1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777
|
.. _vect:
Vector
------
.. class:: Vector
This class was implemented by
.. code-block::
none
-----------------------------
Zach Mainen and Michael Hines
-----------------------------
Syntax:
``obj = h.Vector()``
``obj = h.Vector(size)``
``obj = h.Vector(size, init)``
``obj = h.Vector(python_iterable)``
Description:
NEURON's Vector class provides functionality that is similar (and partly interchangeable) with a numpy
one-dimensional array of doubles.
The reason for the continued use of Vector is both due to back-compatibility and due to the many faster C-level
extensions that have been written as NMOD programs that make use of this class.
A Vector is itself an iterable and can be used in any context that takes an iterable, e.g.,
.. code-block::
python
for x in vec: print(x)
[x for x in vec]
numpy.array(vec)
A Vector object created with this class can be thought of as
containing a one dimensional x array with elements of type float.
The :samp:`{objref}[{index}]` notation can be used to read and set Vector elements
(setting requires NEURON 7.7+). An older syntax :samp:`{objref}.x[{index}]` works on
all Python-supporting versions of NEURON.
Vector slices are not directly supported but are replicated with the functionality
of Vector.c() (see below).
A vector can be created with length *size* and with each element set to the value of *init* or can be created using
a Python iterable.
Vector methods that modify the elements are generally of the form
.. code-block::
none
obj = vsrcdest.method(...)
in which the values of vsrcdest on entry to the
method are used as source values by the method to compute values which replace
the old values in vsrcdest. The return value is simply an additional reference to the same Vector.
Beginning with NEURON 7.7, Vectors support arithmetic operations; e.g. one can write
``v1 = v2*s2 + v3*s3 + v4*s4``.
.. note::
In older code, you may see the use of the arithmetic functions
add, mul, etc. Those functions changed the vectors they operated on, so to avoid this,
the .c() method was used to create a new copy of a vector. The expression that can
now be written ``v1 = v2*s2 + v3*s3 + v4*s4`` using the older form would be written as
.. code-block::
none
v1 = v2.c().mul(s2).add(v3.c().mul(s3)).add(v4.c().mul(s4))
Examples:
.. code-block::
none
vec = h.Vector(20,5)
will create a vector with 20 indices, each having the value of 5.
.. code-block::
python
vec1 = h.Vector()
will create a vector with 0 size. It is seldom
necessary to specify a size for a Vector since most operations, if necessary,
increase or decrease the number of elements as needed.
.. code-block::
python
v = h.Vector([1, 2, 3])
will create a vector of length 3 whose entries are: 1, 2, and 3. The
constructor takes any Python iterable. In particular, it also works
with numpy arrays:
.. code-block::
python
import numpy
x = numpy.linspace(0, 2 * numpy.pi, 50)
y = h.Vector(numpy.sin(x))
produces a vector ``y`` of length 50 corresponding to the sine of evenly
spaced points between 0 and 2 pi, inclusive.
.. seealso::
:data:`Vector.x`, :meth:`Vector.resize`, :meth:`Vector.apply`
----
.. data:: Vector.x
Syntax:
``vec.x[index]``
Description:
Elements of a vector can be accessed with ``vec.x[index]`` notation for either access or assignment.
Vector indices range from 0 to len(Vector)-1
Vector contents can also be accessed with ``vec.get(index)`` or set with ``vec.set(index, value)``
**This is not recommended for new code; use vec[index] instead.**
Example:
``print(vec.x[0], vec[0])`` prints the value of the 0th (first) element twice.
``vec.x[i] = 3`` sets the i'th element to 3. Beginning with NEURON 7.7, it suffices
to write ``vec[i] = 3`` instead.
.. code-block::
python
h.xpanel("show a field editor")
h.xpvalue("last element", vec._ref_x[len(vec)-1])
h.xpanel()
Note, however, that there is a potential difficulty with the :func:`xpvalue` field
editor since, if vec is resized to be larger than vec.buffer_size() a reallocation of the
memory will cause the pointer to be invalid. In this case, the field editor will display the string, "Free'd".
.. warning::
``vec.x[-1]`` or ``vec[-1]`` return or set the value of the last element of the vector but ``vec._ref_x`` cannot be accessed in
this way.
----
.. method:: Vector.size
Syntax:
``size = vec.size()``
Description:
Deprecated in favor of len(vec); note that ``len(vec) == vec.size()``
Return the number of elements in the vector. The last element has the index:
``vec.size() - 1`` which can be abbreviated using -1 as above.
.. code-block::
python
for i in range(vec.size()):
print(vec[i])
.. note::
``for`` loops can also use Vector as an iterable
.. code-block::
python
for item in vec: print(item)
.. note::
There is a distinction between the size of a vector and the
amount of memory allocated to hold the vector. Generally, memory is only
freed and reallocated if the size needed is greater than the memory storage
previously allocated to the vector. Thus the memory used by vectors
tends to grow but not shrink. To reduce the memory used by a vector, one
can explicitly call :func:`buffer_size` .
.. seealso::
:meth:`Vector.buffer_size`
----
.. method:: Vector.resize
Syntax:
``obj = vsrcdest.resize(new_size)``
Description:
Resize the vector. If the vector is made smaller, then trailing elements
will be zeroed. If it is expanded, the new elements will be initialized to 0.0;
original elements will remain unchanged.
Warning: Any function that
resizes the vector to a larger size than its available space will reallocate and thereby
make existing pointers to the elements invalid
(see note in :meth:`Vector.size`).
For example, resizing vectors that have been plotted will remove that vector
from the plot list. Other functions may not be so forgiving and result in
a memory error (segmentation violation or unhandled exception).
Example:
.. code-block::
python
vec = h.Vector(20,5)
vec.resize(30) # Appends 10 elements, each having a value of 0
vec.printf()
vec.resize(10) # removes the last 20 elements; values of the first 10 elements are unchanged
.. seealso::
:meth:`Vector.buffer_size`
----
.. method:: Vector.buffer_size
Syntax:
``space = vsrc.buffer_size()``
``space = vsrc.buffer_size(request)``
Description:
Returns the length of the double precision array memory allocated to hold the
vector. This is NOT the size of the vector. The vector size can efficiently
grow up to this value without reallocating memory.
With an argument, frees the old memory space and allocates new
memory space for the vector, copying old element values to the new elements.
If the request is less than the size, the size is truncated to the request.
For vectors that grow continuously, it may be more efficient to
allocate enough space at the outset, or else occasionally change the
buffer_size by larger chunks. It is not necessary to worry about the
efficiency of growth during a Vector.record since the space available
automatically increases by doubling.
Example:
.. code-block::
python
y = h.Vector(10)
print(len(y))
print(y.buffer_size())
y.resize(5)
print(len(y))
print(y.buffer_size())
print(y.buffer_size(100))
print(len(y))
----
.. method:: Vector.get
Syntax:
``x = vec.get(index)``
Description:
Return the value of a vector element index.
----
.. method:: Vector.set
Syntax:
``obj = vsrcdest.set(index,value)``
Description:
Set vector element index to value. Equivalent to ``vec[i] = expr`` notation.
----
.. method:: Vector.fill
Syntax:
``obj = vsrcdest.fill(value)``
``obj = vsrcdest.fill(value, start, end)``
Description:
The first form assigns *value* to every element in vsrcdest.
If *start* and *end* arguments are present, they specify the index range for the assignment.
Example:
.. code-block::
python
vec = h.Vector(20,5)
vec.fill(9,2,7)
assigns 9 to vec[2] through vec[7]
(a total of 6 elements)
.. seealso::
:meth:`Vector.indgen`, :meth:`Vector.append`
----
.. method:: Vector.label
Syntax:
``s = vec.label()``
``s = vec.label(str_type)``
Description:
Label the vector with a string.
The return value is the label, which is an empty string if no label has been set.
Labels are printed on a Graph when the :meth:`Graph.plot` method is called.
Example:
.. code-block::
python
from neuron import h
vec = h.Vector()
print(vec.label())
vec.label("hello")
print(vec.label())
.. seealso::
:meth:`Graph.family`, :meth:`Graph.beginline`
----
.. method:: Vector.record
Syntax:
``vdest = vdest.record(var_reference)``
``vdest = vdest.record(var_reference, Dt)``
``vdest = vdest.record(var_reference, tvec)``
``vdest = vdest.record(point_process_object, var_reference, ...)``
Description:
Save the stream of values of "*var*" during a simulation into the vdest vector.
Previous record and play specifications of this Vector (if any) are destroyed.
Details:
NEURON pointers in python are handled using the _ref_ syntax. e.g., soma(0.5)._ref_v
To save a scalar from NEURON that scalar must exist in NEURON's scope.
Transfers take place on exit from ``finitialize()`` and on exit from ``fadvance()``.
At the end of ``finitialize()``, ``v[0] = var``. At the end of ``fadvance``,
*var* will be saved if ``t`` (after being incremented by ``fadvance``)
is equal or greater than the associated time of the
next index. The system maintains a set of record vectors and the vector will
be removed from the list if the vector or var is destroyed.
The vector is automatically increased in size by 100 elements at a time
if more space is required, so efficiency will be slightly improved if one
creates vectors with sufficient size to hold the entire stream, and plots will
be more persistent (recall that resizing may cause reallocation of memory
to hold elements and this will make pointers invalid).
The record semantics can be thought of as:
``var(t) -> v[index]``
The default relationship between ``index`` and
``t`` is ``t = index*dt``.
In the second form, ``t = index*Dt``.
In the third form, ``t = tvec[index]``.
For the local variable timestep method, :meth:`CVode.use_local_dt` and/or multiple
threads, :meth:`ParallelContext.nthread` , it is
often helpful to provide specific information about which cell the
*var* pointer is associated with by inserting as the first arg some POINT_PROCESS
object which is located on the cell. This is necessary if the pointer is not
a RANGE variable and is much more efficient if it is. The fixed step and global
variable time step method do not need or use this information for the
local step method but will use it for multiple threads. It is therefore
a good idea to supply it if possible.
Prior to version 7.7, the record methode returned 1.0 .
.. warning::
record/play behavior is reasonable but surprising if :data:`dt` is greater than
``Dt``. Things work best if ``Dt`` happens to be a multiple of :data:`dt`. All combinations
of record ; play ; ``Dt =>< dt`` ; and tvec sequences
have not been tested.
Example:
If NEURON has loaded its standard run library, the time course of membrane potential in the
middle of a section called "terminal" can be captured to a vector called dv by
.. code-block::
python
dv = h.Vector().record(terminal(0.5)._ref_v)
h.run()
Note that the next "run" will overwrite the previous time course stored
in the vector as it automatically performs an "init" before running a simulation.
Thus dv should be copied to another vector ( see :func:`copy` ).
To remove
dv from the list of record vectors, the easiest method is to destroy the instance
with
``dv = h.Vector()``
Any of the following makes NEURON load its standard run library:
- starting NEURON by executing `nrngui -python`
- executing any of the following statements:
- from neuron import gui # also brings up the NEURON Main Menu
- h.load_file("noload.hoc") # does not bring up the NEURON Main Menu
- h.load_file("stdrun.hoc") # does not bring up the NEURON Main Menu
.. seealso::
:func:`finitialize`, :func:`fadvance`, :func:`play`, :data:`t`, :func:`play_remove`
----
.. method:: Vector.play
Syntax:
``vdest = vsrc.play(var_reference, Dt)``
``vdest = vsrc.play(var_reference, tvec)``
``vdest = vsrc.play(index)``
``vdest = vsrc.play(var_reference or stmt, tvec, continuous)``
``vdest = vsrc.play(var_reference or stmt, tvec, indices_of_discontinuities_vector)``
``vdest = vsrc.play(point_process_object, var_reference, ...)``
Description:
The ``vsrc`` vector values are assigned to the "*var*" variable during a simulation.
The same vector can be played into different variables.
The index form immediately sets the var (or executes the stmt) with the
value of vsrc[index]
The play semantics can be thought of as
``v[index] -> var(t)`` where t(index) is Dt*index or tvec[index]
The discrete event delivery system is used to determine the precise
time at which values are copied from vsrc to var. Note that for variable
step methods, unless continuity is specifically requested, the function
is a step function. Also, for the local variable dt method, var MUST be
associated with the cell that contains the section accessed via sec=sec in the arg list
(but see the paragraph below about the use of a point_process_object
inserted as the first arg).
For the fixed step method,
transfers take place on entry to :func:`finitialize` and on entry to :func:`fadvance`.
At the beginning of :func:`finitialize`, ``var = v[0]``. On :func:`fadvance` a transfer will
take place if t will be equal
or greater than the associated time of the next index after the ``fadvance`` increment.
For the variable step methods, transfers take place exactly at the times specified by the Dt
or tvec arguments.
The system maintains a set of play vectors and the vector will be removed
from the list if the vector or var is destroyed.
If the end of the vector is reached, no further transfers are made (``var`` becomes
constant)
Note well: for the fixed step method,
if ``fadvance`` exits with time equal to ``t`` (ie enters at time t-dt),
then on entry to ``fadvance``, *var* is set equal to the value of
the vector at the index
appropriate to time t. Execute tests/nrniv/vrecord.py to see what this implies
during a simulation. ie the value of var from ``t-dt`` to t played into by
a vector is equal to the value of the vector at ``index(t)``. If the vector
was meant to serve as a continuous stimulus function, this results in
a first order correct simulation with respect to dt. If a second order correct
simulation is desired, it is necessary (though perhaps not sufficient since
all other equations in the system must also be solved using methods at least
second order correct) to fill the vector with function values at f((i-.5)*dt).
When continuous is 1 then linear interpolation is used to define the values
between time points. However, events at each Dt or tvec are still used
and that has beneficial performance implications for variable step methods
since vsrc is equivalent to a piecewise linear function and variable step
methods can excessively reduce dt as one approaches a discontinuity in
the first derivative. Note that if there are discontinuities in the
function itself, then tvec should have adjacent elements with the same
time value. When a value is greater than the range of
the t vector, linear extrapolation of the last two points is used
instead of a constant last value. If a constant outside the range
is desired, make sure the last two points have the same y value and
have different t values (if the last two values are at the same time,
the constant average will be returned).
The indices_of_discontinuities_vector argument is used to
specifying the indices in tvec of the times at which discrete events should
be used to notify that a discontinuity in the function, or any derivative
of the function, occurs. Presently, linear interpolation is used to
determine var(t) in the interval between these discontinuities (instead of
cubic spline) so the length of steps used by variable step methods near
the breakpoints depends on the details of how the parameter being played
into affects the states.
For the local variable timestep method, :meth:`CVode.use_local_dt` and/or multiple
threads, :meth:`ParallelContext.nthread` , it is
often helpful to provide specific information about which cell the
*var* pointer is associated with by inserting as the first arg some POINT_PROCESS
object which is located on the cell. This is necessary if the pointer is not
a RANGE variable and is much more efficient if it is. The fixed step and global
variable time step method do not need or use this information for the
local step method but will use it for multiple threads. It is therefore
a good idea to supply it if possible.
Prior to version 7.7, the play method returned 1.0 .
.. seealso::
:meth:`Vector.record`, :meth:`Vector.play_remove`
Example of playing into an Iclamp for varying current:
.. code-block::
python
from neuron import h
import pylab as plt, numpy as np
h.load_file('stdrun.hoc')
sec = h.Section(name='sec')
sec.insert(h.pas)
inp = np.zeros(500)
inp[50:250] = 1
pvec = h.Vector().from_python(inp)
stim = h.IClamp(sec(0.5))
stim.dur = 1e9
pvec.play(stim, stim._ref_amp, True)
rd = {k:h.Vector().record(v) for k,v in zip(['t', 'v', 'stim_i', 'amp'],
[h._ref_t, sec(0.5)._ref_v, stim._ref_i, stim._ref_amp])}
h.v_init, h.tstop= -70, 500
h.run()
plt.plot(rd['t'], rd['v'])
plt.show()
Example of playing into a segment's ina:
.. code-block::
python
from neuron import h, gui
import numpy
# create a geometry
soma = h.Section(name='soma')
# insert variables for sodium ions
soma.insert('na_ion')
# driving stimulus
t = h.Vector(numpy.linspace(0, 2 * numpy.pi, 50))
y = h.Vector(numpy.sin(t))
# play the stimulus into soma(0.5)'s ina
# the last True means to interpolate; it's not the default, but unless
# you know what you're doing, you probably want to pass True there
y.play(soma(0.5)._ref_ina, t, True)
# setup a graph
g = h.Graph()
g.addvar("ina", soma(0.5)._ref_ina)
g.size(0, 6.28, -1, 1)
h.graphList[0].append(g)
# run the simulation
h.finitialize(-65)
h.continuerun(6.28)
A runnable example of using this method for a time-varying current clamp is available
`here <https://colab.research.google.com/drive/1Jj7Ke1kZSGja1FNNj66XGCdOruKY_oqS?usp=sharing>`_.
----
.. method:: Vector.play_remove
Syntax:
``v.play_remove()``
Description:
Removes the vector from BOTH record and play lists.
Note that the vector is automatically removed if
the variable which is recorded or played is destroyed
or if the vector is destroyed.
This function is used in those
cases where one wishes to keep the vector data even under subsequent runs.
.. seealso::
:meth:`Vector.record`, :meth:`Vector.play`
----
.. method:: Vector.indgen
Syntax:
``obj = vsrcdest.indgen()``
``obj = vsrcdest.indgen(stepsize)``
``obj = vsrcdest.indgen(start,stepsize)``
``obj = vsrcdest.indgen(start,stop,stepsize)``
Description:
Fill the elements of a vector with a sequence of values. With no
arguments, the sequence is integers from 0 to (size-1).
With only *stepsize* passed, the sequence goes from 0 to
*stepsize**(size-1)
in steps of *stepsize*. *Stepsize* does not have to be an integer.
With *start*, *stop* and *stepsize*,
the vector is resized to be 1 + (*stop* - $varstart)/*stepsize* long and the sequence goes from
*start* up to and including *stop* in increments of *stepsize*.
Example:
.. code-block::
python
vec = h.Vector(100)
vec.indgen(5)
creates a vector with 100 elements going from 0 to 495 in increments of 5.
.. code-block::
python
vec.indgen(50, 100, 10)
reduces the vector to 6 elements going from 50 to 100 in increments of 10.
.. code-block::
python
vec.indgen(90, 1000, 30)
expands the vector to 31 elements going from 90 to 990 in increments of 30.
.. seealso::
:meth:`Vector.fill`, :meth:`Vector.append`
----
.. method:: Vector.append
Syntax:
``obj = vsrcdest.append(vec1, vec2, ...)``
Description:
Concatenate values onto the end of a vector.
The arguments may be either scalars or vectors.
The values are appended to the end of the ``vsrcdest`` vector.
Example:
.. code-block::
python
vec = h.Vector(10,4)
vec1 = h.Vector(10,5)
vec2 = h.Vector(10,6)
vec.append(vec1, vec2, 7, 8, 9)
vec.append(h.Vector([4,1,2,7]))
turns ``vec`` into a 37 element vector, whose first ten elements = 4, whose
second ten elements = 5, whose third ten elements = 6, and whose 31st, 32nd,
and 33rd elements = 7, 8, and 9, and 34-37 are 4,1,2,7. Note that the Vector created to pass the Python list
into append is immediately discarded. Remember, index 32 refers to the 33rd element.
----
.. method:: Vector.insrt
Syntax:
``obj = vsrcdest.insrt(index, vec1, vec2, ...)``
Description:
Inserts values before the index element.
The arguments may be either scalars or vectors.
``obj.insrt(obj.size, ...)`` is equivalent to ``obj.append(...)``
----
.. method:: Vector.remove
Syntax:
``obj = vsrcdest.remove(index)``
``obj = vsrcdest.remove(start, end)``
Description:
Remove the indexed element (or inclusive range) from the vector.
The vector is resized.
----
.. method:: Vector.contains
Syntax:
``numerical_truth_value = vsrc.contains(value)``
Description:
Return whether or not
the vector contains *value* as at least one
of its elements (to within :data:`float_epsilon`). It returns True if the value is found; otherwise
it returns False. (In NEURON 7.5 and before, this method returned 1 or 0 instead of True or False, respectively.)
Example:
.. code-block::
python
vec = h.Vector(10)
vec.indgen(5)
vec.contains(30)
returns True, meaning the vector does contain an element whose value is 30.
.. code-block::
python
vec.contains(50)
returns False. The vector does not contain an element whose value is 50.
.. note::
An h.Vector is a Python iterable, so you can also use Python's ``in``
keyword: ``5 in h.Vector([1, 5])`` returns True.
----
.. method:: Vector.copy
Syntax:
``obj = vdest.copy(vsrc)``
``obj = vdest.copy(vsrc, dest_start)``
``obj = vdest.copy(vsrc, src_start, src_end)``
``obj = vdest.copy(vsrc, dest_start, src_start, src_end)``
``obj = vdest.copy(vsrc, dest_start, src_start, src_end, dest_inc, src_inc)``
``obj = vdest.copy(vsrc, vsrcdestindex)``
``obj = vdest.copy(vsrc, vsrcindex, vdestindex)``
Description:
Copies some or all of *vsrc* into *vdest*.
If the dest_start argument is present (an integer index),
source elements (beginning at *src*``[0]``)
are copied to *vdest* beginning at *dest*``[dest_start]``,
*Src_start* and *src_end* here refer to indices of *vsrcx*,
not *vdest*. If *vdest* is too small for the size required by *vsrc* and the
arguments, then it is resized to hold the data.
If the *dest* is larger than required AND there is more than one
argument the *dest* is NOT resized.
One may use -1 for the
src_end argument to specify the entire size (instead of the tedious ``len(src)-1``)
If the second (and third) argument is a vector,
the elements of that vector are the
indices of the vsrc to be copied to the same indices of the vdest.
In this case the vdest is not resized and any indices that are out of
range of either vsrc or vdest are ignored. This function allows mapping
of a subset of a source vector into the subset of a destination vector.
This function can be slightly more efficient than :func:`c` since
if vdest contains enough space, memory will not have to
be allocated for it. Also it is convenient for those cases
in which vdest is being plotted and therefore reallocation
of memory (with consequent removal of vdest from the Graph)
is to be explicitly avoided.
Example:
To copy the odd elements use:
.. code-block::
python
v1 = h.Vector(30)
v1.indgen()
v1.printf()
v2 = h.Vector()
v2.copy(v1, 0, 1, -1, 1, 2)
v2.printf()
To merge or shuffle two vectors into a third, use:
.. code-block::
python
v1 = h.Vector(15)
v1.indgen()
v1.printf()
v2 = h.Vector(15)
v2.indgen(10)
v2.printf()
v3 = h.Vector()
v3.copy(v1, 0, 0, -1, 2, 1)
v3.copy(v2, 1, 0, -1, 2, 1)
v3.printf()
Example:
.. code-block::
python
vec = h.Vector(100,10)
vec1 = h.Vector()
vec1.indgen(5,105,10)
vec.copy(vec1, 50, 3, 6)
turns ``vec`` from a 100 element into a 54 element vector.
The first 50 elements will each have the value 10 and the last four will
have the values 35, 45, 55, and 65 respectively.
.. warning::
Vectors copied to themselves are not usually what is expected. eg.
.. code-block::
python
vec = h.Vector(20)
vec.indgen()
vec.copy(vec, 10)
produces a 30 element vector cycling three times from 0 to 9. However
the self copy may work if the src index is always greater than or equal
to the destination index.
----
.. method:: Vector.c
Syntax:
``newvec = vsrc.c()``
``newvec = vsrc.c(srcstart)``
``newvec = vsrc.c(srcstart, srcend)``
Description:
Return a h.Vector which is a copy of the vsrc Vector, but does not copy
the label. For a complete copy including the label use :meth:`Vector.cl`.
(Identical to the :meth:`Vector.at` function but has a short name that suggests
copy or clone). Useful in the construction of filter chains.
In versions of NEURON before 7.7, this was often used in building Vectors
from other Vectors, e.g. ``vec2 = vec1.c().add(1)``; in new code, it is
recommended to use the shorter equivalent ``vec2 = vec1 + 1``.
----
.. method:: Vector.cl
Syntax:
``newvec = vsrc.cl()``
``newvec = vsrc.cl(srcstart)``
``newvec = vsrc.cl(srcstart, srcend)``
Description:
Return a h.Vector which is a copy, including the label, of the vsrc vector.
(Similar to the :meth:`Vector.c` function which does not copy the label)
Useful in the construction of filter chains.
Note that with no arguments, it is not necessary to type the
parentheses.
----
.. method:: Vector.at
Syntax:
``newvec = vsrc.at()``
``newvec = vsrc.at(start)``
``newvec = vsrc.at(start,end)``
Description:
Return a h.Vector consisting of all or part of another.
This function predates the introduction of the vsrc.c, "clone", function
which is synonymous but is retained for backward compatibility.
It merely avoids the necessity of a ``vdest = h.Vector()`` command and
is equivalent to
.. code-block::
python
vdest = h.Vector()
vdest.copy(vsrc, start, end)
Example:
.. code-block::
python
vec = h.Vector()
vec.indgen(10,50,2)
vec1 = vec.at(2, 10)
creates ``vec1`` with 9 elements which correspond to the values at indices
2 - 10 in ``vec``. The contents of ``vec1`` would then be, in order: 14, 16, 18,
20, 22, 24, 26, 28, 30.
----
.. method:: Vector.from_double
Syntax:
``obj = vdest.from_double(n, pointer)``
Description:
Resizes the vector to size n and copies the values from the double array
to the vector.
Examples:
Interacting with a HOC array:
.. code-block::
python
from neuron import h
# create and populate a HOC array
h('double px[5]')
h.px[0] = 5
h.px[3] = 2
# transfer the data
v.from_double(5, h._ref_px[0])
# print out the vector
v.printf()
Copying from a numpy array into an existing vector:
.. code-block::
python
from neuron import h
import neuron
import numpy
a = numpy.array([5, 1, 6], 'd')
v = h.Vector()
v.from_double(3, neuron.numpy_element_ref(a, 0))
v.printf()
.. note::
To create
a new vector from a numpy array just use
``v = h.Vector(python_iterable)``.
----
.. method:: Vector.where
Syntax:
``obj = vdest.where(vsource, opstring, value1)``
``obj = vdest.where(vsource, op2string, value1, value2)``
``obj = vsrcdest.where(opstring, value1)``
``obj = vsrcdest.where(op2string, value1, value2)``
Description:
``vdest`` is vector consisting of those elements of the given vector, ``vsource``
that match the condition opstring.
Opstring is a string matching one of these (all comparisons
are with respect to :data:`float_epsilon` ): ``"=="``, ``"!="``, ``">"``, ``"<"``, ``">="``, ``"<="``
Op2string requires two numbers defining open/closed ranges and matches one
of these: ``"[]"``, ``"[)"``, ``"(]"``, ``"()"``
Example:
.. code-block::
python
vec = h.Vector(25)
vec1 = h.Vector()
vec.indgen(10)
vec1.where(vec, ">=", 50)
creates ``vec1`` with 20 elements ranging in value from 50 to 240 in
increments of 10.
.. code-block::
python
r = h.Random()
vec = h.Vector(25)
vec1 = h.Vector()
r.uniform(10,20)
vec.fill(r)
vec1.where(vec, ">", 15)
creates ``vec1`` with random elements gotten from ``vec`` which have values
greater than 15. The h.elements in vec1 will be ordered
according to the order of their appearance in ``vec``.
.. seealso::
:meth:`Vector.indvwhere`, :meth:`Vector.indwhere`
----
.. method:: Vector.indwhere
.. seealso::
:meth:`Vector.indvwhere`
----
.. method:: Vector.indvwhere
Syntax:
``i = vsrc.indwhere(opstring, value)``
``i = vsrc.indwhere(op2string, low, high)``
``obj = vsrcdest.indvwhere(opstring,value)``
``obj = vsrcdest.indvwhere(opstring,value)``
``obj = vdest.indvwhere(vsource,op2string,low, high)``
``obj = vdest.indvwhere(vsource,op2string,low, high)``
Description:
The i = vsrc form returns the index of the first element of v matching
the criterion given by the opstring. If there is no match, the return value
is -1.
``vdest`` is a vector consisting of the indices of those elements of
the source vector that match the condition opstring.
Opstring is a string matching one of these: ``"=="``, ``"!="``, ``">"``, ``"<"``, ``">="``, ``"<="``
Op2string is a string matching one of these: ``"[]"``, ``"[)"``, ``"(]"``, ``"()"``
Comparisons are relative to the :data:`float_epsilon` global variable.
Example:
.. code-block::
python
vs = h.Vector()
vs.indgen(0, .9, .1)
vs.printf()
print(vs.indwhere(">", .3))
print("note roundoff error, vs[3] - 0.3 = %g" % (vs[3] - 0.3))
print(vs.indwhere("==", .5))
vd = vs.c().indvwhere(vs, "[)", .3, .7)
vd.printf()
.. seealso::
:meth:`Vector.where`
----
.. method:: Vector.fwrite
Syntax:
``n = vsrc.fwrite(fileobj)``
``n = vsrc.fwrite(fileobj, start, end)``
Description:
Write the vector ``vec`` to an open *fileobj* of type :class:`File` in
machine dependent binary format.
You must keep track of the vector's
size for later reading, so it is recommended that you store the size of the
vector as the first element of the file.
It is almost always better to use :func:`vwrite` since it stores the size
of the vector automatically and is more portable since the corresponding
vread will take care of machine dependent binary byte ordering differences.
Return value is the number of items. (0 if error)
:func:`fread` is used to read a file containing numbers stored by ``fwrite`` but
must have the same size.
----
.. method:: Vector.fread
Syntax:
``n = vdest.fread(fileobj)``
``n = vdest.fread(fileobj, n)``
``n = vdest.fread(fileobj, n, precision)``
Description:
Read the elements of a vector from the file in binary as written by ``fwrite.``
If *n* is present, the vector is resized before reading. Note that
files created with fwrite cannot be fread on a machine with different
byte ordering. E.g. spark and intel cpus have different byte ordering.
It is almost always better to use ``vwrite`` in combination with ``vread``.
See vwrite for the meaning of the *precision* argment.
Return value is 1 (no error checking).
----
.. method:: Vector.vwrite
Syntax:
``n = vec.vwrite(fileobj)``
``n = vec.vwrite(fileobj, precision)``
Description:
Write the vector in binary format
to an already opened for writing * fileobj* of type
:class:`File`.
:meth:`~Vector.vwrite` is easier to use than ``fwrite()``
since it stores the size of the vector and type information
for a more
automated read/write. The file data can also be vread on a machine with
different byte ordering. e.g. you can vwrite with an intel cpu and vread
on a sparc.
Precision formats 1 and 2 employ a simple automatic
compression which is uncompressed automatically by vread. Formats 3 and 4
remain uncompressed.
Default precision is 4 (double) because this is the usual type
used for numbers in oc and therefore requires no conversion or
compression
.. code-block::
python
* 1 : char shortest 8 bits
* 2 : short 16 bits
3 : float 32 bits
4 : double longest 64 bits
5 : int sizeof(int) bytes
.. warning::
These are useful primarily for storage of data: exact
values will not necessarily be maintained due to the conversion
process.
Return value is 1. Only if the type field is invalid will the return
value be 0.
----
.. method:: Vector.vread
Syntax:
``n = vec.vread(fileobj)``
Description:
Read vector from binary format file written with ``vwrite()``.
Size and data type have
been stored by ``vwrite()`` to allow correct retrieval syntax, byte ordering, and
decompression (where necessary). The vector is automatically resized.
Return value is 1. (No error checking.)
Example:
.. code-block::
python
v1 = h.Vector()
v1.indgen(20,30,2)
v1.printf()
f = h.File()
f.wopen("temp.tmp")
v1.vwrite(f)
v2 = h.Vector()
f.ropen("temp.tmp")
v2.vread(f)
v2.printf()
----
.. method:: Vector.printf
Syntax:
``n = vec.printf()``
``n = vec.printf(format_string)``
``n = vec.printf(format_string, start, end)``
``n = vec.printf(fileobj)``
``n = vec.printf(fileobj, format_string)``
``n = vec.printf(fileobj, format_string, start, end)``
Description:
Print the values of the vector in ascii either to the screen or a File instance
(if ``fileobj`` is present). *Start* and *end* enable you to specify
which particular set of indexed values to print.
Use ``format_string`` for formatting the output of each element.
This string must contain exactly one ``%f``, ``%g``, or ``%e``,
but can also contain additional formatting instructions.
Return value is number of items printed.
Example:
.. code-block::
python
vec = h.Vector()
vec.indgen(0, 1, 0.1)
vec.printf("%8.4f\n")
prints the numbers 0.0000 through 0.9000 in increments of 0.1. Each number will
take up a total of eight spaces, will have four decimal places
and will be printed on a h.line.
.. warning::
No error checking is done on the format string and invalid formats can cause
segmentation violations.
----
.. method:: Vector.scanf
Syntax:
``n = vec.scanf(fileobj)``
``n = vec.scanf(fileobj, n)``
``n = vec.scanf(fileobj, c, nc)``
``n = vec.scanf(fileobj, n, c, nc)``
Description:
Read ascii values from a :class:`File` instance (must already be opened for reading)
into vector. If present, scanning takes place til *n* items are
read or until EOF. Otherwise, ``vec.scanf`` reads until end of file.
If reading
til eof, a number followed
by a newline must be the last string in the file. (no trailing spaces
after the number and no extra newlines).
When reading til EOF, the vector grows approximately by doubling when
its currently allocated space is filled. To avoid the overhead of
memory reallocation when scanning very long vectors (e.g. > 50000 elements)
it is a good idea to presize the vector to a larger value than the
expected number of elements to be scanned.
Note that although the vector is resized to
the actual number of elements scanned, the space allocated to the
vector remains available for growth. See :meth:`Vector.buffer_size` .
Read from
column *c* of *nc* columns when data is in column format. It numbers
the columns beginning from 1.
The scan takes place at the current position of the file.
Return value is number of items read.
.. seealso::
:meth:`Vector.scantil`
----
.. method:: Vector.scantil
Syntax:
``n = vec.scantil(fileobj, sentinel)``
``n = vec.scantil(fileobj, sentinel, c, nc)``
Description:
Like :meth:`Vector.scanf` but scans til it reads a value equal to the
sentinel. e.g. -1e15 is a possible sentinel value in many situations.
The vector does not include the sentinel value. The file pointer is
left at the character following the sentinel.
Read from
column *c* of *nc* columns when data is in column format. It numbers
the columns beginning from 1. The scan stops when the sentinel is found in
any position prior to column c+1 but it is recommended that the sentinel
appear by itself on its own line. The file pointer is left at the
character following the sentinel.
The scan takes place at the current position of the file.
Return value is number of items read.
----
.. method:: Vector.plot
Syntax:
``obj = vec.plot(graphobj)``
``obj = vec.plot(graphobj, color, brush)``
``obj = vec.plot(graphobj, x_vec)``
``obj = vec.plot(graphobj, x_vec, color, brush)``
``obj = vec.plot(graphobj, x_increment)``
``obj = vec.plot(graphobj, x_increment, color, brush)``
Description:
Plot vector in a :class:`Graph` object. The default is to plot the elements of the
vector as y values with their indices as x values. An optional
argument can be used to
specify the x-axis. Such an argument can be either a
vector, *x_vec*, in which case its values are used for x values, or
a scalar, *x_increment*, in
which case x is incremented according to this number.
This function plots the
``vec`` values that exist in the vector at the time of graph flushing or window
resizing. The alternative is ``vec.line()`` which plots the vector values
that exist at the time of the call to ``plot``. It is therefore possible with
``vec.line()`` to produce multiple plots
on the same graph.
Once a vector is plotted, it is only necessary to call ``graphobj.flush()``
in order to display further changes to the vector. In this way it
is possible to produce rather rapid line animation.
If the vector :meth:`Graph.label` is not empty it will be used as the label for
the line on the Graph.
Resizing a vector that has been plotted will remove it from the Graph.
The number of points plotted is the minimum of vec.size and x_vec.size
at the time vec.plot is called. x_vec is assumed to be an unchanging
Vector.
Example:
.. code-block::
python
from neuron import h, gui
import time
g = h.Graph()
g.size(0,10,-1,1)
vec = h.Vector()
vec.indgen(0,10, .1)
vec.apply("sin")
vec.plot(g, .1)
def do_run():
for i in range(len(vec)):
vec.rotate(1)
g.flush()
h.doNotify()
time.sleep(0.01)
h.xpanel("")
h.xbutton("run", do_run)
h.xpanel()
.. image:: ../../images/vector-plot.png
:align: center
.. seealso::
:meth:`Graph.Vector`
----
.. method:: Vector.line
Syntax:
``obj = vec.line(graphobj)``
``obj = vec.line(graphobj, color, brush)``
``obj = vec.line(graphobj, x_vec)``
``obj = vec.line(graphobj, x_vec, color, brush)``
``obj = vec.line(graphobj, x_increment)``
``obj = vec.line(graphobj, x_increment, color, brush)``
Description:
Plot vector on a :class:`Graph`. Exactly like ``.plot()`` except the vector
is *not* plotted by reference so that the values may be changed
subsequently w/o disturbing the plot. It is therefore possible to produce
a number of plots of the same function on the same graph,
without erasing any previous plot.
The line on a graph is given the :meth:`Graph.label` if the label is not empty.
The number of point plotted is the minimum of vec.size and x_vec.size .
Example:
.. code-block::
python
from neuron import h, gui
g = h.Graph()
g.size(0,10,-1,1)
vec = h.Vector()
vec.indgen(0,10, .1)
vec.apply("sin")
for i in range(4):
vec.line(g, 0.1)
vec.rotate(10)
.. image:: ../../images/vector-line.png
:align: center
.. seealso::
:meth:`Graph.family`
----
.. method:: Vector.ploterr
Syntax:
``obj = vec.ploterr(graphobj, x_vec, err_vec)``
``obj = vec.ploterr(graphobj, x_vec, err_vec, size)``
``obj = vec.ploterr(graphobj, x_vec, err_vec, size, color, brush)``
Description:
Similar to ``vec.line()``, but plots error bars with size +/- the elements
of vector *err_vec*.
*size* sets the width of the seraphs on the error bars to a number
of printer dots.
*brush* sets the width of the plot line. 0=invisible,
1=minimum width, 2=1point, etc.
Example:
.. code-block::
python
g = h.Graph()
g.size(0,100, 0,250)
vec = h.Vector()
xvec = h.Vector()
errvec = h.Vector()
vec.indgen(0,200,20)
xvec.indgen(0,100,10)
errvec.copy(xvec)
errvec.apply("sqrt")
vec.ploterr(g, xvec, errvec, 10)
vec.mark(g, xvec, "O", 5)
.. image:: ../../images/vector-ploterr.png
:align: center
creates a graph which has x values of 0 through 100 in increments of 10 and
y values of 0 through 200 in increments of 20. At each point graphed, vertical
error bars are also drawn which are the +/- the length of the square root of the
values 0 through 100 in increments of 10. Each error bar has seraphs which are
ten printer points wide. The graph is also marked with filled circles 5 printers
points in diameter.
----
.. method:: Vector.mark
Syntax:
``obj = vec.mark(graphobj, x_vector)``
``obj = vec.mark(graphobj, x_vector, "style")``
``obj = vec.mark(graphobj, x_vector, "style", size)``
``obj = vec.mark(graphobj, x_vector, "style", size, color, brush)``
``obj = vec.mark(graphobj, x_increment)``
``obj = vec.mark(graphobj, x_increment, "style", size, color, brush)``
Description:
Similar to ``vec.line``, but instead of connecting by lines, it make marks,
centered at the indicated position, which do not change size when
window is zoomed or resized. The style is a single character
``|,-,+,o,O,t,T,s,S`` where ``o,t,s`` stand for circle, triangle, square
and capitalized means filled. Default size is 12 points.
----
.. method:: Vector.histogram
Syntax:
``newvect = vsrc.histogram(low, high, width)``
Description:
Create a histogram constructed by binning the values in ``vsrc``.
Bins run from *low* to *high* in divisions of *width*. Data outside
the range is not binned.
This function returns a vector that contains the counts in each bin, so while it is
to execute ``newvect = h.Vector()``.
The first element of ``newvect`` is 0 (``newvect[0] = 0``).
For ``ii > 0``, ``newvect[ii]`` equals the number of
items
in ``vsrc`` whose values lie in the half open interval
``[a,b)``
where ``b = low + ii*width`` and ``a = b - width``.
In other words, ``newvect[ii]`` is the number of items in
``vsrc``
that fall in the bin just below the boundary ``b``.
Example:
.. code-block::
python
rand = h.Random()
rand.negexp(1)
interval = h.Vector(100)
interval.setrand(rand) # random intervals
hist = interval.histogram(0, 10, .1)
# and for a manhattan style plot ...
g = h.Graph()
g.size(0,10,0,30)
# create an index vector with 0,0, 1,1, 2,2, 3,3, ...
v2 = h.Vector(2*len(hist))
v2.indgen(.5)
v2.apply("int")
#
v3 = h.Vector(1)
v3.index(hist, v2)
v3.rotate(-1) # so different y's within each pair
v3[0] = 0
v3.plot(g, v2)
.. image:: ../../images/vector-histogram.png
:align: center
creates a histogram of the occurrences of random numbers
ranging from 0 to 10 in divisions of 0.1.
----
.. method:: Vector.hist
Syntax:
``obj = vdest.hist(vsrc, low, size, width)``
Description:
Similar to :func:`histogram` (but notice the different argument meanings.
Put a histogram in *vdest* by binning
the data in *vsrc*.
Bins run from *low* to ``low + size * width``
in divisions of *width*.
Data outside
the range is not binned.
----
.. method:: Vector.sumgauss
Syntax:
``newvect = vsrc.sumgauss(low, high, width, var)``
``newvect = vsrc.sumgauss(low, high, width, var, weight_vec)``
Description:
Create a vector which is a curve calculated by summing gaussians of
area 1 centered on all the points in the vector. This has the
advantage over ``histogram`` of not imposing arbitrary bins. *low*
and *high* set the range of the curve.
*width* determines the granularity of the
curve. *var* sets the variance of the gaussians.
The optional argument ``weight_vec`` is a vector which should be the same
size as ``vec`` and is used to scale or weight the gaussians (default is
for them all to have areas of 1 unit).
This function returns a vector, so while it is
to declare *vectobj* as a ``h.Vector()``.
To plot, use ``v.indgen(low,high,width)`` for the x-vector argument.
Example:
.. code-block::
python
r = h.Random()
r.normal(1, 2)
data = h.Vector(100)
data.setrand(r)
hist = data.sumgauss(-4, 6, .5, 1)
x = h.Vector(len(hist))
x.indgen(-4, 6, .5)
g = h.Graph()
g.size(-4, 6, 0, 30)
hist.plot(g, x)
----
.. method:: Vector.smhist
Syntax:
``obj = vdest.smhist(vsrc, start, size, step, var)``
``obj = vdest.smhist(vsrc, start, size, step, var, weight_vec)``
Description:
Very similar to :func:`sumgauss` . Calculate a smooth histogram by convolving
the raw data set with a gaussian kernel. The histogram begins at
``varstart`` and has ``varsize`` values in increments of size ``varstep``.
``varvar`` sets the variance of the gaussians.
The optional argument ``weight_vec``
is a vector which should be the same size as ``vsrc`` and is used to scale or
weight the number of data points at a particular value.
----
.. method:: Vector.ind
Syntax:
``newvect = vsrc.ind(vindex)``
Description:
Return a h.Vector consisting of the elements of ``vsrc`` whose indices are given
by the elements of ``vindex``.
Example:
.. code-block::
python
vec = h.Vector(100)
vec2 = h.Vector()
vec.indgen(5)
vec2.indgen(49, 59, 1)
vec1 = vec.ind(vec2)
creates ``vec1`` to contain the fiftieth through the sixtieth elements of ``vec2``
which would have the values 245 through 295 in increments of 5.
----
.. method:: Vector.addrand
Syntax:
``obj = vsrcdest.addrand(randobj)``
``obj = vsrcdest.addrand(randobj, start, end)``
Description:
Adds random values to the elements of the vector by sampling from the
same distribution as last picked in the Random object *randobj*.
Example:
.. code-block::
python
from neuron import h, gui
vec = h.Vector(50)
g = h.Graph()
g.size(0,50,0,100)
r = h.Random()
r.poisson(.2)
vec.plot(g)
def race():
vec.fill(0)
for i in range(300):
vec.addrand(r)
g.flush()
h.doNotify()
race()
----
.. method:: Vector.setrand
Syntax:
``obj = vdest.setrand(randobj)``
``obj = vdest.setrand(randobj, start, end)``
Description:
Sets random values for the elements of the vector by sampling from the
same distribution as last picked in *randobj*.
----
.. method:: Vector.sin
Syntax:
``obj = vdest.sin(freq, phase)``
``obj = vdest.sin(freq, phase, dt)``
Description:
Generate a sin function in vector ``vec`` with frequency *freq* hz, phase
*phase* in radians. *dt* is assumed to be 1 msec unless specified.
----
.. method:: Vector.apply
Syntax:
``obj = vsrcdest.apply("func")``
``obj = vsrcdest.apply("func", start, end)``
Description:
Apply a hoc function to each of the elements in the vector.
The function can be any function that is accessible in oc. It
must take only one scalar argument and return a scalar.
Note that the function name must be in quotes and that the parentheses
are omitted.
Example:
.. code-block::
python
vec.apply("sin", 0, 9)
applies the sin function to the first ten elements of the vector ``vec``.
----
.. method:: Vector.reduce
Syntax:
``x = vsrc.reduce("func")``
``x = vsrc.reduce("func", base)``
``x = vsrc.reduce("func", base, start, end)``
Description:
Pass all elements of a vector through a HOC function and return the sum of
the results. Use *base* to initialize the value x.
Note that the function name must be in quotes and that the parentheses
are omitted.
Example:
.. code-block::
python
from neuron import h
vec = h.Vector()
vec.indgen(0, 10, 2)
h("func sq(){return $1*$1}")
print(vec.reduce("sq", 100))
displays the value 320.
100 + 0*0 + 2*2 + 4*4 + 6*6 + 8*8 + 10*10 = 320
Although reduce only works with HOC functions, it can be emulated in Python
using generators and the ``sum`` function. For example, the last
two lines of the above example are equivalent to:
.. code-block::
python
def sq(x):
return x * x
print(sum((sq(x) for x in vec), 100))
----
.. method:: Vector.floor
Syntax:
``vec.floor()``
Description:
Rounds toward negative infinity. Note that :data:`float_epsilon` is not
used in this calculation.
----
.. method:: Vector.to_python
Syntax:
``pythonlist = vec.to_python()``
``pythonlist = vec.to_python(pythonlist)``
``numpyarray = vec.to_python(numpyarray)``
Description:
Copy the vector elements from the hoc vector to a pythonlist or
1-d numpyarray. If the arg exists the pythonobject must have the same
size as the hoc vector.
----
.. method:: Vector.from_python
Syntax:
``vec = vec.from_python(pythonlist)``
``vec = vec.from_python(numpyarray)``
Description:
Copy the python list elements into the hoc vector. The elements must be
numbers that are convertable to doubles.
Copy the numpy 1-d array elements into the hoc vector.
The hoc vector is resized.
----
.. method:: Vector.as_numpy()
Syntax:
``numpyarray = vec.as_numpy()``
Description:
The numpyarray points into the data of the Hoc Vector, i.e. does not
copy the data. Do not
use the numpyarray if the Vector is destroyed.
Example:
.. code-block::
python
from neuron import h
v = h.Vector(5).indgen()
n = v.as_numpy()
print(n) #[0. 1. 2. 3. 4.]
v[1] += 10
n[2] += 20
print(n) #[ 0. 11. 22. 3. 4.]
v.printf() #0 11 22 3 4
----
.. method:: Vector.fit
Syntax:
``error = data_vec.fit(fit_vec,"fcn",indep_vec, pointer1, [pointer2], ... [pointerN])``
Description:
Use a simplex algorithm to find parameters *p1* through *pN* such to
minimize the mean squared error between the "data" contained in
``data_vec`` and the approximation generated by the user-supplied "*fcn*"
applied to the elements of ``indep_vec``.
*fcn* must take one argument which is the main independent variable
followed by one or more arguments which are tunable parameters which
will be optimized. Thus the arguments to .fit following "*fcn*" should
be completely analogous to the arguments to fcn itself. The
difference is that the args to fcn must all be scalars while the
corresponding args to .fit will be a vector object (for the
independent variable) and pointers to scalars (for the remaining
parameters).
The results of a call to .fit are three-fold. First, the parameters
of best fit are returned by setting the values of the variables *p1* to
*pN* (possible because they are passed as pointers). Second, the values
of the vector fit_vec are set to the fitted function. If ``fit_vec`` is
not passed with the same size as ``indep_vec`` and ``data_vec``, it is resized
accordingly. Third, the mean squared error between the fitted
function and the data is returned by ``.fit``. The ``.fit()`` call may be
reiterated several times until the error has reached an acceptable
level.
Care must be taken in selecting an initial set of parameter values.
Although you need not be too close, wild discrepancies will cause the
simplex algorithm to give up. Values of 0 are to be avoided. Trial
and error is sometimes necessary.
Because calls to hoc have a high overhead, this procedure can be
rather slow. Several commonly-used functions are provided directly
in c code and will work much faster. In each case, if the name below
is used, the builtin function will be used and the user is expected to
provide the correct number of arguments (here denoted ``a,b,c``...).
.. code-block::
python
"exp1": y = a * exp(-x/b)
"exp2": y = a * exp(-x/b) + c * exp (-x/d)
"charging": y = a * (1-exp(-x/b)) + c * (1-exp(-x/d))
"line": y = a * x + b
"quad": y = a * x^2 + b*x + c
.. warning::
This function is not very useful for fitting the results of simulation runs
due to its argument organization. For that purpose the :func:`fit_praxis` syntax
is more suitable. This function should become a top-level function which
merely takes a user error function name and a parameter list.
An alternative implementation of the simplex fitting algorithm is in
the scopmath library.
.. seealso::
:func:`fit_praxis`
Example:
The :menuselection:`NEURON Main Menu --> Miscellaneous --> Parameterized Function` widget uses this function
and is implemented in :file:`nrn/lib/hoc/funfit.hoc`
The following example demonstrates the strategy used by the simplex
fitting algorithm to search for a minimum. The location of the parameter
values is plotted on each call to the function.
The sample function has a minimum at the point (1, .5)
.. code-block::
python
from neuron import h, gui
g = h.Graph()
g.size(0, 3, 0, 3)
def fun(a, x, y):
if a == 0:
g.line(x, y)
g.flush()
print('{} {} {}'.format(a, x, y))
return (x - 1) ** 2 + (y - 0.5) ** 2
dvec = h.Vector(2)
fvec = h.Vector(2)
fvec.fill(1)
ivec = h.Vector(2)
ivec.indgen()
a = h.ref(2)
b = h.ref(1)
g.beginline()
error = dvec.fit(fvec, fun, ivec, a, b)
print('{} {} {}'.format(a[0], b[0], error))
.. warning::
Does not currently work with Python functions. It requires a string whose
value is the name of a HOC function instead.
----
.. _vect2:
.. method:: Vector.interpolate
Syntax:
``obj = ysrcdest.interpolate(xdest, xsrc)``
``obj = ydest.interpolate(xdest, xsrc, ysrc)``
Description:
Linearly interpolate points from (xsrc,ysrc) to (xdest,ydest)
In the second form, xsrc and ysrc remain unchanged.
Destination points outside the domain of xsrc are set to
``ysrc[0]`` or ``ysrc[ysrc.size-1]``
Example:
.. code-block::
python
g = h.Graph()
g.size(0,10,0,100)
#...
xs = h.Vector(10)
xs.indgen()
ys = xs * xs
ys.line(g, xs, 1, 0) # black reference line
xd = h.Vector()
xd.indgen(-.5, 10.5, .1)
yd = ys.c().interpolate(xd, xs)
yd.line(g, xd, 3, 0) # blue more points than reference
xd.indgen(-.5, 13, 3)
yd = ys.c().interpolate(xd, xs)
yd.line(g, xd, 2, 0) # red fewer points than reference
----
.. method:: Vector.deriv
Syntax:
``obj = vdest.deriv(vsrc)``
``obj = vdest.deriv(vsrc, dx)``
``obj = vdest.deriv(vsrc, dx, method)``
``obj = vsrcdest.deriv()``
``obj = vsrcdest.deriv(dx)``
``obj = vsrcdest.deriv(dx, method)``
Description:
The numerical Euler derivative or the central difference derivative of ``vec``
is placed in ``vdest``.
The variable *dx* gives the increment of the independent variable
between successive elements of ``vec``.
*method* = 1 = Euler derivative:
``vec1[i] = (vec[i+1] - vec[i])/dx``
Each time this method is used,
the first element
of ``vec`` is lost since *i* cannot equal -1. Therefore, since the
``integral`` function performs an Euler
integration, the integral of ``vec1`` will reproduce ``vec`` minus the first
element.
*method* = 2 = Central difference derivative:
``vec1[i] = ((vec[i+1]-vec[i-1])/2)/dx``
This method produces an Euler derivative for the first and last
elements of ``vec1``. The central difference method maintains the
same number of elements in ``vec1``
as were in ``vec`` and is a more accurate method than the Euler method.
A vector differentiated by this method cannot, however, be integrated
to reproduce the original ``vec``.
Example:
.. code-block::
python
from neuron import h
vec = h.Vector(range(6))
vec = vec * vec
vec1 = h.Vector()
vec1.deriv(vec, 0.1)
creates ``vec1`` with elements:
.. code-block::
python
10 20
40 60
80 90
Since *dx*\ =0.1, and there are eleven elements including 0,
the entire function exists between the values of 0 and 1, and the derivative
values are large compared to the function values. With *dx*\ =1,the vector
``vec1`` would consist of the following elements:
.. code-block::
python
1 2
4 6
8 9
The Euler method vs. the Central difference method:
Beginning with the vector ``vec``:
.. code-block::
python
0 1
4 9
16 25
``vec1.deriv(vec, 1, 1)`` (Euler) would go about
producing ``vec1`` by the following method:
.. code-block::
python
1-0 = 1 4-1 = 3
9-4 = 5 16-9 = 7
25-16 = 9
whereas ``vec1.deriv(vec, 1, 2)`` (Central difference) would go about
producing ``vec1`` as such:
.. code-block::
python
1-0 = 1 (4-0)/2 = 2
(9-1)/2 = 4 (16-4)/2 = 6
(25-9)/2 = 8 25-16 = 9
----
.. method:: Vector.integral
Syntax:
``obj = vdest.integral(vsrc)``
``obj = vdest.integral(vsrc, dx)``
``obj = vsrcdest.integral()``
``obj = vsrcdest.integral(dx)``
Description:
Places a numerical Euler integral of the vsrc elements in vdest.
*dx* sets the size of the discretization.
``vdest[i+1] = vdest[i] + vsrc[i+1]`` and the first element of ``vdest`` is always
equal to the first element of ``vsrc``.
Example:
.. code-block::
python
from neuron import h
vec = h.Vector([0, 1, 4, 9, 16, 25])
vec1 = h.Vector()
vec1.integral(vec, 1) # Euler integral of vec elements approximating
# an x-squared function, dx = 0.1
vec1.printf()
will print the following elements in ``vec1`` to the screen:
.. code-block::
python
0 1 5
14 30 55
In order to make the integral values more accurate, it is necessary to increase
the size of the vector and to decrease the size of *dx*.
.. code-block::
python
from neuron import h
import numpy
# set vec to the squares of 51 values from 0 to 5
vec = h.Vector(numpy.linspace(0, 5, 51))
vec.pow(2)
vec1 = h.Vector()
vec1.integral(vec, 0.1) # Euler integral of vec elements approximating
# an x-squared function, dx = 0.1
# print every 10th index
for i in range(0, len(vec1), 10):
print(vec1[i])
will print the following elements of
``vec1`` corresponding to the integers 0-5 to the screen:
.. code-block::
python
0
0.385
2.87
9.455
22.14
42.925
The integration naturally becomes more accurate as
*dx* is reduced and the size of the vector is increased. If the vector
is taken to 501 elements from 0-5 and *dx* is made to equal 0.01, the integrals
of the integers 0-5 yield the following (compared to their continuous values
on their right).
.. code-block::
python
0.00000 -- 0.00000 0.33835 -- 0.33333 2.6867 -- 2.6666
9.04505 -- 9.00000 21.4134 -- 21.3333 41.7917 -- 41.6666
----
.. method:: Vector.median
Syntax:
``median = vsrc.median()``
Description:
Find the median value of ``vec``.
----
.. method:: Vector.medfltr
Syntax:
``obj = vdest.medfltr(vsrc)``
``obj = vdest.medfltr(vsrc, points)``
``obj = vsrcdest.medfltr()``
``obj = vsrcdest.medfltr( points)``
Description:
Apply a median filter to vsrc, producing a smoothed version in vdest.
Each point is replaced with the median value of the *points* on
either side.
This is typically used for eliminating spikes from data.
----
.. method:: Vector.sort
Syntax:
``obj = vsrcdest.sort()``
Description:
Sort the elements of ``vec1`` in place, putting them in numerical order.
----
.. method:: Vector.sortindex
Syntax:
``vdest = vsrc.sortindex()``
``vdest = vsrc.sortindex(vdest)``
Description:
Return a h.Vector of indices which sort the vsrc elements in numerical
order. That is vsrc.index(vsrc.sortindex) is equivalent to vsrc.sort().
If vdest is present, use that as the destination vector for the indices.
This, if it is large enough, avoids the destruct/construct of vdest.
Example:
.. code-block::
python
from neuron import h
r = h.Random()
r.uniform(0, 100)
a = h.Vector(10)
a.setrand(r)
a.printf()
si = a.sortindex()
si.printf()
a.index(si).printf()
----
.. method:: Vector.reverse
Syntax:
``obj = vsrcdest.reverse()``
Description:
Reverses the elements of ``vec`` in place.
----
.. method:: Vector.rotate
Syntax:
``obj = vsrcdest.rotate(value)``
``obj = vsrcdest.rotate(value, 0)``
Description:
A negative *value* will move elements to the left. A positive argument
will move elements to the right. In both cases, the elements shifted off one
end of the vector will reappear at the other end.
If a 2nd arg is present, 0 values get shifted in and elements shifted off
one end are lost.
Example:
.. code-block::
python
vec.indgen(1, 10, 1)
vec.rotate(3)
orders the elements of ``vec`` as follows:
.. code-block::
python
8 9 10 1 2 3 4 5 6 7
whereas,
.. code-block::
python
vec.indgen(1, 10, 1)
vec.rotate(-3)
orders the elements of ``vec`` as follows:
.. code-block::
python
4 5 6 7 8 9 10 1 2 3
.. code-block::
python
vec = h.Vector()
vec.indgen(1,5,1)
vec.printf()
vec.c().rotate(2).printf()
vec.c().rotate(2, 0).printf()
vec.c().rotate(-2).printf()
vec.c().rotate(-2, 0).printf()
----
.. method:: Vector.rebin
Syntax:
``obj = vdest.rebin(vsrc,factor)``
``obj = vsrcdest.rebin(factor)``
Description:
Compresses length of vector ``vsrc`` by an integer *factor*. The sum of
elements is conserved, unless the *factor* produces a remainder,
in which case the remainder values are truncated from ``vdest``.
Example:
.. code-block::
python
vec.indgen(1, 10, 1)
vec1.rebin(vec, 2)
produces ``vec1``:
.. code-block::
python
3 7 11 15 19
where each pair of ``vec`` elements is added together into one element.
But,
.. code-block::
python
vec.indgen(1, 10, 1)
vec1.rebin(vec, 3)
adds trios ``vec`` elements and gets rid of the value 10, producing
``vec1``:
.. code-block::
python
6 15 24
----
.. method:: Vector.pow
Syntax:
``obj = vdest.pow(vsrc, power)``
``obj = vsrcdest.pow(power)``
Description:
Raise each element to some power. A power of -1, 0, .5, 1, or 2
are efficient.
----
.. method:: Vector.sqrt
Syntax:
``obj = vdest.sqrt(vsrc)``
``obj = vsrcdest.sqrt()``
Description:
Take the square root of each element. No domain checking.
----
.. method:: Vector.log
Syntax:
``obj = vdest.log(vsrc)``
``obj = vsrcdest.log()``
Description:
Take the natural log of each element. No domain checking.
----
.. method:: Vector.log10
Syntax:
``obj = vdest.log10(vsrc)``
``obj = vsrcdest.log10()``
Description:
Take the logarithm to the base 10 of each element. No domain checking.
----
.. method:: Vector.tanh
Syntax:
``obj = vdest.tanh(vsrc)``
``obj = vsrcdest.tanh()``
Description:
Take the hyperbolic tangent of each element.
----
.. method:: Vector.abs
Syntax:
``obj = vdest.abs(vsrc)``
``obj = vsrcdest.abs()``
Description:
Take the absolute value of each element.
Example:
.. code-block::
python
v1 = h.Vector()
v1.indgen(-.5, .5, .1)
v1.printf()
v1.abs().printf()
.. seealso::
:func:`abs`
----
.. method:: Vector.index
Syntax:
``obj = vdest.index(vsrc, indices)``
Description:
The values of the vector ``vsrc`` indexed by the vector *indices* are collected
into ``vdest``.
Example:
.. code-block::
python
from neuron import h
vec = h.Vector()
vec1 = h.Vector()
vec2 = h.Vector()
vec3 = h.Vector(6)
vec.indgen(0, 5.1, 0.1) # vec will have 51 values from 0 to 5, with increment=0.1
vec1.integral(vec, 0.1) # Euler integral of vec elements approximating
# an x-squared function, dx = 0.1
vec2.indgen(0, 50, 10)
vec3.index(vec1, vec2) # put the value of every 10th index in vec2
makes ``vec3`` with six elements corresponding to the integrated integers from
``vec``.
----
.. method:: Vector.min
Syntax:
``x = vec.min()``
``x = vec.min(start, end)``
Description:
Return the minimum value.
----
.. method:: Vector.min_ind
Syntax:
``i = vec.min_ind()``
``i = vec.min_ind(start, end)``
Description:
Return the index of the minimum value.
----
.. method:: Vector.max
Syntax:
``x = vec.max()``
``x = vec.max(start, end)``
Description:
Return the maximum value.
----
.. method:: Vector.max_ind
Syntax:
``i = vec.max_ind()``
``i = vec.max_ind(start, end)``
Description:
Return the index of the maximum value.
----
.. method:: Vector.sum
Syntax:
``x = vec.sum()``
``x = vec.sum(start, end)``
Description:
Return the sum of element values.
----
.. method:: Vector.sumsq
Syntax:
``x = vec.sumsq()``
``x = vec.sumsq(start, end)``
Description:
Return the sum of squared element values.
----
.. method:: Vector.mean
Syntax:
``x = vec.mean()``
``x = vec.mean(start, end)``
Description:
Return the mean of element values.
----
.. method:: Vector.var
Syntax:
``x = vec.var()``
``x = vec.var(start, end)``
Description:
Return the variance of element values.
----
.. method:: Vector.stdev
Syntax:
``vec.stdev()``
``vec.stdev(start,end)``
Description:
Return the standard deviation of the element values.
----
.. method:: Vector.stderr
Syntax:
``x = vec.stderr()``
``x = vec.stderr(start, end)``
Description:
Return the standard error of the mean (SEM) of the element values.
----
.. method:: Vector.dot
Syntax:
``x = vec.dot(vec1)``
Description:
Return the dot (inner) product of ``vec`` and *vec1*.
----
.. method:: Vector.mag
Syntax:
``x = vec.mag()``
Description:
Return the vector length or magnitude.
----
.. method:: Vector.add
Syntax:
``obj = vsrcdest.add(scalar)``
``obj = vsrcdest.add(vec1)``
Description:
Add either a scalar to each element of the vector or add the corresponding
elements of *vec1* to the elements of ``vsrcdest``.
``vsrcdest`` and *vec1* must have the same size.
----
.. method:: Vector.sub
Syntax:
``obj = vsrcdest.sub(scalar)``
``obj = vsrcdest.sub(vec1)``
Description:
Subtract either a scalar from each element of the vector or subtract the
corresponding elements of *vec1* from the elements of ``vsrcdest``.
``vsrcdest`` and *vec1* must have the same size.
----
.. method:: Vector.mul
Syntax:
``obj = vsrcdest.mul(scalar)``
``obj = vsrcdest.mul(vec1)``
Description:
Multiply each element of ``vsrcdest`` either by either a scalar or the
corresponding elements of *vec1*. ``vsrcdest``
and *vec1* must have the same size.
----
.. method:: Vector.div
Syntax:
``obj = vsrcdest.div(scalar)``
``obj = vsrcdest.div(vec1)``
Description:
Divide each element of ``vsrcdest`` either by a scalar or by the
corresponding elements of *vec1*. ``vsrcdest``
and *vec1* must have the same size.
----
.. method:: Vector.scale
Syntax:
``scale = vsrcdest.scale(low, high)``
Description:
Scale values of the elements of a vector to lie within the given range.
Return the scale factor used.
----
.. method:: Vector.eq
Syntax:
``numerical_truth_value = vec.eq(vec1)``
Description:
Test equality of vectors. Returns 1 if all elements of vec ==
corresponding elements of *vec1* (to within :data:`float_epsilon`).
Otherwise it returns 0. This can be made into a boolean truth value with Python function bool()
----
.. method:: Vector.meansqerr
Syntax:
``x = vec.meansqerr(vec1)``
``x = vec.meansqerr(vec1, weight_vec)``
Description:
Return the mean squared error between values of the elements of ``vec`` and
the corresponding elements of *vec1*. ``vec`` and *vec1* must have the
same size.
If the second vector arg is present, it also must have the same size and the
return value is sum of ``w[i]*(v1[i] - v2[i])^2 / size``
Fourier Analysis
~~~~~~~~~~~~~~~~
The following routines are based on the fast fourier transform (FFT)
and are implemented using code from Numerical Recipes in C (2nd ed.)
Refer to this source for further information.
.. method:: Vector.correl
Syntax:
``obj = vdest.correl(src)``
``obj = vdest.correl(src, vec2)``
Description:
Compute the cross-correlation function of *src* and *vec2* (or the
autocorrelation of *src* if *vec2* is not present).
----
.. method:: Vector.convlv
Syntax:
``obj = vdest.convlv(src,filter)``
``obj = vdest.convlv(src,filter, sign)``
Description:
Compute the convolution of *src* with *filter*. If <sign>=-1 then
compute the deconvolution.
Assumes filter is given in "wrap-around" order, with countup
``t=0..t=n/2`` followed by countdown ``t=n..t=n/2``. The size of *filter*
should be an odd <= the size of *v1*>.
Example:
.. code-block::
python
v1 = h.Vector(16)
v2 = h.Vector(16)
v3 = h.Vector()
v1[5] = v1[6] = 1
v2[3] = v2[4] = 3
v3.convlv(v1, v2)
v1.printf()
v2.printf()
v3.printf()
----
.. method:: Vector.spctrm
Syntax:
``obj = vdest.spctrm(vsrc)``
Description:
Return the power spectral density function of vsrc.
----
.. method:: Vector.filter
Syntax:
``obj = vdest.filter(src,filter)``
``obj = vsrcdest.filter(filter)``
Description:
Digital filter implemented by taking the inverse fft of
*filter* and convolving it with *vec1*. *vec* and *vec1*
are in the time
domain and *filter* is in the frequency domain.
----
.. method:: Vector.fft
Syntax:
``obj = vdest.fft(vsrc, sign)``
``obj = vsrcdest.fft(sign)``
Description:
Compute the fast fourier transform of the source data vector. If
*sign*\ =-1 then compute the inverse fft.
If vsrc.\ :meth:`~Vector.size` is not an integral power of 2, it is padded with 0's to
the next power of 2 size.
The complex frequency domain is represented in the vector as pairs of
numbers --- except for the first two numbers.
vec[0] is the amplitude of the 0 frequency cosine (constant)
and vec[1] is the amplitude of the highest (N/2) frequency cosine
(ie. alternating 1,-1's in the time domain)
vec[2, 3] is the amplitude of the cos(2*PI*i/n), sin(2*PI*i/n) components
(ie. one whole wave in the time domain)
vec[n-2, n-1] is the amplitude of the cos(PI*(n-1)*i/n), sin(PI*(n-1)*i/n)
components. The following example of a pure time domain sine wave
sampled at 16 points should be played with to see where
the specified frequency appears in the frequency domain vector (note that if the
frequency is greater than 8, aliasing will occur, ie sampling makes it appear
as a lower frequency)
Also note that the forward transform does not produce the amplitudes of
the frequency components that goes up to make the time domain function but
instead each element is the integral of the product of the time domain
function and a specific pure frequency. Thus the 0 and highest frequency
cosine are N times the amplitudes and all others are N/2 times the amplitudes.
.. code-block::
python
from neuron import h, gui
N = 16 # should be a power of 2
class MyGUI:
def __init__(self):
self.c = 1
self.f = 1 # waves per domain, max is N/2
self.box = h.VBox()
self.box.intercept(1)
h.xpanel('', 1)
h.xradiobutton('sin ', lambda: self.p(0))
h.xradiobutton('cos ', lambda: self.p(1), 1)
h.xvalue('freq (waves/domain)', (self, 'f'), 1, lambda: self.p(self.c))
h.xpanel()
self.g1 = h.Graph()
self.g2 = h.Graph()
self.g3 = h.Graph()
self.box.intercept(0)
self.box.map()
self.g1.size(0, N, -1, 1)
self.g2.size(0, N, -N, N)
self.g3.size(0, N, -N, N)
self.p(self.c)
def p(self, c):
self.v1 = h.Vector(N)
self.v1.sin(self.f, c * h.PI / 2, 1000. / N)
self.v1.plot(self.g1)
self.v2 = h.Vector()
self.v2.fft(self.v1, 1) # forward
self.v2.plot(self.g2)
self.v3 = h.Vector()
self.v3.fft(self.v2, -1) # inverse
self.v3.plot(self.g3) # amplitude N/2 times the original
gui = MyGUI()
.. image:: ../../images/fft1.png
:align: center
The inverse fft is mathematically almost identical
to the forward transform but often
has a different operational interpretation. In this
case the result is a time domain function which is merely the sum
of all the pure sinusoids weighted by the (complex) frequency function
(although, remember, points 0 and 1 in the frequency domain are special,
being the constant and the highest alternating cosine, respectively).
The example below shows the index of a particular frequency and phase
as well as the time domain pattern. Note that index 1 is for the higest
frequency cosine instead of the 0 frequency sin.
Because the frequency domain representation is something only a programmer
could love, and because one might wish to plot the real and imaginary
frequency spectra, one might wish to encapsulate the fft in a function
which uses a more convenient representation.
Below is an alternative FFT function where the frequency
values are spectrum amplitudes (no need to divide anything by N)
and the real and complex frequency components are
stored in separate vectors (of length N/2 + 1).
Consider the functions
.. code-block::
python
FFT(1, vt_src, vfr_dest, vfi_dest)
FFT(-1, vt_dest, vfr_src, vfi_src)
The forward transform (first arg = 1) requires
a time domain source vector with a length of N = 2^n where n is some positive
integer. The resultant real (cosine amplitudes) and imaginary (sine amplitudes)
frequency components are stored in the N/2 + 1
locations of the vfr_dest and vfi_dest vectors respectively (Note:
vfi_dest[0] and vfi_dest[N/2] are always set to 0. The index i in the
frequency domain is the number of full pure sinusoid waves in the time domain.
ie. if the time domain has length T then the frequency of the i'th component
is i/T.
The inverse transform (first arg = -1) requires two freqency domain
source vectors for the cosine and sine amplitudes. The size of these
vectors must be N/2+1 where N is a power of 2. The resultant time domain
vector will have a size of N.
If the source vectors are not a power of 2, then the vectors are padded
with 0's til vtsrc is 2^n or vfr_src is 2^n + 1. The destination vectors
are resized if necessary.
This function has the property that the sequence
.. code-block::
python
FFT(1, vt, vfr, vfi)
FFT(-1, vt, vfr, vfi)
leaves vt unchanged. Reversal of the order would leave vfr and vfi unchanged.
The implementation is:
.. code-block::
python
def FFT(direction, vt, vfr, vfi):
if direction == 1: # forward
vfr.fft(vt, 1)
n = len(vfr)
vfr.div(n/2)
vfr[0] /= 2 # makes the spectrum appear discontinuous
vfr[1] /= 2 # but the amplitudes are intuitive
vfi.copy(vfr, 0, 1, -1, 1, 2) # odd elements
vfr.copy(vfr, 0, 0, -1, 1, 2) # even elements
vfr.resize(n/2+1)
vfi.resize(n/2+1)
vfr[n/2] = vfi[0] #highest cos started in vfr[1]
vfi[0] = vfi[n/2] = 0 # weights for sin(0*i)and sin(PI*i)
else: # inverse
# shuffle vfr and vfi into vt
n = len(vfr)
vt.copy(vfr, 0, 0, n-2, 2, 1)
vt[1] = vfr[n-1]
vt.copy(vfi, 3, 1, n-2, 2, 1)
vt[0] *= 2
vt[1] *= 2
vt.fft(vt, -1)
If you load the previous example so that FFT is defined, the following
example shows the cosine and sine spectra of a pulse.
.. code-block::
python
from neuron import h, gui
N = 128
class MyGUI:
def __init__(self):
self.delay = 0
self.duration = N / 2
self.box = h.VBox()
self.box.intercept(1)
h.xpanel('')
h.xvalue('delay (points)', (self, 'delay'), 1, self.p)
h.xvalue('duration (points)', (self, 'duration'), 1, self.p)
h.xpanel()
self.g1 = h.Graph()
self.b1 = h.HBox()
self.b1.intercept(1)
self.g2 = h.Graph()
self.g3 = h.Graph()
self.b1.intercept(0)
self.b1.map()
self.g4 = h.Graph()
self.box.intercept(0)
self.box.map()
self.g1.size(0, N, -1, 1)
self.g2.size(0, N / 2, -1, 1)
self.g3.size(0, N / 2, -1, 1)
self.g4.size(0, N, -1, 1)
self.p()
def p(self):
self.v1 = h.Vector(N)
self.v1.fill(1, self.delay, self.delay + self.duration - 1)
self.v1.plot(self.g1)
self.v2 = h.Vector()
self.v3 = h.Vector()
FFT(1, self.v1, self.v2, self.v3)
self.v2.plot(self.g2)
self.v3.plot(self.g3)
self.v4 = h.Vector()
FFT(-1, self.v4, self.v2, self.v3)
self.v4.plot(self.g4)
mygui = MyGUI()
.. image:: ../../images/fft2.png
:align: center
.. seealso::
:func:`fft`, :func:`spctrm`
.. method:: Vector.trigavg
Syntax:
``v1.trigavg(data,trigger,pre,post)``
Description:
Perform an event-triggered average of <*data*> using times given by
<*trigger*>. The duration of the average is from -<*pre*> to <*post*>.
This is useful, for example, in calculating a spike triggered stimulus
average.
----
.. method:: Vector.spikebin
Syntax:
``v.spikebin(data,thresh)``
Description:
Used to make a binary version of a spike train. <*data*> is a vector
of membrane potential. <*thresh*> is the voltage threshold for spike
detection. <*v*> is set to all zeros except at the onset of spikes
(the first dt which the spike crosses threshold)
----
.. method:: Vector.psth
Syntax:
``vmeanfreq = vdest.psth(vsrchist,dt,trials,size)``
Description:
The name of this function is somewhat misleading, since its
input, vsrchist, is a finely-binned post-stimulus time histogram,
and its output, vdest, is an array whose elements are the mean
frequencies f_mean[i] that correspond to each bin of vsrchist.
For bin i, the corresponding mean frequency f_mean[i] is
determined by centering an adaptive square window on i and
widening the window until the number of spikes under the
window equals size. Then f_mean[i] is calculated as
``f_mean[i] = N[i] / (m dt trials)``
where
.. code-block::
python
f_mean[i] is in spikes per _second_ (Hz).
N[i] = total number of events in the window
centered on bin i
m = total number of bins in the window
centered on bin i
dt = binwidth of vsrchist in _milliseconds_
(so m dt is the width of the window in milliseconds)
trials = an integer scale factor
trials is used to adjust for the number of traces that were
superimposed to compute the elements of vsrchist. In other words,
suppose the elements of vsrchist were computed by adding up the
number of spikes in n traces
.. math::
v1[i] = \sum_{j=1}^n {\text{number of spikes in bin i of trace j}}
Then trials would be assigned the value n. Of course, if
the elements of vsrchist are divided by n before calling psth(),
then trials should be set to 1.
Acknowledgment:
The documentation and example for psth was prepared by Ted Carnevale.
.. warning::
The total number of spikes in vsrchist must be greater than size.
Example:
.. code-block::
python
from neuron import h, gui
b = h.VBox()
b.intercept(1)
g1 = h.Graph()
g1.size(0,200,0,10)
g2 = h.Graph()
g2.size(0,200,0,10)
b.intercept(0)
b.map("psth and mean freq")
VECSIZE = 200
MINSUM = 50
DT = 1000 # ms per bin of v1 (vsrchist)
TRIALS = 1
v1 = h.Vector(VECSIZE)
r = h.Random()
for ii in range(VECSIZE):
v1[ii] = int(r.uniform(0, 10))
v1.plot(g1)
v2 = h.Vector()
v2.psth(v1, DT, TRIALS, MINSUM)
v2.plot(g2)
.. image:: ../../images/vector-psth.png
:align: center
----
.. method:: Vector.inf
Syntax:
``v.inf(i,dt,gl,el,cm,th,res,[ref])``
Description:
Simulate a leaky integrate and fire neuron. <*i*> is a vector containing
the input. <*dt*> is the timestep. <*gl*> and <*el*> are the conductance
and reversal potential of the leak term <*cm*> is capacitance. <*th*>
is the threshold voltage and <*res*> is the reset voltage. <*ref*>, if
present sets the duration of ab absolute refractory period.
N.b. Currently working with forward Euler integration, which may give
spurious results.
----
.. method:: Vector.resample
Syntax:
``v1.resample(v2,rate)``
Description:
Resamples the vector at another rate -- integers work best.
.. seealso::
:func:`copy`
|