1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
|
# More testing BBSaveState.
from neuron import h
pc = h.ParallelContext()
cvode = h.CVode()
class Model1:
def __init__(self, ncell, n):
# gid -> [n NetCons] -> gid+1
cells = {gid: h.Follower() for gid in range(pc.id(), ncell, pc.nhost())}
for gid in cells:
pc.set_gid2node(gid, pc.id())
pc.cell(gid, h.NetCon(cells[gid], None))
netcons = {}
for gid in cells:
netcons[gid] = [
pc.gid_connect(gid - 1, cells[gid]) for _ in range(n) if gid > 0
]
# Stimulate gid 0
if 0 in cells:
# stim cell[0] with fast burst of 5 spikes
ns = h.NetStim()
ns.start = 0.9999
ns.number = 5
ns.interval = 0.1
nsnc = h.NetCon(ns, cells[0])
nsnc.delay = 0
nsnc.weight[0] = 0
for gid, cell in cells.items():
# cells generate spike on every input of weight > 1
# cell.refrac = 0
for i, nc in enumerate(netcons[gid]):
nc.weight[0] = 0.001 * i + h.dt
nc.delay = (1.0 + 0.01 * i) * h.dt
self.cells = cells
self.netcons = netcons
self.ns = ns
self.nsnc = nsnc
class Model2:
"""NetStim -> Cell -> N Cells -> Cell"""
# exercise PreSyn on queue with use_min_delay_ by means of
# several NetCon with same PreSyn and same delay
def __init__(self, n):
self.ncell_per_layer = [1, n, 2]
self.cells = {}
# make cells and associate with gid (round robin distribution)
for ilayer, ncell in enumerate(self.ncell_per_layer):
for icell in range(ncell):
gid = self.info2gid(ilayer, icell)
if (gid % pc.nhost()) == pc.id():
self.cells[gid] = h.Follower()
pc.set_gid2node(gid, pc.id())
pc.cell(gid, h.NetCon(self.cells[gid], None))
# make connections (all to all from layer i-1 to layer i)
self.netcons = {}
for gid, cell in self.cells.items():
ilayer, icell = self.gid2info(gid)
if ilayer == 0:
continue
srclayer = ilayer - 1
for isrc in range(self.ncell_per_layer[srclayer]):
srcgid = self.info2gid(srclayer, isrc)
nc = pc.gid_connect(srcgid, cell)
nc.weight[0] = 0.1
nc.delay = 1.0
self.netcons[(srcgid, gid)] = nc
# Stimulate layer 0 with NetStim
self.netstims = {}
self.netstim_con = {}
for gid in range(self.ncell_per_layer[0]):
if gid in self.cells:
ns = h.NetStim()
self.netstims[gid] = ns
ns.start = 0.9999
ns.number = 5
ns.interval = 0.1
nc = h.NetCon(ns, self.cells[gid])
nc.delay = 0.0
nc.weight[0] = 0.1
self.netstim_con[gid] = nc
self.ns = self.netstims[0]
self.nsnc = self.netstim_con[0]
print(self.cells)
print(self.netcons)
print(self.netstim_con)
def info2gid(self, ilayer, icell):
return ilayer * 100 + icell
def gid2info(self, gid):
return (int(gid / 100)), gid % 100
def test_bbss():
print("focus on BinQ initialization Issue #1444")
ncell = 3
n = 5
model = Model2(5)
# pc.gid_clear()
# model = Model1(ncell, n)
spiketime = h.Vector()
spikegid = h.Vector()
pc.spike_record(-1, spiketime, spikegid)
def run(tstop):
pc.set_maxstep(10)
h.finitialize()
pc.psolve(tstop)
spiketime_std = spiketime.c()
spikegid_std = spikegid.c()
def set_stdspikes():
spiketime_std.copy(spiketime)
spikegid_std.copy(spikegid)
tstop = 5
run(tstop)
set_stdspikes()
def prspikes():
print("prspikes")
for i, gid in enumerate(spikegid):
print("%g %d" % (spiketime[i], gid))
def compare_spikes():
x = list(zip(spiketime_std, spikegid_std))
x = sorted(x, key=lambda e: e[1])
y = list(zip(spiketime, spikegid))
y = sorted(y, key=lambda e: e[1])
if len(x) != len(y):
print(len(x), len(y))
# assert len(x) == len(y)
if x != y:
q = (x, y) if len(x) <= len(y) else (y, x)
for i, a in enumerate(q[0]):
b = q[1][i]
if a != b:
# assert a[1] == b[1]
z = abs(a[0] - b[0])
if z >= 1e-9:
print(x[i], y[i])
assert z < 1e-9
def srun(tsave, tstop):
qm = cvode.queue_mode()
print(
"srun tsave=%g tstop=%g start=%g delay=%g %s"
% (tsave, tstop, model.ns.start, model.nsnc.delay, "binq" if qm else "")
)
run(tsave)
st = spiketime.c()
sg = spikegid.c()
bbss = h.BBSaveState()
bbss.save("allcell_bbss.dat")
qm = 1
if qm:
print("after save")
cvode.print_event_queue()
h.finitialize(-65)
spiketime.resize(0)
spikegid.resize(0)
bbss.restore("allcell_bbss.dat")
if qm:
print("after restore")
cvode.print_event_queue()
pc.psolve(tstop)
st.append(spiketime)
sg.append(spikegid)
spiketime.copy(st)
spikegid.copy(sg)
print(" %d spikes" % len(spiketime))
srun(1.1, tstop)
compare_spikes()
cvode.queue_mode(1)
run(tstop)
assert len(spiketime_std) == len(spiketime)
spiketime_std = spiketime.c()
spikegid_std = spikegid.c()
srun(1.1, tstop)
compare_spikes()
for binq in [0, 1]:
cvode.queue_mode(binq)
parms = [
(1, 0),
(1e-10, 0),
(0, 0),
(0.25 * h.dt, 0),
(0.5 * h.dt, 0),
(0.75 * h.dt, 0),
]
for parm in parms:
if 0 in model.cells:
model.ns.start, model.nsnc.delay = parm
for tsave in [0.0, h.dt]:
run(tstop)
set_stdspikes()
srun(tsave, tstop)
compare_spikes()
cvode.queue_mode(0)
pc.gid_clear()
if __name__ == "__main__":
test_bbss()
|