File: rxdmath.rst

package info (click to toggle)
neuron 8.2.6-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 34,760 kB
  • sloc: cpp: 149,571; python: 58,465; ansic: 50,329; sh: 3,510; xml: 213; pascal: 51; makefile: 35; sed: 5
file content (431 lines) | stat: -rw-r--r-- 8,093 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
.. _rxdmath_prog_ref:

Mathematical functions for rate expressions
===========================================

NEURON's ``neuron.rxd.rxdmath`` module provides a number of mathematical functions that
can be used to define reaction rates. These generally mirror the functions available
through Python's ``math`` module but support :class:`rxd.Species` objects.

To use any of these, first do:

    .. code::
        python

        from neuron.rxd import rxdmath

Example:

    .. code::
        python

        degradation_switch = (1 + rxdmath.tanh((ip3 - threshold) * 2 * m)) / 2
        degradation = rxd.Rate(ip3, -k * ip3 * degradation_switch)

    For a full runnable example, see `this tutorial <../../../rxd-tutorials/thresholds.html>`_
    which as here uses the hyperbolic tangent as an approximate on/off switch for the reaction.

In each of the following, ``x`` and ``y`` (where present) are arithmetic expressions
comprised of :class:`rxd.Species`, :class:`rxd.State`, :class:`rxd.Parameter`, regular numbers,
and the functions defined below.

.. function:: rxdmath.acos

    Inverse cosine.

    Syntax:

        .. code::
            python

            result = rxdmath.acos(x)

.. function:: rxdmath.acosh

    Inverse hyperbolic cosine.

    Syntax:

        .. code::
            python

            result = rxdmath.acosh(x)

.. function:: rxdmath.asin

    Inverse sine.

    Syntax:

        .. code::
            python

            result = rxdmath.asin(x)

.. function:: rxdmath.asinh

    Inverse hyperbolic sine.

    Syntax:

        .. code::
            python

            result = rxdmath.asinh(x)

.. function:: rxdmath.atan

    Inverse tangent.

    Syntax:

        .. code::
            python

            result = rxdmath.atan(x)

.. function:: rxdmath.atan2

    Inverse tangent, returning the correct quadrant given both a ``y`` and an ``x``.
    (Note: ``y`` is passed in before ``x``.)
    See `Wikipedia's page on atan2 <https://en.wikipedia.org/wiki/Atan2>`_ for more
    information.   

    Syntax:

        .. code::
            python

            result = rxdmath.atan2(y, x)

.. function:: rxdmath.ceil

   Ceiling function.

    Syntax:

        .. code::
            python

            result = rxdmath.ceil(x)

.. function:: rxdmath.copysign

    Apply the sign (positive or negative) of ``expr_with_sign`` to the value of
    ``expr_to_get_sign``.

    Syntax:

        .. code::
            python

            result = rxdmath.copysign(expr_to_get_sign, expr_with_sign)

    The behavior mirrors that of the Python standard library's 
    `math.copysign <https://docs.python.org/3/library/math.html#math.copysign>`_
    which behaves as follows:

        .. code::
            python

            >>> math.copysign(-5, 1.3)
            5.0
            >>> math.copysign(-5, -1.3)
            -5.0
            >>> math.copysign(2, -1.3)
            -2.0
            >>> math.copysign(2, 1.3)
            2.0

.. function:: rxdmath.cos

    Cosine.

    Syntax:

        .. code::
            python

            result = rxdmath.cos(x)


.. function:: rxdmath.cosh

    Hyperbolic cosine.

    Syntax:

        .. code::
            python

            result = rxdmath.cosh(x)

.. function:: rxdmath.degrees

    Converts ``x`` from radians to degrees. Equivalent to multiplying by 180 / π.

    Syntax:

        .. code::
            python

            result = rxdmath.degrees(x)

.. function:: rxdmath.erf

    The Gauss error function; see `Wikipedia <https://en.wikipedia.org/wiki/Error_function>`_ for more.

    Syntax:

        .. code::
            python

            result = rxdmath.erf(x)

.. function:: rxdmath.erfc

    The complementary error function.
    In exact math, ``erfc(x) = 1 - erf(x)``, however using this function provides more
    accurate numerical results when ``erf(x)`` is near 1.
    See the `Wikipedia entry on the error function <https://en.wikipedia.org/wiki/Error_function>`_ for more.

    Syntax:

        .. code::
            python

            result = rxdmath.erfc(x)

.. function:: rxdmath.exp

    e raised to the power x.

    Syntax:

        .. code::
            python

            result = rxdmath.exp(x)

.. function:: rxdmath.expm1

    (e raised to the power x) - 1. More numerically accurate than ``rxdmath.exp(x) - 1`` when ``x`` is near 0.

    Syntax:

        .. code::
            python

            result = rxdmath.expm1(x)

.. function:: rxdmath.fabs

    Absolute value.

    Syntax:

        .. code::
            python

            result = rxdmath.fabs(x)

.. function:: rxdmath.factorial

    Factorial. Probably not likely to be used in practice as it requires integer values.
    Consider using :func:`rxdmath.gamma` instead, as 
    for integers ``x``, ``rxdmath.factorial(x) = rxdmath.gamma(x + 1)``.

    Syntax:

        .. code::
            python

            result = rxdmath.factorial(x)

.. function:: rxdmath.floor

    Floor function.

    Syntax:

        .. code::
            python

            result = rxdmath.floor(x)

.. function:: rxdmath.fmod

    Modulus operator (remainder after division ``x/y``).

    Syntax:

        .. code::
            python

            result = rxdmath.fmod(x, y)

.. function:: rxdmath.gamma

    Gamma function, an extension of the factorial.
    See `Wikipedia <https://en.wikipedia.org/wiki/Gamma_function>`_ for more.

    Syntax:

        .. code::
            python

            result = rxdmath.gamma(x)

.. function:: rxdmath.lgamma

    Equivalent to ``rxdmath.log(rxdmath.fabs(rxdmath.gamma(x)))``
    but more numerically accurate.

    Syntax:

        .. code::
            python

            result = rxdmath.lgamma(x)

.. function:: rxdmath.log

    Natural logarithm.

    Syntax:

        .. code::
            python

            result = rxdmath.log(x)

.. function:: rxdmath.log10

    Logarithm to the base 10.

    Syntax:

        .. code::
            python

            result = rxdmath.log10(x)

.. function:: rxdmath.log1p

    Natural logarithm of 1 + x; equivalent to
    ``rxdmath.log(1 + x)`` but more numerically accurate
    when ``x`` is near 0.

    Syntax:

        .. code::
            python

            result = rxdmath.log1p(x)

.. function:: rxdmath.pow

    Returns ``x`` raised to the ``y``.

    Syntax:

        .. code::
            python

            result = rxdmath.pow(x, y)

.. function:: rxdmath.radians

    Converts degrees to radians. Equivalent to multiplying by π / 180.

    Syntax:

        .. code::
            python

            result = rxdmath.radians(x)

.. function:: rxdmath.sin

    Sine.

    Syntax:

        .. code::
            python

            result = rxdmath.sin(x)

.. function:: rxdmath.sinh

    Hyperbolic sine.

    Syntax:

        .. code::
            python

            result = rxdmath.sinh(x)

.. function:: rxdmath.sqrt

    Square root.

    Syntax:

        .. code::
            python

            result = rxdmath.sqrt(x)

.. function:: rxdmath.tan

    Tangent.

    Syntax:

        .. code::
            python

            result = rxdmath.tan(x)

.. function:: rxdmath.tanh

    Hyperbolic tangent.

    Syntax:

        .. code::
            python

            result = rxdmath.tanh(x)

.. function:: rxdmath.trunc

    Rounds to the nearest integer no further from 0.
    i.e. 1.5 rounds down to 1 and -1.5 rounds up to -1.

    Syntax:

        .. code::
            python

            result = rxdmath.trunc(x)

.. function:: rxdmath.vtrap

    Returns a continuous approximation of 
    ``x / (exp(x/y) - 1)`` with the discontinuity
    at ``x/y`` near 0 replaced by the limiting behavior
    via L'Hôpital's rule. This is useful in avoiding issues
    with certain ion channel models, including Hodgkin-Huxley.
    For an example of this in use, see the
    `Hodgkin-Huxley using rxd <https://neuron.yale.edu/neuron/docs/hodgkin-huxley-using-rxd>`_
    tutorial (as opposed to using ``h.hh``) .

    Syntax:

        .. code::
            python

            result = rxdmath.vtrap(x, y)