File: random.rst

package info (click to toggle)
neuron 8.2.6-2
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 34,760 kB
  • sloc: cpp: 149,571; python: 58,465; ansic: 50,329; sh: 3,510; xml: 213; pascal: 51; makefile: 35; sed: 5
file content (770 lines) | stat: -rwxr-xr-x 18,594 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
.. _random:

Pseudo-Random Number Generation
-------------------------------

Pseudo-random numbers from a variety of distributions may be generated with the :class:`Random` class. Multiple random number generators are provided; low level access to the mcell_ran4 generator is described in:

.. toctree:: :maxdepth: 1

    mcran4.rst


Random Class
============

.. class:: Random

    Syntax:
        ``h.Random()``

        ``h.Random(seed)``

        ``h.Random(seed, size)``


    Description:
        The Random class provides commonly used random distributions which are 
        useful for stochastic 
        simulations. The default distribution is normal with mean = 0 and standard 
        deviation = 1. 
         
        This class is an interface to the RNG class 
        from the gnu c++ class library. As of version 5.2, a cryptographic quality 
        RNG class wrapper for :func:`mcell_ran4` was added and is available 
        with the :meth:`Random.MCellRan4` method. The current default random generator 
        is :meth:`Random.ACG`. 
         
        As of version 7.3, a more versatile cryptographic quality generator, 
        Random123, is available with the :meth:`Random.Random123` method. This generator 
        uses a 34bit counter, up to 3 32 bit identifiers, and a 32 bit global index and 
        is most suitable for managing separate independent, reproducible, restartable 
        streams that are unique to individual cell and synapses in large parallel 
        network models. 
        See: http://www.thesalmons.org/john/random123/papers/random123sc11.pdf 
         
        Note that multiple instances of the Random class will produce different 
        streams of random numbers only if their seeds are different. 
         
        One can switch distributions at any time but if the distribution is 
        stationary then it is more efficient to use :meth:`Random.repick` to avoid 
        constructor/destructor overhead. 
         

    Example:

        .. code-block::
            python

            from neuron import h

            r = h.Random() 
            for i in range(10): 
                print(r.uniform(30, 50)) # not as efficient as 

            for i in range(10):
                print(r.repick())        # this 

        prints 20 random numbers ranging in value between 30 and 50. 
         

         

----



.. method:: Random.ACG


    Syntax:
        ``r.ACG()``

        ``r.ACG(seed)``

        ``r.ACG(seed, size)``


    Description:
        Use a variant of the Linear Congruential Generator (algorithm M) 
        described in Knuth, Art of Computer Programming, Vol. III in 
        combination with a Fibonacci Additive Congruential Generator.  This is 
        a "very high quality" random number generator, Default size is 55, 
        giving a size of 1244 bytes to the structure. Minimum size is 7 (total 
        100 bytes), maximum size is 98 (total 2440 bytes). 

         

----



.. method:: Random.MLCG


    Syntax:
        ``r.MLCG()``

        ``r.MLCG(seed1)``

        ``r.MLCG(seed1, seed2)``


    Description:
        Use a Multiplicative Linear Congruential Generator.  Not as high 
        quality as the ACG.  It uses only 8 bytes. 

         

----



.. method:: Random.MCellRan4


    Syntax:
        ``highindex = r.MCellRan4()``

        ``highindex = r.MCellRan4(highindex)``

        ``highindex = r.MCellRan4(highindex, lowindex)``


    Description:
        Use the MCell variant of the Ran4 generator. See :func:`mcell_ran4`. 
        In the no argument case or if the highindex is 0, then the system selects 
        an index which is the random 32 bit integer resulting from 
        an mcell_ran4 call with an index equal to the 
        the number of instances of the Random generator that had been created. 
        Thus, each stream should be statistically independent as long as the 
        highindex values differ by more than the eventual length of the stream. 
        In any case, the 
        initial highindex is returned and can be used to restart an instance 
        of the generator. Use :func:`mcell_ran4_init` to set the (global) 
        low 32 bit index of the generator. The :meth:`Random.seq` method is useful 
        for getting the current sequence number and restarting at that sequence 
        number (highindex). 
        If the lowindex arg is present and nonzero, then that lowindex is used 
        instead of the global one specified by :func:`mcell_ran4_init`. 
        This allows 2^32-1 independent streams that do not overlap. 
         
        Note that for reproducibility, 
        the distribution should be defined AFTER setting the seed since some 
        distributions, such as :meth:`Random.normal`, hold state information from 
        a previous pick from the uniform distribution. 

    .. seealso::
        :meth:`Random.Random123`

    Example:

        .. code-block::
            python

            from neuron import h, gui

            r = h.Random() 
            index = h.ref(r.MCellRan4())
            r.uniform(0, 2) 
            vec = h.Vector(1000) 
            g1 = h.Graph() 
            g2 = h.Graph() 
            g1.size(0, 1000, 0, 2) 
            g2.size(0, 2, 0, 150) 

            def doit(): 
                g1.erase() 
                g2.erase() 
                vec.setrand(r) 
                hist = vec.histogram(0, 2, 0.2) 
                vec.line(g1) 
                hist.line(g2, .2) 
                g1.flush() 
                g2.flush()

            def set_index_then_doit():
                r.MCellRan4(index[0])
                doit()

            doit()

            h.xpanel("MCellRan4 test") 
            h.xbutton("Sample", doit) 
            h.xvalue("Original index", index, 1, set_index_then_doit) 
            h.xpanel()

        .. image:: ../../images/random-mcellran4.png
            :align: center
            

         

----



.. method:: Random.Random123

    Syntax:
        ``0 = r.Random123(id1, id2, id3)``

    Description:
        Use the Random123 generator (currently philox4x32 is the crypotgraphic hash 
        used) with the stream identified by the identifiers 0 <= id1,2,3 < 2^32 
        and the global index (see :meth:`Random.Random123_globalindex`). The counter, 
        which increments from 0 to 2^34-1, is initialized to 0 (see :meth:`Random.seq`). 
        If any of the up to 3 arguments are missing, it is assumed 0.
         
        The generators should be usable in the context of threads as long as 
        no instance is used in more than one thread. 
         
        This generator 
        uses a 34bit counter, 3 32 bit identifiers, and a 32 bit global index and 
        is most suitable for managing separate independent, reproducible, restartable 
        streams that are unique to individual cell and synapses in large parallel 
        network models. 
        See: http://www.thesalmons.org/john/random123/papers/random123sc11.pdf 

         

----



.. method:: Random.Random123_globalindex

    Syntax:
        ``uint32 = r.Random123_globalindex([uint32])``

    Description:
        Gets and sets the global index used by all instances of the Random123 
        instances of Random. 

         

----



.. method:: Random.seq

    Syntax:
        ``currenthighindex = r.seq()``

        ``r.seq(sethighindex)``

    Description:
        For MCellRan4, 
        Gets and sets the current highindex value when the :meth:`Random.MCellRan4` is 
        in use. This allows restarting the generator at any specified point. 
        Note that the currenthighindex value is incremented every :meth:`Random.repick`. 
        Usually the increment is 1 but some distributions, e.g. :meth:`Random.poisson` 
        can increment by more. Also, some distributions, e.g. :meth:`Random.normal`, 
        pick twice on the first repick but once thereafter. 
         
        For Random123, 
        Gets and sets the counter value which ranges from 0 to 2^34-1. 
        The reason the the greater range is that the internal Random123 generators 
        return 4 uint32 values on each call. So that is done only every 4 picks from 
        the generator. 
         

    Example:

        .. code-block::
            python

            from neuron import h

            r = h.Random() 

            r.negexp(1) 

            h.mcell_ran4_init(1) 
            r.MCellRan4(1) 

            for i in range(11):
                print('{} {}'.format(i, r.repick()))

            r.MCellRan4(1) 
            for i in range(6):
                print('%d %g' % (i, r.repick()))

            idum = r.seq() 
            print("idum = {}".format(idum ))
            for i in range(6, 11):
                print('{} {}'.format(i, r.repick()))

            print("restarting")
            r.seq(idum) 
            for i in range(6, 11):
                print('{} {}'.format(i, r.repick()))

            print("restarting")
            r.seq(idum) 
            for i in range(6, 11):
                print('{} {}'.format(i, r.repick()))

        Output:

            .. code-block::
                None

                0 1.51709661466
                1 0.485175784418
                2 0.212032709823
                3 0.503178330905
                4 0.114339664628
                5 1.28075206782
                6 0.0578608361212
                7 0.26376087479
                8 0.291156947261
                9 3.21937205675
                10 0.409557452659
                0 1.51709661466
                1 0.485175784418
                2 0.212032709823
                3 0.503178330905
                4 0.114339664628
                5 1.28075206782
                idum = 7.0
                6 0.0578608361212
                7 0.26376087479
                8 0.291156947261
                9 3.21937205675
                10 0.409557452659
                restarting
                6 0.0578608361212
                7 0.26376087479
                8 0.291156947261
                9 3.21937205675
                10 0.409557452659
                restarting
                6 0.0578608361212
                7 0.26376087479
                8 0.291156947261
                9 3.21937205675
                10 0.409557452659


        
----



.. method:: Random.repick


    Syntax:
        ``r.repick()``


    Description:
        Pick again from the distribution last used. 

         

----



.. method:: Random.play


    Syntax:
        ``r.play(_ref_var)``


    Description:
        At the beginning of every call to :func:`fadvance` and :func:`finitialize` var is set 
        to a new value equivalent to 

        .. code-block::
            none

            var = r.repick() 

        (but with no interpreter overhead). This is similar in concept to :meth:`Vector.play`. 
        Play may be called several times for different variables and each variable 
        will get an independent random value but with the same distribution. 
        To disconnect the Random object from its list of variables, either the variables 
        or the Random object must be destroyed. 

    Example:

        .. code-block::
            python

            from neuron import h

            r = h.Random() 
            # set the distribution
            r.uniform(0, 1)

            # create a reference, and have the uniform random variable update it at each time step
            rv = h.ref(0)
            r.play(rv)

            # print some random numbers
            for i in range(5):
                h.fadvance()
                print(rv[0])

    More practically, this might be used with a fixed time step to set, say, ``h.IClamp[0]._ref_amp`` for a random current injection.


----



.. method:: Random.uniform


    Syntax:
        ``r.uniform(low, high)``


    Description:
        Create a uniform random variable over the open interval (*low*...\ *high*). 

    See examples of this in :meth:`Random.MCellRan4` and :meth:`Random.play`.

----



.. method:: Random.discunif


    Syntax:
        ``r.discunif(low, high)``


    Description:
        Create a uniform random variable over the discrete integers from 
        low to high. 

         

----



.. method:: Random.normal


    Syntax:
        ``r.normal(mean, variance)``


    Description:
        Gaussian distribution. 

    Example:

        .. code-block::
            python
            
            from neuron import h, gui

            r = h.Random() 
            r.normal(-1, .5) 
             
            vec = h.Vector() 
            vec.indgen(-3, 2, .1)	# x-axis for plot 
            hist = h.Vector(vec.size()) 
            g = h.Graph() 
            g.size(-3, 2, 0, 50) 
            hist.plot(g, vec)
            for i in range(500):
            	x = r.repick() 
            	print('%d %g' % (i, x))
            	j = int((x+3)*10) # -3 to 2 -> 0 to 50 
            	if j >= 0:
            		hist[j] += 1
            	g.flush() 
            	h.doNotify() 

        .. image:: ../../images/random-normal.png
            :align: center
            


         

----



.. method:: Random.lognormal


    Syntax:
        ``r.lognormal(mean, variance)``


    Description:
        Create a logarithmic normal distribution. 

    Example:

        .. code-block::
            python

            from neuron import h, gui
            r = h.Random() 
            r.lognormal(5,2) 
            n=20 
            xvec = h.Vector(n*3)	# bins look like discrete spikes 
            for i in range(n): 
            	xvec[3*i] = i - 0.1 
            	xvec[3*i+1] = i 
            	xvec[3*i+2] = i + .1 
            
            hist = h.Vector(xvec.size()) 
            g = h.Graph() 
            g.size(0, 15, 0, 120) 
            hist.plot(g, xvec) 
            for i in range(500):
            	x = r.repick() 
            	print('%d %g' % (i, x))
            	j = 3 * int(x) + 1 
            	if j >= hist.size():  # don't let any off the edge 
            		j = hist.size() - 1
            	hist[j] = hist[j]+1 
            	g.flush() 
            	h.doNotify() 
            

        .. image:: ../../images/random-lognormal.png
            :align: center
         

----



.. method:: Random.poisson


    Syntax:
        ``r.poisson(mean)``


    Description:
        Create a poisson distribution. 

    Example:

        .. code-block::
            python

            from neuron import h, gui

            r = h.Random() 
            r.poisson(3) 
             
            n=20 
            xvec = h.Vector(n*3) 
            for i in range(n): 
            	xvec[3*i] = i-.1 
            	xvec[3*i+1] = i 
            	xvec[3*i+2] = i+.1 
            
            hist = h.Vector(xvec.size()) 
            g = h.Graph() 
            g.size(0, 15, 0, 120) 
            hist.plot(g, xvec)
            for i in range(500):
            	x = r.repick() 
            	print('%d %g' % (i, x))
            	j = int(x) 
            	j = 3*j+1 
            	if j >= hist.size():
            		j = hist.size() -1 
            	hist[j] = hist[j]+1 
            	g.flush() 
            	h.doNotify() 
            
        .. image:: ../../images/random-poisson.png
            :align: center

         

----



.. method:: Random.binomial


    Syntax:
        ``r.binomial(N,p)``


    Description:
        Create a binomial distribution. Returns the number of "successes" after 
        *N* trials when the probability of a success after one trial is *p*. 
        (n>0, 0<=p<=1). 
         
        ``P(n, N, p) = p * P(n-1, N-1, p) + (1 - p) * P(n, N-1, p)``

    Example:

        .. code-block::
            python

            from neuron import h, gui

            r = h.Random() 
            r.binomial(20, .5) 
             
            g = h.Graph() 
            g.size(0, 20, 0, 100) 
            hist = h.Vector(20) 
            hist.plot(g) 
            for i in range(500):
            	j = int(r.repick()) # r.repick() always returns a float even though the binomial always is an integer
            	hist[j] += 1
            	g.flush() 
            	h.doNotify() 

        .. image:: ../../images/random-binomial.png
            :align: center
         

----



.. method:: Random.geometric


    Syntax:
        ``r.geometric(mean)``


    Description:
        Create a discrete geometric distribution. 
        Given 0<=*mean*<=1, return the number of uniform random samples 
        that were drawn before the sample was larger than the *mean* (always 
        greater than 0). 

    Example:

        .. code-block::
            python
            
            from neuron import h, gui

            r = h.Random() 
            r.geometric(.8) 
            hist = new Vector(1000) 
            def sample(): 
            	hist = h.Vector(1000) 
            	hist.setrand(r) 
            	hist = hist.histogram(0,100,1) 
            	hist.plot(g) 
            
            g = h.Graph() 
            g.size(0,40,0,200) 
            sample() 
            h.xpanel("Resample") 
            h.xbutton("Resample", sample)
            h.xpanel() 

        .. image:: ../../images/random-geometric.png
            :align: center
         

----



.. method:: Random.hypergeo


    Syntax:
        ``r.hypergeo(mean,variance)``


    Description:
        Create a hypergeometric distribution. 

         

----



.. method:: Random.negexp


    Syntax:
        ``r.negexp(mean)``


    Description:
        Create a negative exponential distribution. Distributed as the intervals 
        between events in a poisson distribution. 

    Example:

        .. code-block::
            python
            
            from neuron import h, gui

            r = h.Random()  
            r.negexp(2.5)  
            hist = h.Vector(1000) 
            def sample():
                    hist = h.Vector(1000) 
                    hist.setrand(r) 
                    hist = hist.histogram(0,20,.1) 
                    hist.plot(g, .1) 
            
            g = h.Graph() 
            g.size(0,20,0,50) 
            sample() 
            h.xpanel("Resample") 
            h.xbutton("Resample", sample) 
            h.xpanel() 

        .. image:: ../../images/random-negexp.png
            :align: center
         

----



.. method:: Random.erlang


    Syntax:
        ``r.erlang(mean,variance)``


    Description:
        Create an Erlang distribution. 

         

----



.. method:: Random.weibull


    Syntax:
        ``r.weibull(alpha,beta)``


    Description:
        Create a Weibull distribution.