File: test_bas.py

package info (click to toggle)
neuron 8.2.6-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 34,760 kB
  • sloc: cpp: 149,571; python: 58,465; ansic: 50,329; sh: 3,510; xml: 213; pascal: 51; makefile: 35; sed: 5
file content (417 lines) | stat: -rw-r--r-- 12,705 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
from neuron import h
from neuron.units import ms, mV

h("objref po")
h.po = {}

import numpy as np
import subprocess

pc = h.ParallelContext()


# start fresh with respect to SaveState and BBSaveState
def rmfiles():
    if pc.id() == 0:
        subprocess.run("rm -f state*.bin", shell=True)
        subprocess.run("rm -r -f bbss_out", shell=True)
        subprocess.run("rm -r -f in", shell=True)
    pc.barrier()


rmfiles()


class Cell:
    def __init__(self, gid, x, y, z, theta):
        self._gid = gid
        self._setup_morphology()
        self.all = self.soma.wholetree()
        self._setup_biophysics()
        self.x = self.y = self.z = 0
        h.define_shape()
        self._rotate_z(theta)
        self._set_position(x, y, z)

        self._spike_detector = h.NetCon(self.soma(0.5)._ref_v, None, sec=self.soma)
        self.spike_times = h.Vector()
        self._spike_detector.record(self.spike_times)

        self._ncs = []

        self.soma_v = h.Vector().record(self.soma(0.5)._ref_v)

    def __repr__(self):
        return "{}[{}]".format(self.name, self._gid)

    def _set_position(self, x, y, z):
        for sec in self.all:
            for i in range(sec.n3d()):
                sec.pt3dchange(
                    i,
                    x - self.x + sec.x3d(i),
                    y - self.y + sec.y3d(i),
                    z - self.z + sec.z3d(i),
                    sec.diam3d(i),
                )
        self.x, self.y, self.z = x, y, z

    def _rotate_z(self, theta):
        """Rotate the cell about the Z axis."""
        for sec in self.all:
            for i in range(sec.n3d()):
                x = sec.x3d(i)
                y = sec.y3d(i)
                c = h.cos(theta)
                s = h.sin(theta)
                xprime = x * c - y * s
                yprime = x * s + y * c
                sec.pt3dchange(i, xprime, yprime, sec.z3d(i), sec.diam3d(i))


class BallAndStick(Cell):
    name = "BallAndStick"

    def _setup_morphology(self):
        self.soma = h.Section(name="soma", cell=self)
        self.dend = h.Section(name="dend", cell=self)
        self.dend.connect(self.soma)
        self.soma.L = self.soma.diam = 12.6157
        self.dend.L = 200
        self.dend.diam = 1

    def _setup_biophysics(self):
        for sec in self.all:
            sec.Ra = 100  # Axial resistance in Ohm * cm
            sec.cm = 1  # Membrane capacitance in micro Farads / cm^2
        self.soma.insert("hh")
        for seg in self.soma:
            seg.hh.gnabar = 0.12  # Sodium conductance in S/cm2
            seg.hh.gkbar = 0.036  # Potassium conductance in S/cm2
            seg.hh.gl = 0.0003  # Leak conductance in S/cm2
            seg.hh.el = -54.3  # Reversal potential in mV
        # Insert passive current in the dendrite
        self.dend.insert("pas")
        for seg in self.dend:
            seg.pas.g = 0.001  # Passive conductance in S/cm2
            seg.pas.e = -65  # Leak reversal potential mV

        self.syn = h.ExpSyn(self.dend(0.5))
        self.syn.tau = 2 * ms


class Ring:
    """A network of *N* ball-and-stick cells where cell n makes an
    excitatory synapse onto cell n + 1 and the last, Nth cell in the
    network projects to the first cell.
    """

    def __init__(
        self,
        N=5,
        stim_w=0.04,
        stim_t=9,
        stim_delay=1,
        syn_w=0.01,
        syn_delay=25,
        r=50,
    ):
        """
        :param N: Number of cells.
        :param stim_w: Weight of the stimulus
        :param stim_t: time of the stimulus (in ms)
        :param stim_delay: delay of the stimulus (in ms)
        :param syn_w: Synaptic weight
        :param syn_delay: Delay of the synapse
        :param r: radius of the network
        """
        self._N = N
        self.set_gids()  ### assign gids to processors
        self._syn_w = syn_w
        self._syn_delay = syn_delay
        self._create_cells(r)
        self._connect_cells()
        ### stimulate gid 0
        if pc.gid_exists(0):
            self._netstim = h.NetStim()
            self._netstim.number = 1
            self._netstim.start = stim_t
            self._nc = h.NetCon(
                self._netstim, pc.gid2cell(pc.id()).syn
            )  ### grab cell with gid==0 wherever it exists
            self._nc.delay = stim_delay
            self._nc.weight[0] = stim_w

    def set_gids(self):
        """Set the gidlist on this host."""
        #### Round-robin counting.
        #### Each host has an id from 0 to pc.nhost() - 1.
        self.gidlist = list(range(pc.id(), self._N, pc.nhost()))
        for gid in self.gidlist:
            pc.set_gid2node(gid, pc.id())

    def _create_cells(self, r):
        self.cells = {}
        for i in self.gidlist:  ### only create the cells that exist on this host
            theta = i * 2 * h.PI / self._N
            self.cells[i] = BallAndStick(
                i, h.cos(theta) * r, h.sin(theta) * r, 0, theta
            )

        ### associate the cell with this host and gid
        for cell in self.cells.values():
            pc.cell(cell._gid, cell._spike_detector)

    def _connect_cells(self):
        for target in self.cells.values():
            source_gid = (target._gid - 1 + self._N) % self._N
            nc = pc.gid_connect(source_gid, target.syn)
            nc.weight[0] = self._syn_w
            nc.delay = self._syn_delay
            target._ncs.append(nc)


class StarNet:
    """NetStim -> Cell -> N Cells -> Cell"""

    def __init__(self, n):
        self.ncell = [1, n, 1]
        self.nlayer = len(self.ncell)
        self.cells = {}
        # make cells
        for ilayer in range(self.nlayer):
            for icell in range(self.ncell[ilayer]):
                gid = self.info2gid(ilayer, icell)
                if (gid % pc.nhost()) == pc.id():
                    cell = BallAndStick(gid, float(icell), float(ilayer), 0.0, 0.0)
                    self.cells[gid] = cell
                    cell.ilayer = ilayer
                    cell.icell = icell
                    pc.set_gid2node(gid, pc.id())
                    pc.cell(gid, self.cells[gid]._spike_detector)
        # make connections (all to all from layer i-1 to layer i)
        self.nclist = {}
        for gid, cell in self.cells.items():
            if cell.ilayer > 0:
                src_ilayer = cell.ilayer - 1
                for src_icell in range(self.ncell[src_ilayer]):
                    srcgid = self.info2gid(src_ilayer, src_icell)
                    nc = pc.gid_connect(srcgid, cell.syn)
                    nc.weight[0] = 0.01
                    nc.delay = 20
                    self.nclist[(srcgid, gid)] = nc
        # stimulate gid 0 with NetStim
        if 0 in self.cells:
            self.ns = h.NetStim()
            self.ncstim = h.NetCon(self.ns, self.cells[0].syn)
            ns = self.ns
            ns.start = 6
            ns.interval = 10
            ns.number = 100
            nc = self.ncstim
            nc.delay = 2
            nc.weight[0] = 0.01
        # For some extra coverage of BBSaveState::node01
        if 100 in self.cells:
            cell = self.cells[100]
            self.xsyns = [h.ExpSyn(seg) for seg in cell.dend.allseg()]
            self.xnc = []
            for syn in self.xsyns:
                nc = pc.gid_connect(0, syn)
                nc.delay = 20
                nc.weight[0] = 0.0001
                self.xnc.append(nc)

    def info2gid(self, ilayer, icell):
        return ilayer * 100 + icell

    def gid2info(self, gid):
        return (int(gid / 100)), gid % 100

    def topol(self):
        print(pc.id(), self.cells)
        print(pc.id(), self.nclist)


out2in_sh = r"""
#!/usr/bin/env bash
out=bbss_out
rm -f in/*
mkdir -p in
cat $out/tmp > in/tmp
for f in $out/tmp.*.* ; do
  i=`echo "$f" | sed 's/.*tmp\.\([0-9]*\)\..*/\1/'`
  if test ! -f in/tmp.$i ; then
    cnt=`ls $out/tmp.$i.* | wc -l`
    echo $cnt > in/tmp.$i
    cat $out/tmp.$i.* >> in/tmp.$i
  fi
done
"""


def cp_out_to_in():
    if pc.id() == 0:
        import tempfile

        with tempfile.NamedTemporaryFile("w") as scriptfile:
            scriptfile.write(out2in_sh)
            scriptfile.flush()
            subprocess.check_call(["/bin/bash", scriptfile.name])

    pc.barrier()


def prun(tstop, restore=False):
    pc.set_maxstep(10 * ms)
    h.finitialize(-65 * mV)

    if restore == "SaveState":
        ns = h.SaveState()
        sf = h.File("state%d.bin" % pc.id())
        ns.fread(sf)
        ns.restore(0)  # event queue restored
        sf.close()
    elif restore == "BBSaveState":
        cp_out_to_in()  # prepare for restore.
        bbss = h.BBSaveState()
        bbss.restore_test()
    else:
        pc.psolve(tstop / 2)

        # SaveState save
        ss = h.SaveState()
        ss.save()
        sf = h.File("state%d.bin" % pc.id())
        ss.fwrite(sf)
        sf.close()

        # BBSaveState Save
        cnt = h.List("PythonObject").count()
        for i in range(1):
            bbss = h.BBSaveState()
            bbss.save_test()
            bbss = None
        assert h.List("PythonObject").count() == cnt

    pc.psolve(tstop)


def get_all_spikes(ring):
    local_data = {cell._gid: list(cell.spike_times) for cell in ring.cells.values()}
    all_data = pc.py_allgather([local_data])

    pc.barrier()
    pc.done()

    data = {}
    for d in all_data:
        data.update(d[0])

    return data


def compare_dicts(dict1, dict2):
    # assume dict is {gid:[spiketimes]}

    # In case iteration order not same in dict1 and dict2, use dict1 key
    # order to access dict
    keylist = dict1.keys()

    # verify same set of keys
    assert set(keylist) == set(dict2.keys())

    # verify same count of spikes for each key
    assert [len(dict1[k]) for k in keylist] == [len(dict2[k]) for k in keylist]

    # Put spike times in array so can compare with a tolerance.
    array_1 = np.array([val for k in keylist for val in dict1[k]])
    array_2 = np.array([val for k in keylist for val in dict2[k]])
    if not np.allclose(array_1, array_2):
        print(array_1)
        print(array_2)
        print(array_1 - array_2)
    assert np.allclose(array_1, array_2)


def test_bas():
    # h.execute1(...) does not call mpi_abort on failure
    assert h.execute1("1/0") == 0
    assert h.execute1("2/0", 0) == 0  # no error message printed

    # MPI_Abort can be avoided on hoc errors.
    oldflag = pc.mpiabort_on_error(0)
    assert h("""3/0""") == 0
    try:
        x = h.log(-1)
        assert False
    except:
        assert True
    pc.mpiabort_on_error(oldflag)

    stdspikes = {
        0: [10.925000000099914, 143.3000000001066],
        1: [37.40000000009994, 169.7750000000825],
        2: [63.87500000010596, 196.25000000005844],
        3: [90.35000000011198],
        4: [116.825000000118],
    }

    stdspikes_after_100 = {}
    for gid in stdspikes:
        stdspikes_after_100[gid] = [spk_t for spk_t in stdspikes[gid] if spk_t >= 100.0]

    ring = Ring()

    prun(200 * ms)  # at tstop/2 does a SaveState.save and BBSaveState.save
    stdspikes = get_all_spikes(ring)
    stdspikes_after_100 = {}
    for gid in stdspikes:
        stdspikes_after_100[gid] = [spk_t for spk_t in stdspikes[gid] if spk_t >= 100.0]
    compare_dicts(get_all_spikes(ring), stdspikes)

    prun(200 * ms, "SaveState")  # SaveState restore to start at t = tstop/2
    compare_dicts(get_all_spikes(ring), stdspikes_after_100)

    prun(200 * ms, "BBSaveState")  # BBSaveState restore to start at t = tstop/2
    compare_dicts(get_all_spikes(ring), stdspikes_after_100)


def test_starnet():
    pc.gid_clear()
    starnet = StarNet(8)
    starnet.topol()
    tstop = 100.0
    prun(tstop)
    stdspikes = get_all_spikes(starnet)
    stdspikes_half = {}
    for gid in stdspikes:
        stdspikes_half[gid] = [spk_t for spk_t in stdspikes[gid] if spk_t >= tstop / 2]
    prun(tstop, "BBSaveState")  # BBSaveState restore to start at t = tstop/2
    compare_dicts(get_all_spikes(starnet), stdspikes_half)

    # test for binq mode.
    h.CVode().queue_mode(1)
    prun(tstop)
    compare_dicts(get_all_spikes(starnet), stdspikes)
    prun(tstop, "BBSaveState")
    compare_dicts(get_all_spikes(starnet), stdspikes_half)

    h.dt = 1.0 / 64.0  # issue 1480
    prun(tstop)
    stdspikes = get_all_spikes(starnet)
    stdspikes_half = {}
    for gid in stdspikes:
        stdspikes_half[gid] = [spk_t for spk_t in stdspikes[gid] if spk_t >= tstop / 2]

    prun(tstop, "BBSaveState")
    compare_dicts(get_all_spikes(starnet), stdspikes_half)
    h.CVode().queue_mode(0)
    h.dt = 0.025


if __name__ == "__main__":
    test_bas()
    test_starnet()
    pc.barrier()
    h.quit()