File: functions.rst

package info (click to toggle)
neuron 8.2.6-2
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 34,760 kB
  • sloc: cpp: 149,571; python: 58,465; ansic: 50,329; sh: 3,510; xml: 213; pascal: 51; makefile: 35; sed: 5
file content (257 lines) | stat: -rwxr-xr-x 5,595 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
.. _math:

Common Math Functions (HOC)
---------------------------

These math functions return a double precision value and take a double 
precision argument. The exception is :func:`atan2` which has two double precision arguments. 

Diagnostics:
    Arguments that are out of range give an argument domain diagnostic. 

    These functions call the library routines supplied by the compiler. 


----

.. function:: abs

        absolute value 

        .. code-block::
            none

            >>> h.abs(-42.2)
            42.2

        See :meth:`Vector.abs` for the :class:`Vector` class. 

        .. note::

            In Python code, use Python's ``abs`` function, which works on both numbers and numpy arrays, as well as Vectors (Vectors do not print their contents) :

            .. code-block::
                python

                >>> abs(-42.2)
                42.2
                >>> abs(-3 + 4j)
                5.0
                >>> v = h.Vector([1, 6, -2, -65])
                >>> abs(v).printf()
                1       6       2       65
                4



----

.. function:: int

        returns the integer part of its argument (truncates toward 0). 

        .. code-block::
            none

            >>> h.int(3.14)
            3.0
            >>> h.int(-3.14)
            -3.0

        .. note::

            In Python code, use Python's ``int`` function instead. The behavior is slightly different in that the Python function returns an int type instead of a double:

            .. code-block::
                python

                >>> int(-3.14)
                -3
                >>> int(3.14)
                3



----

.. function:: sqrt

        square root 

        see :meth:`Vector.sqrt` for the :class:`Vector` class. 

        .. note::
        
            Consider using Python's built in ``math.sqrt`` instead.

----

.. function:: exp

    Description:
        returns the exponential function to the base e 
         
        When exp is used in model descriptions, it is often the 
        case that the cvode variable step integrator extrapolates 
        voltages to values which return out of range values for the exp (often used 
        in rate functions). There were so many of these false warnings that it was 
        deemed better to turn off the warning message when Cvode is active. 
        In any case the return value is exp(700). This message is not turned off 
        at the interpreter level or when cvode is not active. 

        .. code-block::
            python

            from neuron import h

            for i in range(6,12):
                print('%g %g' % (i, h.exp(i)))
        
        .. note::
        
            Consider using Python's built in ``math.exp`` instead.

----

.. function:: log

        logarithm to the base e 
        see :meth:`Vector.log` for the :class:`Vector` class. 

        .. note::
        
            Consider using Python's built in ``math.log`` instead.

----

.. function:: log10

        logarithm to the base 10 

        see :meth:`Vector.log10` for the :class:`Vector` class. 
        
        .. note::

            Consider using Python's built in ``math.log10`` instead.



----

.. function:: cos

    trigonometric function of radian argument. 

    see :meth:`Vector.sin` 

    .. note::

        Consider using Python's built in ``math.cos`` instead.



----

.. function:: sin

    trigonometric function of radian argument. 

    see :meth:`Vector.sin` for the :class:`Vector` class. 

    .. note::

        Consider using Python's built in ``math.sin`` instead.



----

.. function:: tanh

        hyperbolic tangent. 
        see :meth:`Vector.tanh` for the :class:`Vector` class. 
        
        .. note::

            Consider using Python's built in ``math.tanh`` instead.



----

.. function:: atan

        returns the arc-tangent of y/x in the range :math:`-\pi/2` to :math:`\pi/2`. (x > 0) 
        
        .. note::
    
            Consider using Python's built in ``math.atan`` instead.



----

.. function:: atan2

    Syntax:
        ``radians = atan2(y, x)``

    Description:
        returns the arc-tangent of y/x in the range :math:`-\pi` < radians <= :math:`\pi`. y and x 
        can be any double precision value, including 0. If both are 0 the value 
        returned is 0. 
        Imagine a right triangle with base x and height y. The result 
        is the angle in radians between the base and hypotenuse.

    Example:

        .. code-block::
            python

            from neuron import h

            h.atan2(0,0) 
            for i in range(-1,2):
                print(h.atan2(i*1e-6, 10))
            for i in range(-1,2):
                print(h.atan2(i*1e-6, -10))
            for i in range(-1,2):
                print(h.atan2(10, i*1e-6))
            for i in range(-1,2):
                print(h.atan2(-10, i*1e-6))
            h.atan2(10,10) 
            h.atan2(10,-10) 
            h.atan2(-10,10) 
            h.atan2(-10,-10) 
            
        .. note::
    
            Consider using Python's built in ``math.atan2`` instead.



----

.. function:: erf

        normalized error function 

        .. math::

            {\rm erf}(z) = \frac{2}{\sqrt{\pi}} \int_{0}^{z} e^{-t^2} dt

        .. note::

            In Python 3.2+, use ``math.erf`` instead.


----

.. function:: erfc

        returns ``1.0 - erf(z)`` but on sun machines computed by other methods 
        that avoid cancellation for large z. 

        .. note::

            In Python 3.2+, use ``math.erfc`` instead.