File: matrix.rst

package info (click to toggle)
neuron 8.2.6-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 34,760 kB
  • sloc: cpp: 149,571; python: 58,465; ansic: 50,329; sh: 3,510; xml: 213; pascal: 51; makefile: 35; sed: 5
file content (1303 lines) | stat: -rwxr-xr-x 29,938 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
.. _matrix:

         
Matrix
------



.. class:: Matrix


    Syntax:
        ``mobj = h.Matrix(nrow, ncol)``

        ``mobj = h.Matrix(nrow, ncol, type)``


    Description:
        A class for manipulation of two dimensional arrays of numbers. A companion 
        to the :class:`Vector` class, Matrix contains routines for m*x=b, v1=m*v2, etc. 
         
        Individual element values are assigned and evaluated 
        using the syntax: 

        .. code-block::
            python

            m.getval(irow, icol)
            m.setval(irow, icol, new_val)

        which may appear anywhere in an expression or on the left hand side of 
        an assignment statement. irow can range from 0 to m.nrow-1 and icol 
        ranges from 0 to m.ncol-1 . 
         
        When possible, Matrix methods returning a Matrix use the form, 
        mobj = m.f(args, [mout]), where mobj is a newly constructed matrix (m 
        is unchanged) unless 
        the optional last mout argument is present, in which case the return value 
        is mout and mout is used to store the matrix.  This style seems most efficient 
        to me since many matrix operations cannot be done in-situ. Exceptions to 
        this rule, eg m.zero(), are noted in the individual methods. 
         
        Similarly, Matrix methods returning a Vector use the form, 
        vobj = m.f(args, [vout]), where vobj is a newly constructed Vector unless 
        the optional last vout is present for storage of the vector elements. 
        Use of vout is extremely useful in those cases where the vector is graphed 
        since the result of the matrix operation does not invalidate the pointers 
        to the vector elements. 
         
        Note that the return value allows these operations to be used as members 
        of a filter chain or arguments to other functions. 
         
        By default, a new Matrix is of type MFULL (= 1) and allocates storage for 
        all nrow*ncol elements. Scaffolding is in place for matrices of storage 
        type MSPARSE (=2) and MBAND (=3) but not many methods have been interfaced 
        to the meschach library at this time. If a method is called on a matrix type 
        whose method has not been implemented, an error message will be printed. 
        It is intended that implemented methods will be transparent to the user, eg 
        m*x=b (``x = m.solv(b)`` ) will solve the linear system 
        regardless of the type of m and 
        v1 = m*v2 (``v1 = m.mulv(v2)`` ) will perform the vector multiplication. 
         
        Matrix is implemented using the 
        `meschach c library by David E. Stewart <http://www.math.uiowa.edu/~dstewart/meschach/meschach.html>`_
        (discovered at http://www.netlib.org/c/index.html\ ) which contains a large collection 
        of routines for sparse, banded, and full matrices. Many of the useful 
        routines  have not 
        been interfaced with the hoc interpreter but can be easily added on request 
        or you can add it yourself 
        by analogy with the code in ``nrn/src/ivoc/(matrix.c ocmatrix.[ch])`` 
        At this time the MFULL matrix type is complete enough to do useful work 
        and MSPARSE can be used to multiply a matrix by a vector and solve 
        Mx=b. 

         

----



.. data:: Matrix.x

    Not currently supported in Python; use :meth:`Matrix.getval` and :meth:`Matrix.setval` instead.


----



.. method:: Matrix.nrow


    Syntax:
        ``n = m.nrow()``


    Description:
        Returns the row dimension of the matrix. Row indices range from 0 to m.nrow()-1 

    .. note::

        This method currently returns an integer, but prior to NEURON 7.6, it returned a float.
        In older versions, it was thus sometimes necessary to cast the result to an int before
        using e.g. range.


----



.. method:: Matrix.ncol

        n = m.ncol()

    Description:
        returns the column dimension of the matrix. Column indices range 
        from 0 to m.ncol()-1 

    .. note::

        This method currently returns an integer, but prior to NEURON 7.6, it returned a float.
        In older versions, it was thus sometimes necessary to cast the result to an int before
        using e.g. range.

----



.. method:: Matrix.resize


    Syntax:
        ``mobj = m.resize(nrow, ncol)``


    Description:
        Change the size of the matrix. As many as possible of the former elements 
        are preserved. New elements are assigned the value of 0. New memory may 
        not have to be allocated depending on the size history of the matrix. 

    Example:

        .. code-block::
            python
            
            >>> from neuron import h
            >>> m = h.Matrix(3, 5)
            >>> ignore_return = m.printf()
             0        0        0        0        0
             0        0        0        0        0
             0        0        0        0        0
            >>> for i in range(5):
            ...     ignore_return = m.setcol(i, i)
            ...
            >>> ignore_return = m.printf()
             0        1        2        3        4
             0        1        2        3        4
             0        1        2        3        4
            >>> ignore_return = m.resize(7, 7)
            >>> ignore_return = m.printf()
             0        1        2        3        4        0        0
             0        1        2        3        4        0        0
             0        1        2        3        4        0        0
             0        0        0        0        0        0        0
             0        0        0        0        0        0        0
             0        0        0        0        0        0        0
             0        0        0        0        0        0        0
            >>> ignore_return = m.resize(4, 2)
            >>> ignore_return = m.printf()
             0        1
             0        1
             0        1
             0        0


    .. warning::
        Implemented only for full matrices. 

         

----



.. method:: Matrix.c


    Syntax:
        ``mdest = msrc.c()``


    Description:
        Copy the matrix. msrc is unchanged. 

    .. warning::
        Implemented only for full matrices. 

         

----



.. method:: Matrix.bcopy


    Syntax:
        ``mdest = msrc.bcopy(i0, j0, n, m [, mout])``

        ``mdest = msrc.bcopy(i0, j0, n, m, i1, j1 [, mout])``


    Description:
        Copy selected piece of a matrix. msrc is unchanged. 
        Copies the n x m submatrix with top-left (row i0, col j0) coordinates 
        to the corresponding submatrix of destination with top-left coordinates 
        (i1, j1). Out is resized if necessary. 

    Example:

        .. code-block::
            python

            from neuron import h

            m = h.Matrix(4,6) 
            for i in range(m.nrow()):
                for j in range(m.ncol()):
                    m.setval(i, j, 1 + 10*i+j) 

            m.printf()
            print('')
            m.bcopy(1,2,2,3).printf()
            print('')
            m.bcopy(1,2,2,3,2,3).printf() 
            print('')
            m.bcopy(1,2,2,3,2,3, h.Matrix(8,8)).printf()


    .. warning::
        Implemented only for full matrices. 

         

----



.. method:: Matrix.getval


    Syntax:
        ``val = m.getval(irow, jcol)``


    Description:
        Returns the value of the matrix element. If m is sparse and the element 
        does not exist then 0 is returned without creating the element. 

         

----



.. method:: Matrix.setval


    Syntax:
        ``val = m.setval(irow, jcol, val)``


    Description:
        Sets the value of the matrix element. For sparse matrices, if the 
        element is 0, this method will create the element.

         

----



.. method:: Matrix.sprowlen


    Syntax:
        ``n = m.sprowlen(i)``


    Description:
        Returns the number of existing(usually nonzero) 
        elements in the ith row of the sparse 
        matrix. Useful for iterating over a elements of a sparse matrix. 
        This function works only for sparse matrices. 
        See :meth:`Matrix.spgetrowval` 

         

----



.. method:: Matrix.spgetrowval


    Syntax:
        ``x = m.spgetrowval(i, jx, &j)``


    Description:
        Returns the existing element value and the column index (third pointer arg) 
        of the ith row and jx item. The latter ranges from 0 to m.sprowlen(i)-1 
        This function works only for sparse matrices (created with a third argument 
        of 2) 

    Example:
        To print the elements of a sparse matrix. 

        .. code-block::
            python

            from __future__ import print_function
            from neuron import h

            def sparse_print(m): 
                m.printf()
                print('m.nrow()', m.nrow())
                for i in range(m.nrow()):    
                    print("%d  " % i, end='')
                    for jx in range(m.sprowlen(i)):
                        j = h.ref(0)
                        x=m.spgetrowval(i, jx, j) 
                        print("  %d:%f" % (j[0], x), end='')
                    print()


            m = h.Matrix(4, 5, 2) 
            m.setval(0, 2, 1.2) 
            m.setval(0, 4, 2.4) 
            m.setval(1, 1, 3.1) 
            for i in range(4):
                m.setval(3, i, i/10.) 
            sparse_print(m) 



----



.. method:: Matrix.printf


    Syntax:
        ``0 = m.printf()``

        ``0 = m.printf("element_format")``

        ``0 = m.printf("element_format", "row_format")``


    Description:
        Print the matrix to the standard output with a default %-8g element format 
        and a default "\n" row format. 

    .. warning::
        Needs a separate implementation for sparse and banded matrices. Prints sparse 
        as though it was full. 


----



.. method:: Matrix.fprint


    Syntax:
        ``0 = m.fprint(fileobj)``

        ``0 = m.fprint(fileobj, "element_format")``

        ``0 = m.fprint(fileobj, "element_format", "row_format")``

        ``0 = m.fprint(0, fileobj [,...])``


    Description:
        Same as :func:`printf` but prints to the File object (must be open for writing) 
        with a first line consisting of the two integers, nrow ncol. 
        Print the matrix to the open file object with a default %-8g element format 
        and a default "\n" row format. 
        Because of the "nrow ncol" first line, such a file can be read with :func:`scanf` . 
        If the first arg is a 0, then the nrow ncol pair of numbers will not 
        be printed. 

    .. warning::
        Needs a separate implementation for sparse and banded matrices. 


----



.. method:: Matrix.scanf


    Syntax:
        ``0 = m.scanf(File_object)``

        ``0 = m.scanf(File_object, nrow, ncol)``


    Description:
        Read a file, including sizes, into a Matrix. The File_object is 
        an object of type :class:`File` and must be opened for reading prior to 
        the scanf. If nrow,ncol arguments are not present, 
        the first two numbers in the file must be nrow and mcol 
        respectively. In either case those values are used to resize the matrix. 
        The following nrow*mcol 
        numbers are row streams, eg it is often natural to have one row on a single line 
        or else to organize the file as a list of row vectors with only one number 
        per line. Strings in the file that cannot be parsed as numbers are ignored. 
         

        .. code-block::
            python

            from neuron import h

            f = h.File("filename") 
            f.ropen() 
            m = h.Matrix() 
            m.scanf(f) 
            print('{} {}'.format(m.nrow(), m.ncol()))

    .. warning::
        Works only for full matrix types 

    .. seealso::
        :meth:`Vector.scanf`, :func:`fscan`


----



.. method:: Matrix.mulv


    Syntax:
        ``vobj = msrc.mulv(vin)``

        ``vobj = msrc.mulv(vin, vout)``


    Description:
        Multiplication of a Matrix by a Vector, vobj = msrc*vin. 
        Returns a new vector of dimension msrc.nrow. Optional Vector 
        vout is used for storage of the result. Vector 
        vin must have dimension msrc.ncol. vin and vout can be the same vector 
        if the matrix is square. 

    Example:
        .. code-block::
            python

            from neuron import h

            v1 = h.Vector(4) 
            v1.indgen(1,1) 
            m = h.Matrix(3, 4) 
            for i in range(3):
                for j in range(3):
                    m.setval(i, j, i*10 + j) 
                
        .. code-block::
            python

            print("v1 {}".format(v1))
            v1.printf() 
            print("m {}".format(m))
            m.printf()
            print("m * v1")
            m.mulv(v1).printf()

        A sparse example 

        .. code-block::
            python

            from neuron import h

            v1 = h.Vector(100) 
            v1.indgen(1,1) 
            m = h.Matrix(100, 100, 2) ##sparse matrix 
            ##reverse permutation 
            for i in range(100): 
                m.setval(i, 99 - i, 1) 

            m.mulv(v1).printf()



    .. warning::
        Implemented only for full and sparse matrices. 


----



.. method:: Matrix.getrow


    Syntax:
        ``vobj = msrc.getrow(i)``

        ``vobj = msrc.getrow(i, vout)``


    Description:
        Return the i'th row of the matrix in a new :class:`Vector` (or use the storage 
        in the Vector vout if that arg is present). Range of i is from 0 to msrc.nrow-1. 

    .. warning::
        Implemented only for full matrices. 


----



.. method:: Matrix.getcol


    Syntax:
        ``vobj = msrc.getcol(i)``

        ``vobj = msrc.getcol(i, vout)``


    Description:
        Return the i'th column of the matrix in a new vector (or use the storage 
        in vout if that arg is present). Range of i is from 0 to msrc.ncol-1. 

    .. warning::
        Implemented only for full matrices. 


----



.. method:: Matrix.getdiag


    Syntax:
        ``vobj = msrc.getdiag(i)``

        ``vobj = msrc.getdiag(i, vout)``


    Description:
        Return the i'th diag of the matrix in a new vector (or use the storage 
        in vout if that arg is present) of size msrc.nrow. 
        Range is from -(msrc.nrow-1) to msrc.ncol-1 
        with 0 being the main diagonal, positive i refers to upper diagonals, and 
        negative i refers to lower diagonals. Upper diagonals fill the Vector 
        starting at position 0 and remaining elements are unused. 
        Lower diagonals fill the Vector ending at msrc.nrow-1 and the first 
        elements are unused. 

    Example:

        .. code-block::
            python

            from __future__ import print_function
            from neuron import h

            m = h.Matrix(4,4) 
            for i in range(m.nrow()):
                for j in range(m.ncol()):
                    m.setval(i, j, 1 + 10*j + 100*i)
            m.printf()

            for i in range(1 - m.nrow(), m.ncol()):
                print("diagonal %d: " % i, end='')
                print(list(m.getdiag(i))[max(0, -i) : (m.nrow() - i)])


    .. warning::
        Implemented only for full matrices. 


----



.. method:: Matrix.solv


    Syntax:
        ``vx = msrc.solv(vb)``

        ``vx = msrc.solv(vb, vout and/or 1 in either order)``


    Description:
        Solves the linear system msrc*vx = vb by LU factorization. msrc must be 
        a square matrix and vb must have size equal to msrc.nrow. The answer 
        will be returned in a new Vector of size msrc.nrow. 
        msrc is not changed. 
        The LU factorization is stored in case it 
        is desired for later reuse with a different vb. Re-use of the LU factorization 
        will actually take place only if the second or third argument is 1 and 
        msrc has not changed in size. 
         
        Note: if the LUfactor is used, changes to the actual values of msrc would 
        not affect the solution on subsequent calls to solv. 
         

    Example:

        .. code-block::
            python

            from neuron import h

            b = h.Vector(3) 
            b.indgen(1,1) 
            m = h.Matrix(3, 3) 
            for i in range(m.nrow()):
                for j in range(m.ncol()):
                    m.setval(i, j, i*j + 1)
            print("b")
            b.printf()
            print("m")
            m.printf() 
            print()
            print("solution of m*x = b")
            print()
            m.solv(b).printf() 


        .. code-block::
            python

            m = h.Matrix(1000, 1000, 2) ## sparse type 
            m.setdiag(0, 3) 
            m.setdiag(-1, -1) 
            m.setdiag(1, -1) 
            b = h.Vector(1000) 
            b[500] = 1 
            x = m.solv(b) 
            print()
            x.printf("%8.3f", 475, 525) 

            b[500] = 0
            b[499] = 1 
            print()
            m.solv(b,1).printf("%8.3f", 475, 535) 

    .. warning::
        Implemented only for full and sparse matrices. 


----



.. method:: Matrix.det


    Syntax:
        ``mantissa = m.det(_ref_base10exponent)``


    Description:
        Determinant of matrix m. Returns mantissa in range from -1 to 1 and 
        integer _ref_base10exponent[0]. 

    Example:

        .. code-block::
            python

            from neuron import h

            m = h.Matrix(2,2) 
            m.setval(0, 1, 20) 
            m.setval(1, 0, 30) 
            m.printf() 
            ex = h.ref(0)
            mant = m.det(ex) 
            print(mant*10**ex[0])



----



.. method:: Matrix.mulm


    Syntax:
        ``mobj = msrc.mulm(m)``

        ``mobj = msrc.mulm(m, mout)``


    Description:
        Multiplication of a Matrix by a Matrix, mobj = msrc*m. msrc and m are 
        unchanged. A new matrix is returned with size msrc.nrow x m.ncol. 
        msrc.ncol and m.nrow must be the same. If mout is present, that storage is 
        used for the result. 

    Example:
    
    .. code-block::
            python

            from neuron import h

            m1 = h.Matrix(6, 6) 
            for i in range(-1, 2):
                if i == 0:
                    m1.setdiag(i, 2) 
                else:
                    m1.setdiag(i, -1) 
            m2 = m1.inverse() 
            print("m1")
            m1.printf()
            print("m2")
            m2.printf(" %8.5f") 
            print("m1*m2" )
            m1.mulm(m2).printf(" %8.5f") 



    .. warning::
        Implemented only for full matrices. 


----



.. method:: Matrix.add


    Syntax:
        ``mobj = m1srcdest.add(m2src)``


    Description:
        Return m1srcdest + m2src. The matrices must have the same rank. 
        This is one of those functions that modifies the source matrix (unless the 
        last optional mout arg is present) instead of 
        putting the result in a new destination matrix. 

    .. warning::
        Implemented only for full matrices. 


----



.. method:: Matrix.muls


    Syntax:
        ``mobj = msrcdest.muls(scalar)``


    Description:
        Multiply the matrix by a scalar in place and return the matrix reference. 
        This is one of those functions that modifies the source matrix instead of 
        putting the result in a new destination matrix. 

    Example:

        .. code-block::
            python

            m = h.Matrix(4,4) 
            m.ident() 
            m.muls(-10) 
            m.printf()


    .. warning::
        Implemented only for full and sparse matrices. 


----



.. method:: Matrix.setrow


    Syntax:
        ``mobj = msrcdest.setrow(i, vin)``

        ``mobj = msrcdest.setrow(i, scalar)``


    Description:
        Fill the ith row of the msrcdest matrix with the values of the Vector vin. 
        The vector must have size msrcdest.ncol 
         
        Otherwise fill the matrix row with a constant. 

    .. warning::
        Implemented only for full matrices and sparse. 


----



.. method:: Matrix.setcol


    Syntax:
        ``mobj = msrcdest.setcol(i, vin)``

        ``mobj = msrcdest.setcol(i, scalar)``


    Description:
        Fill the ith column of the msrcdest matrix with the values of the Vector vin. 
        The vector must have size msrcdest.mrow 
         
        Otherwise fill the matrix column with a constant. 

    .. warning::
        Implemented only for full matrices. 


----



.. method:: Matrix.setdiag


    Syntax:
        ``mobj = msrcdest.setdiag(i, vin)``

        ``mobj = msrcdest.setdiag(i, scalar)``


    Description:
        Fill the ith diagonal of the msrcdest matrix with the values of the 
        Vector vin. The vector must have size msrcdest.mrow. The ith diagonal 
        ranges from -(mrow-1) to mcol-1. For positive diagonals, the starting 
        position of vector elements is 0 and trailing elements are ignored. 
        For negative diagonals, the ending position of the vector elements is 
        nrow-1 and beginning elements are ignored. 
         
        Otherwise fill the matrix diagonal with a constant. 

    Example:

        .. code-block::
            python
            
            from neuron import h

            m = h.Matrix(5,7) 
            v1 = h.Vector(5) 
            for i in range(-4,7): 
                m.setdiag(i, i) 
            m.printf()
            print
            for i in range (-4,7): 
                v1.indgen(1,1) 
                m.setdiag(i, v1) 

            m.printf()


    .. warning::
        Implemented only for full and sparse matrices. 


----



.. method:: Matrix.zero


    Syntax:
        ``mobj = msrcdest.zero()``


    Description:
        Fills the matrix with 0. 

    .. warning::
        Implemented only for full matrices. 


----



.. method:: Matrix.ident


    Syntax:
        ``mobj = msrcdest.ident()``


    Description:
        Fills the principal diagonal with 1. All other elements are set to 0. 

    Example:

        .. code-block::
            python

            m = h.Matrix(4, 6) 
            m.ident() 
            m.printf() 


    .. warning::
        Implemented only for full matrices. 


----



.. method:: Matrix.exp


    Syntax:
        ``mobj = msrc.exp()``

        ``mobj = msrc.exp(mout)``


    Description:
        Returns a new matrix which is e^msrc. ie 1 + m + m*m/2 + m*m*m/6 + ... 

    Example:

        .. code-block::
            python

            from neuron import h

            m = h.Matrix(8,8) 
            v1 = h.Vector(8) 
            for i in range(-1,2):
                v1.fill(2 - 3*abs(i)) 
                m.setdiag(i, v1) 

            m.exp().printf()


    .. warning::
        Implemented only for full matrices. But doesn't really make sense for 
        any other type since the result would normally be full. 


----



.. method:: Matrix.pow


    Syntax:
        ``mobj = msrc.pow(i)``

        ``mobj = msrc.pow(i, mout)``


    Description:
        Raise a matrix to a non-negative integer power. 
        Returns a new matrix which is msrc^i. 

    Example:

        .. code-block::
            python

            from neuron import h

            m = h.Matrix(6, 6) 
            m.ident()
            m.setval(0, 5, 1)
            m.setval(5, 0, 1) 
            for i in range(6): 
                print(i)
                m.pow(i).printf() 


    .. warning::
        Implemented only for full matrices. But doesn't really make sense for 
        any other type since the result would normally be full. 


----



.. method:: Matrix.inverse


    Syntax:
        ``mobj = msrc.inverse()``

        ``mobj = msrc.inverse(mout)``


    Description:
        Return 1/msrc in a new matrix. mobj*msrc = msrc*mobj = identity 

    Example:

        .. code-block::
            python

            from neuron import h

            m = h.Matrix(7,7) 
            v1 = h.Vector(7) 
            for i in range(-1, 2):
                v1.fill(2 - 3*abs(i))
                m.setdiag(i, v1)
            minv = m.inverse() 
            print
            m.printf() 
            print
            minv.printf() 
            print
            m.mulm(minv).printf()


    .. warning::
        Implemented only for full matrices. But doesn't really make sense for 
        any other type since the result would normally be full. 

         

----



.. method:: Matrix.svd


    Syntax:
        ``dvec = msrc.svd()``

        ``dvec = msrc.svd(umat, vmat)``


    Description:
        Singular value decomposition of a rectangular n x m matrix. 
        On return ut*d*v = m where u is an orthogonal n x n matrix, 
        v is an orthogonal m x m matrix, and d is a diagonal n x m matrix 
        (represented as a vector) whose elements are non-negative and sorted 
        by decreasing value. 
        Note that if m*x = b  then 
        vmat.mulv(x).mul(dvec) = umat.mulv(b) 

    Example:

        .. code-block::
            python

            from neuron import h
 
            def svdtest(a): 
                umat = h.Matrix() 
                vmat = h.Matrix() 
                dvec = a.svd(umat, vmat) 
                dmat = h.Matrix(a.nrow(), a.ncol()) 
                dmat.setdiag(0, dvec) 
                print("dvec")
                dvec.printf()
                print("dmat")
                dmat.printf() 
                print("umat")
                umat.printf() 
                print("vmat")
                vmat.printf() 
                print("input ")
                a.printf() 
                print("ut*d*v")
                umat.transpose().mulm(dmat).mulm(vmat).printf() 
 

            a = h.Matrix(5, 3) 
            a.setdiag(0, a.getdiag(0).indgen().add(1)) 
            svdtest(a) 
 
            a = h.Matrix(6, 6) 
            r = h.Random() 
            r.discunif(1,10) 
            for i in range(a.nrow()):
                a.setrow(i, a.getrow(i).setrand(r)) 
            svdtest(a) 
 
            a = h.Matrix(2,2) 
            a.setrow(0, 1) 
            a.setrow(1, 2) 
            svdtest(a) 

    .. warning::
        Implemented only for full matrices. umat and vmat are also full. 

         

----



.. method:: Matrix.transpose


    Syntax:
        ``mdest = msrc.transpose()``


    Description:
        Return new matrix which is the transpose of the source matrix. 

    Example:

        .. code-block::
            python

            from neuron import h

            m = h.Matrix(1,5) 
            for i in range(5):
                m.setval(0, i, i) 
            m.printf()
            print
            m.transpose().printf()
            print
            m.transpose().mulm(m).printf()
            print
            m.mulm(m.transpose()).printf()


    .. warning::
        Implemented only for full matrices. 

         

----



.. method:: Matrix.symmeig


    Syntax:
        ``veigenvalues = msrc.symmeig(eigenvectors)``


    Description:
        Returns the eigenvalues and eigenvectors of a real symmetric matrix. 
        On exit the eigenvalues are returned  in a new vector and the 
        eigenvectors are returned as an orthogonal matrix. 
        Note that the i'th column of the eigenvector matrix is the eigenvector 
        for the i'th element of the eigenvalue vector. 

    Example:

        .. code-block::
            python

            from neuron import h    

            m = h.Matrix(5,5) 
            m.setdiag(0, 2) 
            m.setdiag(-1, -1) 
            m.setdiag(1, -1) 
            m.printf()
 
            q = h.Matrix(1,1) 
            e = m.symmeig(q) 
            print("eigenvectors")
            q.printf()
            print()
            print("eigenvalues")
            e.printf()
            print()
            print("qt*m*q")
            q.transpose().mulm(m).mulm(q).printf() 
            print()
            print("qt*q")
            q.transpose().mulm(q).printf()

         

    .. warning::
        Implemented only for full matrices. 
         
        msrc must be symmetric but that fact is not checked. 

         

----



.. method:: Matrix.to_vector


    Syntax:
        ``vobj = msrc.to_vector()``

        ``vobj = msrc.to_vector(vout)``


    Description:
        Copies the matrix elements into a :class:`Vector` in column order. 
        i.e the jth column starts 
        at vobj[msrc.nrow*j] . 
        The vector is sized to nrow*ncol. 

    Example:

        .. code-block::
            python

            from neuron import h

            m = h.Matrix(4,5) 
            m.from_vector(m.to_vector().indgen()).printf()


    .. warning::
        Works for sparse matrices but the output vector will still be size 
        nrow*ncol. 
        Not very efficient since vobj and msrc do not share memory. 

         

----



.. method:: Matrix.from_vector


    Syntax:
        ``mobj = msrcdest.from_vector(vec)``


    Description:
        Copies the vector elements into the matrix in column order. I.e 
        m[i][j] = v[j*nrow + i]. 
        The size of vec must be equal to msrcdest.nrow()*msrcdest.ncol(). 

    Example:

        .. code-block::
            python

            from neuron import h

            m = h.Matrix(4,5) 
            m.from_vector(m.to_vector().indgen()).printf() 


    .. warning::
        Works for sparse matrices but all elements will exist so not really sparse. 

         

----


..    .. method:: Matrix.cholesky_factor
        Syntax:
            ``mc = msrcdest.cholesky_factor()``
        Description:
            Cholesky factorization in place. msrcdest must be a symmetric positive 
            definite matrix. On return, it is a lower triangular matrix, L, such that 
            L*Ltranspose = msrc 

        .. warning::

            Not implemented.