File: hocsyntax.rst

package info (click to toggle)
neuron 8.2.6-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 34,760 kB
  • sloc: cpp: 149,571; python: 58,465; ansic: 50,329; sh: 3,510; xml: 213; pascal: 51; makefile: 35; sed: 5
file content (417 lines) | stat: -rwxr-xr-x 9,783 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
.. index::  syntax (HOC)

.. _ocsyntax:

HOC Syntax
----------

HOC was the original programming language supported by NEURON.
NEURON may also be programmed in Python.


.. index::  comments

comments
~~~~~~~~
Syntax:
    ``/*...*/``

    ``//...``



Description:
    Comments are similar in style to C++. Enclose any text in /*...*/ (but 
    do not nest them).	The rest of a line after // is a comment. 
         



.. index::  expression

Expressions
~~~~~~~~~~~

Description:
    An expression has a double precision value.  It usually appears as the right 
    hand side of an assignment statement.  An expression may be a number, 
    variable, function call, or combination of simpler expressions. 
     

Options:
    The ways in which expressions can be combined are listed below 
    in order of precedence. e stands for any expression, v stands for any variable 
    and operators are 
    left associative except for assignment operators which are right associative. 


    ``(e)`` 
        grouping 

    ``e^e`` 
        exponentiation 

    ``-e`` 
        negation 

    ``e*e  e/e  e%e`` 
        multiplication, division, modulus 

    ``e+e  e-e`` 
        addition, subtraction 

    ``e==e  e!=e  e<e  e<=e  e>e  e>=e`` 
        logical equal, unequal, less than, less than or equal, greater than, 
        greater than or equal. These expressions have the numerical 
        value 1 (true) or 0 (false). The expression is considered true if it is 
        within :data:`float_epsilon` of being mathematically exact.
         
        Special logical expressions of the form objref1 == objref2 (and obj != obj) 
        are also allowed and return 1 (0) if the object references label the same 
        object. This makes the former comparison idiom using 
        :func:`object_id` obsolete. Logical expressions of the strdef1 == strdef2 
        cannot be directly compared because of parser consistency reasons. However 
        obj1.string1 == obj2.string2 will return true if the strings are identical 
        in the sense of :func:`strcmp` . 
         
         

    ``e&&e`` 
        Logical and. Both expressions 
        are always evaluated. A subexpression is considered false if it is within 
        :data:`float_epsilon` of 0 and true otherwise. If the entire expression is true 
        its value is 1. 

    ``e||e`` 
        Logical or. Both expressions are always evaluated. 
        A subexpression is considered false if it is within 
        :data:`float_epsilon` of 0 and true otherwise. If the entire expression is true 
        its value is 1. 

    ``v=e  v+=e  v-=e  v*=e  v/=e`` 
        assignment. others are equivalent to ``v = (v + e)``, 
        ``v = (v - e)``, 
        ``v = (v * e)``, 
        ``v = (v / e)``, respectively. 

     

.. seealso::
    :data:`float_epsilon`
        

         
  .. index::  statement       

Statements
~~~~~~~~~~

Syntax:
    ``stmt``

    ``{stmt}``

    ``{stmt stmt ...stmt}``



Description:
    A statement is something executable that does not have a value, eg. 
    for loops, procedure calls, or a compound statement between braces. 
    An expression may be used anywhere a statement is required. 
     

Example:

    .. code-block::
        none

        i = 0	//initialize i 
        j = 0	//initialize j 
        if(vec.x[i] <= 10 && i < vec.size()){	//In the parentheses is an expression: 
        					//if the value of the ith element in vec 
        					//is less than or equal to 10, and 
        					//if i is an index within vec 
        					// 
        					//Between the braces is/are statement(s): 
        	vec1.x[j] = vec.x[i]		 
        	i = i+1				//increment i by 1 
        	j = j+1				//increment j by 1 
        } else{					 
        					//Here is also a statement 
        	i = i+1				//simply go to the next element of vec 
        } 

    Statements exist between the braces following the ``if`` and ``else`` commands. 
    The parentheses after the ``if`` command contain an expression. 
     

         
.. index::  proc
         
.. _proc:


proc
~~~~
Syntax:
    :samp:`proc {name}() stmt`



Description:
    Introduce the definition of a procedure. A procedure does not return a value. 
    You should always try to distill your programs into small, manageable 
    procedures and functions. 
     

Example:

    .. code-block::
        none

        proc printsquare() {local x 
           x = $1 
           print x*x 
         } 
        printsquare(5) 

    prints the square of 5. 
     
    Procedures can also be called within other procedures. 
    The code which produces the interactive examples for the :class:`Random` class contains procedures 
    for both creating the buttons which allow you to select parameters as well as for creating 
    the histograms which appear on the screen. 
         

         
.. index::  func

.. _func:

func
~~~~

         

Syntax:
    :samp:`func {name}() {{stmt1, stmt2, stmt3...}}`



Description:
    Introduce the definition of a function. 
    A function returns a double precision value. 
     

Example:

    .. code-block::
        none

         func tan() {  
        	return sin($1)/cos($1)  
         } 
         tan(PI/8) 

    creates a function ``tan()`` which takes one argument (floating point 
    or whole number), and contains one 
    statement. 
     

         

.. index::  obfunc

.. _obfunc:

obfunc
~~~~~~

Syntax:
    :samp:`obfunc {name}() {{ statements }}`


Description:
    Introduce the definition of a function returning an objref 

Example:

    .. code-block::
        none

        obfunc last() { // arg is List 
        	return $o1.object($o1.count - 1) 
        } 


.. seealso::
    :ref:`localobj <keyword_localobj>`, :ref:`return <keyword_return>`

     

.. index::  iterator

.. _keyword_iterator:

iterator
~~~~~~~~

     

Syntax:
    ``iterator name() stmt``



Description:
    Define a looping construct to be used subsequently in looping 
    over a statement. 
     

Example:

    .. code-block::
        none

        iterator case() {local i 
        	for i = 2, numarg() {		//must begin at 2 because the first argument is 
        					//in reference to the address 
        		$&1 = $i		//what is at the address will be changed 
        		*iterator_statement*	//This is where the iterator statement will 
        					//be executed. 
        	} 
        } 

    In this case 

    .. code-block::
        none

        x=0 
        for case (&x, 1,2,4,7,-25) { 
        	print x			//the iterator statement 
        } 

    will print the values 1, 2, 4, 7, -25 
     
    The body of the ``for name(..) statement`` is executed in the same 
    context as a normal for statement. The name is executed in the same 
    context as a normal procedure but should use only variables local to the 
    iterator. 
     

         
         

.. index::  arguments

.. _arguments:

Arguments
~~~~~~~~~

Arguments to functions and procedures are retrieved positionally. 
``$1, $2, $3`` refer to the first, second, and third scalar arguments 
respectively. 
 
If "``i``" is declared as a local variable, ``$i`` refers 
to the scalar argument in the position given by the value of ``i``. 
The value of ``i`` must be in the 
range {1...numarg()}. 
 
The normal idiom is

    ``for i=1, numarg()  {print $i}`` 

Scalar arguments use call by value so the variable in the calling 
statement cannot be changed. 
 
If the calling statement has a '&' 
prepended to the variable then it is passed by reference and must 
be retrieved with the 
syntax ``$&1, $&2, ..., $&i``. If the variable passed by reference 
is a one dimensional array then ``$&1`` refers to the first (0th) element 
and index i is denoted ``$&1[i]``. Warning, NO array bounds checking is 
done and the array is treated as being one-dimensional. A scalar or 
array reference may be passed to another procedure with 
``&$&1``. To save a scalar reference use the :class:`Pointer` class. 
 
Retrieval of strdef arguments uses the syntax: ``$s1, $s2, ..., $si``. 
Retrieval of objref arguments uses the syntax: ``$o1, $o2, ..., $oi``. 
Arguments of type :ref:`strdef <keyword_strdef>` and ``objref`` use call by reference so the calling 
value may be changed. 

Example:

    .. code-block::
        none

        func mult(){ 
        	return $1*$2 
        } 

    defines a function which multiplies two arguments. 
    Therefore ``mult(4,5)`` will return the value 20. 

    .. code-block::
        none

        proc pr(){ 
        	print $s3 
        	print $1*$2 
        	print $o4 
        } 

    defines a procedure which first prints the string defined in 
    position 3, then prints the product of the two numbers in 
    positions 1 and 2, and finally prints the pointer reference to an 
    object in position 4. 
     
    For a string '``s``' which is defined as ``s = "hello"``, and an 
    objref '``r``', ``pr(3,5,s,r)`` will return 

    .. code-block::
        none

        hello 
        15 
        Graph[0]   

    assuming ``r`` refers to the first graph. 

.. seealso::
    :ref:`func`, :ref:`proc`, :ref:`objref`, :ref:`strdef <keyword_strdef>`, :class:`Pointer`, :func:`numarg`, :func:`argtype`

----

.. function:: numarg

    Syntax:
        ``n = numarg()``

    Description:
        Number of arguments passed to a user written hoc function. 

    .. seealso::
        :ref:`arguments`, :func:`argtype`
         

----

.. function:: argtype

    Syntax:
        ``itype = argtype(iarg)``

    Description:
        The type of the ith arg. The return value is 0 for numbers, 1 for objref, 
        2 for strdef, 3 for pointers to numbers, and -1 if the arg does not exist. 

    .. seealso::
        :ref:`arguments`, :func:`numarg`