular simulation that may be specified
by passing a ``geometry`` argument to the :class:`rxd.Region` constructor. New region shapes may
be defined by deriving from ``neuron.rxd.geometry.RxDGeometry``.
.. attribute:: rxd.inside
The entire region inside the cytosol. This is the default. Use via e.g.
.. code::
python
cyt = rxd.Region(h.allsec(), name="cyt", nrn_region="i", geometry=rxd.inside)
.. attribute:: rxd.membrane
The entire plasma membrane.
.. code::
python
cyt = rxd.Region(h.allsec(), name="cyt", nrn_region="i", geometry=rxd.membrane)
.. class:: rxd.DistributedBoundary
Boundary that scales with area.
.. code::
python
b = rxd.DistributedBoundary(area_per_vol, perim_per_area=0)
area_per_vol is the area of the boundary as a function of the volume
containing it. e.g.
``g = rxd.DistributedBoundary(2)`` defines a geometry with 2 um^2 of area per
every um^3 of volume.
perim_per_area is the perimeter (in µm) per 1 µm^2 cross section of the
volume. For use in reaction-diffusion problems, it may be safely omitted
if and only if no species in the corresponding region diffuses.
This is often useful for separating :class:`rxd.FractionalVolume` objects.
It is assumed that the area is always strictly on the interior.
.. class:: rxd.FractionalVolume
Defines a geometry occupying a set fraction of the cross-sectional area.
e.g. perhaps the cytosol would occupy 0.83 of the cross-section (and all the surface)
but the ER would only occupy 0.17 of the cross-section and none of the surface.
Syntax:
.. code::
python
r = rxd.FractionalVolume(volume_fraction=1, surface_fraction=0, neighbor_areas_fraction=None)
.. class:: rxd.Shell
Defines a radial shell inside or outside of the plasma membrane. This is sometimes used to simulate
a 2D-style diffusion where molecules move both longitudinally and into/out of the center of the dendrite.
Consider using 3D simulation instead, which is better able to represent branch point dynamics.
Syntax:
.. code::
python
r = rxd.Shell(lo=None, hi=None)
Example:
See the `radial diffusion <https://neuron.yale.edu/neuron/docs/radial-diffusion>`_ tutorial.
.. class:: rxd.FixedCrossSection
Syntax:
.. code::
python
r = rxd.FixedCrossSection(cross_area, surface_area=0)
.. class:: rxd.FixedPerimeter
Syntax:
.. code::
python
r = rxd.FixedPerimeter(perimeter, on_cell_surface=False)
.. class:: rxd.ScalableBorder
A membrane that scales proportionally with the diameter
Example use:
- the boundary between radial shells
Sometimes useful for the boundary between :class:`rxd.FractionalVolume` objects, but
see also :class:`rxd.DistributedBoundary` which scales with area.
Extracellular regions
---------------------
.. class:: rxd.Extracellular
Declare a extracellular region to be simulated in 3D;
unlike :class:`rxd.Region`, this *always* describes the extracellular region.
Syntax:
.. code::
python
r = rxd.Extracellular(xlo, ylo, zlo, xhi, yhi, zhi, dx,
volume_fraction=1, tortuosity=None, permeability=None)
Here:
* ``xlo``, ..., ``zhi`` -- define the bounding box of the domain; it should typically contain the entire morphology... by default NEURON assumes reflective (Neumann) boundary conditions, so you may want the box to extend well beyond the cell morphology depending on your use case
* ``dx`` -- voxel edge size in µm
* ``tortuosity`` -- increase factor in path length due to obstacles, effective diffusion coefficient d/tortuosity^2; either a single value for the whole region or a Vector giving a value for each voxel. Default is 1 (no change).
* ``volume_fraction`` -- the free fraction of extracellular space; a volume_fraction of 1 assumes no cells; lower values are probably warranted for most simulations
Example:
A tutorial demonstrating extracellular diffusion
is available `here <../../../rxd-tutorials/extracellular.html>`_.
----
.. _rxd_who:
Defining proteins, ions, etc
----------------------------
Values that are distributed spatially on an :class:`rxd.Region` or :class:`rxd.Extracellular` may be defined using
an :class:`rxd.Species` if they represent things that change and diffuse, an :class:`rxd.State` if they're in fixed locations but changeable
(e.g. gates in an IP3R), or an :class:`rxd.Parameter` if
they are just fixed values.
.. class:: rxd.Species
Declare an ion/protein/etc that can react and diffuse.
Syntax:
.. code::
python
s = rxd.Species(regions=None,
d=0,
name=None,
charge=0,
initial=None,
atolscale=1,
ecs_boundary_conditions=None,
represents=None
)
Parameters:
* ``regions`` -- a Region or list of Region objects containing the species
* ``d`` -- the diffusion constant of the species (optional; default is 0, i.e. non-diffusing)
* ``name`` -- the name of the Species; used for syncing with NMODL and HOC (optional; default is none)
* ``charge`` -- the charge of the Species (optional; default is 0)
* ``initial`` -- the initial concentration or None (if None, then imports from HOC if the species is defined at finitialize, else 0); can be specified as a constant or as a function of an :class:`rxd.Node`
* ``atolscale`` -- scale factor for absolute tolerance in variable step integrations
* ``ecs_boundary_conditions`` -- if Extracellular rxd is used ecs_boundary_conditions=None for zero flux boundaries or if ecs_boundary_conditions=the concentration at the boundary.
* ``represents`` -- optionally provide CURIE (Compact URI) to annotate what the species represents e.g. CHEBI:29101 for sodium(1+)
.. note::
Charge must match the charges specified in NMODL files for the same ion, if any. Common species charges include: sodium (+1), potassium (+1), calcium (+2), magnesium (+2), chloride (-1).
You probably want to adjust atolscale for species present at low concentrations (e.g. calcium).
NEURON does not require any specific ontology for identifiers, however CHEBI contains identifiers for many substances of interest in reaction-diffusion modeling. A number of ontology search providers are available on the internet, including `BioPortal <https://bioportal.bioontology.org/search>`_.
To refer to a given Species restricted to a certain region, specify the region in square brackets. e.g. ``er_calcium = ca[er]``.
.. property:: rxd.Species.nodes
An :class:`rxd.nodelist.NodeList` of all the nodes corresponding to the species.
This can then be further restricted using the callable property of NodeList objects.
Example: All nodes from ``sp`` on the Section ``dend``:
.. code::
python
nodes_on_dend = sp.nodes(dend)
Example: All nodes from ``sp`` on the Segment ``dend(0.5)``:
.. code::
python
nodes_on_dend_center = sp.nodes(dend(0.5))
For 1D simulation with a species defined on 1 region, this will be a :class:`rxd.nodelist.NodeList` of length 1 (or 0 if the species is not defined on the segment); for 3D simulation or with multiple regions, the list may be longer and further filtering may be required.
.. note::
The code
.. code::
python
node_list = ca[cyt].nodes
is more efficient than the otherwise equivalent
.. code::
python
node_list = ca.nodes(cyt)
because the former only creates the :class:`rxd.Node` objects belonging to the restriction ``ca[cyt]`` whereas the second option constructs all :class:`rxd.Node` objects belonging to the :class:`rxd.Species` ``ca`` and then culls the list to only include those also belonging to the :class:`rxd.Region` cyt.
.. property:: rxd.Species.states
A list of a copy of the state values corresponding to this species; modifying the values in the list will not change the values used in the simulation.
.. method:: rxd.Species.re_init
Syntax:
.. code::
python
sp.re_init()
where ``sp`` is an instance of an :class:`rxd.Species`.
Reinitialize the rxd concentration of this species to match the NEURON grid. Used when e.g. ``cai`` is modified directly instead of through a corresponding :class:`rxd.Species`.
.. seealso:
:func:`rxd.re_init`
.. method:: rxd.Species.concentrations
Deprecated. Do not use.
.. property:: rxd.Species.charge
Get or set the charge of the Species.
Setting was added in NEURON 7.4 and is allowed only before the reaction-diffusion model is instantiated.
.. property:: rxd.Species.regions
Get or set the regions where the Species is present.
Setting was added in NEURON 7.4 and is allowed only before the reaction-diffusion model is instantiated.
Getting was added in NEURON 7.5.
.. method:: rxd.Species.indices
Return the indices corresponding to this species in the given region.
This is occasionally useful, but it's generally best to avoid explicit indexing when developing models.
Syntax:
.. code::
python
sp.indices(r=None, secs=None)
where ``sp`` is an instance of an :class:`rxd.Species`.
If ``r`` is ``None``, then returns all species indices.
If ``r`` is a list of regions return indices for only those sections that are on all the regions.
If ``secs`` is a set return all indices on the regions for those sections.
.. method:: rxd.Species.defined_on_region
Returns ``True`` if the :class:`rxd.Species` ``sp`` is present on ``r``, else ``False``.
Syntax:
.. code::
python
result = sp.defined_on_region(r)
.. property:: rxd.Species.name
Get or set the name of the Species.
This is used only for syncing with the non-reaction-diffusion parts of NEURON (NMODL, HOC).
*Setting requires NEURON 7.4+, and then only before the reaction-diffusion model is instantiated.*
.. class:: rxd.State
Like an :class:`rxd.Species` but indicates the semantics
of something that is not intended to diffuse.
.. class:: rxd.Parameter
Declares a parameter, that can be used in place of a :class:`rxd.Species`, but unlike :class:`rxd.Species` a parameter will not change.
Syntax:
.. code::
python
s = rxd.Parameter(regions, name=None, charge=0,
value=None, represents=None)
Parameters:
* ``regions`` -- a :class:`rxd.Region` or list of :class:`rxd.Region` objects containing the parameter
* ``name`` -- the name of the parameter; used for syncing with NMODL and HOC (optional; default is none)
* ``charge`` -- the charge of the Parameter (optional, probably only rarely needed; default is 0)
* ``value`` -- the value or None (if None, then imports from HOC if the parameter is defined at :func:`finitialize`, else 0)
* ``represents`` -- optionally provide CURIE (Compact URI) to annotate what the parameter represents e.g. CHEBI:29101 for sodium(1+)
.. note::
Charge must match the charges specified in NMODL files for the same ion, if any.
Attempting to specify a non-zero diffusion rate for an :class:`rxd.Parameter` will raise an :class:`rxd.RxDException`.
.. _rxd_what:
Defining reactions
------------------
NEURON provides three classes for specifying reaction dynamics: :class:`rxd.Reaction` for single-compartment (local)
reactions; :class:`rxd.MultiCompartmentReaction` for reactions spanning multiple compartments (e.g. a pump that
moves calcium from the cytosol into the ER changes concentration in two regions), and :class:`rxd.Rate` for
specifying changes to a state variable directly by an expression to be added to a differential equation.
Developers may introduce new forms of reaction specification by subclassing
``neuron.rxd.generalizedReaction.GeneralizedReaction``, but this is not necessary for typical modeling usage.
It is sometimes necessary to build rate expressions including mathematical functions. To do so, use the
functions defined in ``neuron.rxd.rxdmath`` as listed :ref:`below <rxdmath_prog_ref>`.
.. class:: rxd.Reaction
Syntax:
.. code::
python
r1 = rxd.Reaction(reactant_sum, product_sum, forward_rate,
backward_rate=0, regions=region_list, custom_dynamics=False)
Here:
* ``reactant_sum`` is a combination of :class:`rxd.Species`, :class:`rxd.State`,
:class:`rxd.Parameter`, e.g. ``ca + 2 * cl`` representing the left-hand-side of
the reaction.
* ``product_sum`` is like ``reactant_sum`` but represdenting the right-hand-side.
* ``forward_rate`` and ``backward_rate`` represent the reaction rates; reactions are assumed to be governed by mass-action kinetics with these as the rate constants unless ``custom_dynamics`` is true, in which case these are expressions fully defining the rate of change. In particular, these can be constants or expressions combining :class:`rxd.Species` etc with constants, arithmetic, and :attr:`rxd.v`
* ``region_list`` is a list of regions on which this reaction occurs. If ommitted or ``None``, the reaction occurs on all regions where all involved species are defined.
Examples:
For the following, we assume that ``H``, ``O``, ``H2O``, ``dimer``, and
``decomposed`` are instances of :class:`rxd.Species`.
For 2 * H + O > H2O in a mass action reaction at rate k:
.. code::
python
r = rxd.Reaction(2 * H + O, H2O, k)
To constrain the reaction to a specified list of regions,
say to just the extracellular space (ext) and the cytosol (cyt),
use the regions keyword, e.g.
.. code::
python
r = rxd.Reaction(2 * H + O, H2O, k, regions=[ext, cyt])
For a bi-directional reaction, specify a backward reaction rate.
e.g. if kf is the forward rate and kb is the backward rate, then:
.. code::
python
r = rxd.Reaction(2 * H + O, H2O, kf, kb)
To use dynamics other than mass-action, add that mass_action=False
flag and put the full formula instead of a mass-action rate for
kf (and kb). E.g. Michaelis-Menten degradation
.. code::
python
r = rxd.Reaction(
dimer, decomposed, dimer / (k + diamer), mass_action=False
)
.. property:: f_rate
Get or set the forward reaction rate.
.. property:: b_rate
Get or set the backward reaction rate.
.. class:: rxd.Rate
Declare a contribution to the rate of change of a species or other state variable.
Syntax:
.. code::
python
r = rxd.Rate(species, rate, regions=None, membrane_flux=False)
If ``regions`` is ``None``, then the rate applies on all regions.
Example:
.. code::
python
constant_production = rxd.Rate(protein, k)
If this was the only contribution to protein dynamics and there was no
diffusion, the above would be equivalent to:
.. code::
dprotein/dt = k
If there are multiple rxd.Rate objects (or an rxd.Reaction, etc) acting on
the same species, then their effects are summed.
.. class:: rxd.MultiCompartmentReaction
Specify a reaction spanning multiple regions to be added to the system.
Use this for, for example, pumps and channels, or interactions between
species living in a volume (e.g. the cytosol) and species on a
membrane (e.g. the plasma membrane).
For each species/state/parameter, you must specify what region you are
referring to, as it could be present in multiple regions. You must
also specify a `membrane` or a `border` (these are treated as synonyms)
that separates the regions involved in your reaction. This is necessary
because the default behavior is to scale the reaction rate by the
border area, as would be expected if one of the species involved is a
pump that is binding to a species in the volume. If this is not the
desired behavior, pass the keyword argument ``scale_by_area=False``.
Pass in ``membrane_flux=True`` if the reaction produces a current across
the plasma membrane that should affect the membrane potential.
Unlike :class:`rxd.Reaction` objects, the base units for the rates are in terms of
molecules per square micron per ms.
Mathematical functions for rate expressions
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
NEURON's ``neuron.rxd.rxdmath`` module provides a number of mathematical functions that
can be used to define reaction rates. These generally mirror the functions available
through Python's ``math`` module but support :class:`rxd.Species` objects.
To use any of these, first do:
.. code::
python
from neuron.rxd import rxdmath
Example:
.. code::
python
degradation_switch = (1 + rxdmath.tanh((ip3 - threshold) * 2 * m)) / 2
degradation = rxd.Rate(ip3, -k * ip3 * degradation_switch)
For a full runnable example, see `this tutorial <../../../rxd-tutorials/thresholds.html>`_
which as here uses the hyperbolic tangent as an approximate on/off switch for the reaction.
Full documentation on this submodule is available :ref:`here <rxdmath_prog_ref>` or you may go
directly to the documentation for any of its specific functions:
:func:`rxdmath.acos`, :func:`rxdmath.acosh`, :func:`rxdmath.asin`,
:func:`rxdmath.asinh`, :func:`rxdmath.atan`, :func:`rxdmath.atan2`,
:func:`rxdmath.ceil`, :func:`rxdmath.copysign`,
:func:`rxdmath.cos`, :func:`rxdmath.cosh`,
:func:`rxdmath.degrees`, :func:`rxdmath.erf`,
:func:`rxdmath.erfc`, :func:`rxdmath.exp`,
:func:`rxdmath.expm1`, :func:`rxdmath.fabs`,
:func:`rxdmath.factorial`, :func:`rxdmath.floor`,
:func:`rxdmath.fmod`, :func:`rxdmath.gamma`,
:func:`rxdmath.lgamma`, :func:`rxdmath.log`,
:func:`rxdmath.log10`, :func:`rxdmath.log1p`,
:func:`rxdmath.pow`, :func:`rxdmath.pow`,
:func:`rxdmath.sin`, :func:`rxdmath.sinh`,
:func:`rxdmath.sqrt`, :func:`rxdmath.tan`,
:func:`rxdmath.tanh`, :func:`rxdmath.trunc`,
:func:`rxdmath.vtrap`
.. toctree::
:hidden:
rxdmath
Manipulating nodes
------------------
A :class:`rxd.node.Node` represents a particular state value or :class:`rxd.Parameter` in a particular location. Individual :class:`rxd.node.Node` objects are typically obtained either from being passed to an initialization function or by filtering or selecting from an :class:`rxd.nodelist.NodeList` returned by :attr:`rxd.Species.nodes`. Node objects are often used for recording concentration using :attr:`rxd.node.Node._ref_concentration`.
.. class:: rxd.nodelist.NodeList
An :class:`rxd.nodelist.NodeList` is a subclass of a Python `list <https://docs.python.org/3/tutorial/datastructures.html#more-on-lists>`_
containing :class:`rxd.node.Node` objects. It is not intended to be created directly in a model, but rather is returned by
:attr:`rxd.Species.nodes`.
Standard Python list methods are supported, including ``.append(node)``, ``.extend(node_list)``,
``.insert(i, node)``, ``.index(node)``, and manipulation of lists like ``len(node_list)``, ``node_list[0]``, or ``node_list[5:12]``. Additionally one may iterate over a NodeList as in:
.. code::
python
for node in ca.nodes:
...
(Here ``ca`` is assumed to be an :class:`rxd.Species` and thus ``ca.nodes`` is an
:class:`rxd.nodelist.NodeList`.)
A key added functionality is the ability to filter the
nodes by rxd property (returning a new
:class:`rxd.nodelist.NodeList`). Any filter object supported
by the ``.satifies`` method of the node types present in the
:class:`rxd.nodelist.NodeList` may be passed in parentheses;
e.g.
To filter the :class:`rxd.Species` ``ca``'s nodes for
just the ones present on the :class:`nrn.Segment`
``dend(0.5)``, use:
.. code::
python
new_node_list = ca.nodes(dend(0.5))
To filter the ``new_node_list`` to only contain nodes
present in the :class:`rxd.Region` ``er``:
.. code::
python
just_er = new_node_list(er)
In addition, the following methods and properties are supported:
.. property:: rxd.nodelist.NodeList.value
Gets or sets the values associated with the stored nodes.
Getting always returns a list, even if the :class:`rxd.nodelist.NodeList` has
length 0 or 1. Setting may be to a constant (in which case all nodes are set to
the same value) or to a list (in which case the list values are assigned in order
to the nodes). In the latter case, if the length of the list does not match the length
of the node list, an :class:`rxd.RxDException` is raised.
The list that is returned by reading this property is a copy of the underlying data;
that is, changing it will have no effect on the values stored.
This currently has the same behavior as :attr:`rxd.nodelist.NodeList.concentration`
however in the future these are intended to be different for stochastic simulation.
.. property:: rxd.nodelist.NodeList.concentration
Gets or sets the concentration associated with the stored nodes.
Getting always returns a list, even if the :class:`rxd.nodelist.NodeList` has
length 0 or 1. Setting may be to a constant (in which case all nodes are set to
the same value) or to a list (in which case the list values are assigned in order
to the nodes). In the latter case, if the length of the list does not match the length
of the node list, an :class:`rxd.RxDException` is raised.
The list that is returned by reading this property is a copy of the underlying data;
that is, changing it will have no effect on the values stored.
This currently has the same behavior as :attr:`rxd.nodelist.NodeList.value`
however in the future these are intended to be different for stochastic simulation.
.. property:: rxd.nodelist.NodeList.segment
Returns a list of the :class:`nrn.Segment` objects associated with the nodes in the
NodeList.
The list that is returned by reading this property is a copy of the underlying data;
that is, changing it will have no effect on the values stored.
.. property:: rxd.nodelist.NodeList._ref_value
A pointer to the memory location storing the :attr:`rxd.node.Node.value` when
the NodeList has length 1; otherwise an :class:`rxd.RxDException` is raised.
.. property:: rxd.nodelist.NodeList._ref_concentration
A pointer to the memory location storing the :attr:`rxd.node.Node.concentration` when
the NodeList has length 1; otherwise an :class:`rxd.RxDException` is raised.
.. property:: rxd.nodelist.NodeList.diff
Get or set the diffusion constants of the contained Node objects.
Getting returns a list that is a copy of the underlying data. Setting accepts either
a constant or a list of matching length; passing a list of a different length raises
an :class:`rxd.RxDException`.
.. property:: rxd.nodelist.NodeList.volume
An iterable of the volumes of the Node objects in the NodeList.
Read only.
.. property:: rxd.nodelist.NodeList.surface_area
An iterable of the surface areas of the Node objects in the NodeList.
Read only.
.. property:: rxd.nodelist.NodeList.region
An iterable of the :class:`rxd.Region` (or :class:`rxd.Extracellular`) objects of the Node objects in the NodeList.
Read only.
.. property:: rxd.nodelist.NodeList.species
An iterable of the :class:`rxd.Species` (or :class:`rxd.State` or :class:`rxd.Parameter`, as appropriate) objects of the Node objects in the NodeList.
Read only.
.. property:: rxd.nodelist.NodeList.x
An iterable of the normalized positions of the Node objects in the NodeList.
Note: these values are always between 0 and 1 and represent positions within
the corresponding :class:`Section`. For 3D position, query the ``x3d`` property
of the :class:`rxd.node.Node` objects themselves.
Read only.
.. method:: rxd.nodelist.NodeList.include_flux
Includes the specified flux on all nodes in the NodeList. All arguments are passed
directly to the underlying :class:`rxd.node.Node` objects.
.. method:: rxd.nodelist.NodeList.value_to_grid
Returns a regular grid with the values of the 3D nodes in the list. This is
sometimes useful for volumetric visualization however the generated array
may be large in certain models.
The grid is a copy only.
Grid points not belonging to the object are assigned a value of NaN.
Nodes that are not 3d will be ignored. If there are no 3D nodes, returns
a 0x0x0 numpy array.
Warning: Currently only supports nodelists over 1 region.
.. class:: rxd.node.Node
The combination of a single :class:`rxd.Species` etc and a unique spatial location
at whatever resolution (i.e. could be a segment and a region, or could be a 3D voxel
and a region).
These objects are passed to an initialization function for rxd Species, States, and
Parameters as ways of identifying a location.
They are also useful for specifying localized fluxes or to record state variables.
There are three subtypes: :class:`rxd.node.Node1D`, :class:`rxd.node.Node3D`, and
:class:`rxd.node.NodeExtracellular`.
They all support the methods and properties described here
as well as some unique to their case features.
.. method:: rxd.node.Node.include_flux
Include a flux contribution to a specific node.
The flux can be described as a NEURON reference, a point process and a
property, a Python function, or something that evaluates to a constant
Python float.
Supported units: molecule/ms, mol/ms, mmol/ms == millimol/ms == mol/s
Examples:
.. code::
python
node.include_flux(mglur, 'ip3flux') # default units: molecule/ms
node.include_flux(mglur, 'ip3flux', units='mol/ms') # units: moles/ms
node.include_flux(mglur._ref_ip3flux, units='molecule/ms')
node.include_flux(lambda: mglur.ip3flux)
node.include_flux(lambda: math.sin(h.t))
node.include_flux(47)
Warning:
Flux denotes a change in *mass* not a change in concentration.
For example, a metabotropic synapse produces a certain amount of
substance when activated. The corresponding effect on the node's
concentration depends on the volume of the node. (This scaling is
handled automatically by NEURON's rxd module.)
.. method:: rxd.node.Node.satisfies
Tests if a Node satisfies a given condition.
Syntax:
.. code::
python
result = node.satisfies(condition)
If a :class:`Section` object or RxDSection is provided, returns ``True`` if the Node lies in the section; else ``False``.
If a :class:`rxd.Region` object is provided, returns ``True`` if the Node lies in the Region; else ``False``.
Additional options are supported by specific subclasses, see
:meth:`rxd.node.Node1D.satisfies`, :meth:`rxd.node.Node3D.satisfies`, and
:meth:`rxd.node.NodeExtracellular.satisfies`.
.. property:: rxd.node.Node._ref_concentration
Returns a NEURON reference to the Node's concentration.
This result is typically passed to :meth:`Vector.record` to record the concentration
changes at a location over time.
(The node must store concentration data. Use :attr:`rxd.node.Node._ref_molecules` for nodes
storing molecule counts.)
.. property:: rxd.node.Node._ref_molecules
Returns a NEURON reference to the Node's concentration
(The node must store molecule counts. Use _ref_concentrations for nodes
storing concentration.)
.. property:: rxd.node.Node._ref_value
Returns a NEURON reference to the Node's value. This method always works,
regardless of if the node stores a concentration or not.
.. property:: rxd.node.Node.d
Get or set the diffusion rate within the compartment.
.. property:: rxd.node.Node.concentration
Get or set the concentration at the Node.
Currently does not support nodes storing molecule counts. Use :attr:`rxd.node.Node.molecules` instead; attempting to use with a molecule count node will raise
an :class:`rxd.RxDException`.
.. property:: rxd.node.Node.molecules
Get or set the number of molecules at the Node.
Currently does not support nodes storing concentrations. Use :attr:`rxd.node.Node.concentration` instead; attempting to use with a concentration node will raise
an :class:`rxd.RxDException`.
.. property:: rxd.node.Node.value
Get or set the value associated with this Node.
For Species nodes belonging to a deterministic simulation, this is a concentration.
For Species nodes belonging to a stochastic simulation, this is the molecule count.
.. property:: rxd.node.Node.x3d
The 3D x-coordinate of the center of this Node.
.. property:: rxd.node.Node.y3d
The 3D y-coordinate of the center of this Node.
.. property:: rxd.node.Node.z3d
The 3D z-coordinate of the center of this Node.
.. property:: rxd.node.Node.region
The :class:`rxd.Region` or :class:`rxd.Extracellular` containing the compartment.
Read only.
.. property:: rxd.node.Node.species
The :class:`rxd.Species`, :class:`rxd.State`, or :class:`rxd.Parameter` containing the compartment. Read only.
.. property:: rxd.node.Node.volume
The volume of the region spanned by the Node.
.. class:: rxd.node.Node1D
A subclass of :class:`rxd.node.Node` used only for nodes being simulated in 1D.
.. method:: rxd.node.Node1D.satisfies
Supports the options of :meth:`rxd.node.Node.satisfies` and:
If a number between 0 and 1 is provided, returns ``True`` if the normalized position lies within the Node; else ``False``.
.. property:: rxd.node.Node1D.sec
The section containing the node. Read-only.
.. property:: rxd.node.Node1D.segment
The segment containing the node. Read-only.
.. property:: rxd.node.Node1D.x
The normalized position of the center of the node. Read-only.
.. property:: rxd.node.Node1D.surface_area
The surface area of the compartment in square microns.
This is the area (if any) of the compartment that lies on the plasma membrane
and therefore is the area used to determine the contribution of currents (e.g. ina) from
mod files or :class:`KSChan` to the compartment's concentration.
Read only.
.. class:: rxd.node.Node3D
A subclass of :class:`rxd.node.Node` used only for intracellular nodes being simulated in 3D.
.. method:: rxd.node.Node3D.satisfies
Supports the options of :meth:`rxd.node.Node.satisfies` and:
If a tuple is provided of length 3, return ``True`` if the Node contains the ``(x, y, z)`` point; else ``False``.
.. property:: rxd.node.Node3D.sec
The section containing the node. Read-only.
.. property:: rxd.node.Node3D.segment
The segment containing the node. Read-only.
.. property:: rxd.node.Node3D.surface_area
The surface area of the compartment in square microns.
This is the area (if any) of the compartment that lies on the plasma membrane
and therefore is the area used to determine the contribution of currents (e.g. ina) from
mod files or :class:`KSChan` to the compartment's concentration.
Read only.
.. class:: rxd.node.NodeExtracellular
A subclass of :class:`rxd.node.Node` used only for extracellular nodes being simulated in 3D.
.. method:: rxd.node.NodeExtracellular.satisfies
Supports the options of :meth:`rxd.node.Node.satisfies` and:
If a tuple is provided of length 3, return ``True`` if the Node contains the ``(x, y, z)`` point; else ``False``.
Membrane potential
------------------
.. property:: rxd.v
A special object representing the local membrane potential in a reaction-rate
expression. This can be used with :class:`rxd.Rate` and
:class:`rxd.MultiCompartmentReaction` to build ion channel models as an alternative
to using NMODL, NeuroML (and converting to NMODL via `jneuroml <https://github.com/NeuroML/jNeuroML>`_), the ChannelBuilder,
or :class:`KSChan`.
(If you want a numeric value for the current membrane potential at a
segment ``seg`` use ``seg.v`` instead.)
Example (adapted from the `Hodgkin Huxley via rxd <https://neuron.yale.edu/neuron/docs/hodgkin-huxley-using-rxd>`_ tutorial)
.. code::
python
from neuron.rxd.rxdmath import vtrap, exp, log
from neuron import rxd
alpha = 0.01 * vtrap(-(rxd.v + 55.0), 10.0)
beta = 0.125 * exp(-(rxd.v + 65.0)/80.0)
ntau = 1.0/(alpha + beta)
ninf = alpha/(alpha + beta)
# ... define cyt, mem, sections ...
ngate = rxd.State([cyt, mem], name='ngate', initial=0.24458654944007166)
n_gate = rxd.Rate(ngate, (ninf - ngate)/ntau)
Synchronization with segments
-----------------------------
Changes to :class:`rxd.Species` node concentrations are propagated to segment-level concentrations automatically no later
than the next time step. This is generally the right direction for information to flow, however NEURON also provides
a :func:`rxd.re_init` function to transfer data from segments to :class:`rxd.Species`.
.. function:: rxd.re_init
Reinitialize all :class:`rxd.Species`, :class:`rxd.State`, and :class:`rxd.Parameter` from changes made
to NEURON segment-level concentrations. This calls the corresponding :meth:`rxd.Species.re_init` methods.
Note that reaction-diffusion models may contain concentration data at a finer-resolution than that of a
:class:`nrn.Segment` (e.g. for models being simulated in 3D).
Syntax:
.. code::
python
rxd.re_init()
Numerical options
-----------------
.. function:: rxd.nthread
Specify a number of threads to use for extracellular and 3D intracellular simulation. Currently has
no effect on 1D reaction-diffusion models.
Syntax:
.. code::
python
rxd.nthread(num_threads)
Example:
To simulate using 4 threads:
.. code::
python
rxd.nthread(4)
Thread scaling performance is discussed in the NEURON
`extracellular <https://doi.org/10.3389/fninf.2018.00041>`_ and
`3D intracellular <https://doi.org/10.1101/2022.01.01.474683>`_ methods papers.
.. function:: rxd.set_solve_type
Specify numerical discretization and solver options. Currently the main use is to indicate
Sections where reaction-diffusion should be simulated in 3D.
Syntax:
.. code::
python
rxd.set_solve_type(domain=None, dimension=None, dx=None, nsubseg=None, method=None)
where:
- ``domain`` -- a :class:`Section` or Python iterable of sections. If the domain is ``None`` or omitted, the specification will apply to the entire model.
- ``dimension`` -- 1 or 3
- ``dx`` -- not implemented; specify dx for 3D models when creating the :class:`rxd.Region`
- ``nsubseg`` -- not implemented
- ``method`` -- not implemented
This function may be called multiple times; the last setting for any given field will be used.
Different sections may be simulated in different dimensions (a so-called hybrid model).
.. warning::
For 3D reaction-diffusion simulations, we recommend upgrading to at least NEURON 8.1.
(Calculation of 3D concentration changes from MOD file activity
in NEURON 7.8.x and 8.0.x was underestimated due to an inconsistency in surface voxel
partial volume calculations.)
SBML Export
-----------
.. function:: rxd.export.sbml
Export dynamics at a segment to an SBML file.
Syntax:
.. code::
python
rxd.export.sbml(segment, filename=None, model_name=None, pretty=True)
This does not currently support :class:`rxd.MultiCompartmentReaction`; attempting to export dynamics that
involve such reactions will raise an :class:`rxd.RxDException`.
.. note::
``rxd.export`` is not available simply via ``from neuron import rxd``; you must also:
.. code::
python
import neuron.rxd.export
Saving and restoring state
--------------------------
Some simulations require a lengthy initialization before exploring various possible stimuli.
In these situations, it is often convenient to run the initialization once, save the state,
do an experiment, and revert back to the saved state.
Beginning in NEURON 8.1, reaction-diffusion states are included automatically when using
:class:`SaveState` which additionally saves many other model states.
If one wants to save and restore *only* reaction-diffusion states, this can be done via the following
functions:
.. function: rxd.save_state
Return a bytestring representation of the current rxd state.
Note: this is dependent on the order items were created.
Syntax:
.. code::
python
state_data = rxd.save_state()
.. versionadded: 8.1
.. function: rxd.restore_state
Restore rxd state from a bytestring.
Note: this is dependent on the order items were created.
Syntax:
.. code::
python
rxd.restore_state(state_data)
.. versionadded: 8.1
The reaction-diffusion state data returned by :func:`rxd.save_state` and expected by :func:`rxd.restore_state`
consists of 16 bytes of metadata (8 bytes for a version identifier and 8 bytes for the length of the remaining portion)
followed by gzip-compresssed state values. In particular, not every binary string of a given length is a valid
state vector, nor is every state vector for a given model necessarily the same length (as the compressability may
be different).
Error handling
--------------
Most errors in the usage of the ``neuron.rxd`` module should
raise a :class:`rxd.RxDException`.
.. class:: rxd.RxDException
An exception originating from the ``neuron.rxd`` module
due to invalid usage. This allows distinguishing such
exceptions from other errors.
The text message of an :class:`rxd.RxDException` ``e`` may be read as ``str(e)``.
|