1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
|
from math import pi
import pytest
from testutils import compare_data, tol
@pytest.fixture
def ecs_example(neuron_instance):
"""A model where something is created in one cell and diffuses to another.
This model makes use of parameters, multicompartment reactions, an NMODL
and the extracellular space. A substance is created in an organelle in cell1
and leaks into the cytosol. It then enters the ECS using an NMODL mechanism,
where it diffuses to cell 2 and enters via the same NMODL mechanism.
"""
h, rxd, data, save_path = neuron_instance
def make_model(alpha, lambd):
# create cell1 where `x` will be created and leak out
cell1 = h.Section(name="cell1")
cell1.pt3dclear()
cell1.pt3dadd(-2, 0, 0, 1)
cell1.pt3dadd(-1, 0, 0, 1)
cell1.nseg = 11
cell1.insert("pump")
# create cell2 where `x` will be pumped in and accumulate
cell2 = h.Section(name="cell2")
cell2.pt3dclear()
cell2.pt3dadd(1, 0, 0, 1)
cell2.pt3dadd(2, 0, 0, 1)
cell2.nseg = 11
cell2.insert("pump")
# Where?
# the intracellular spaces
cyt = rxd.Region(
h.allsec(),
name="cyt",
nrn_region="i",
geometry=rxd.FractionalVolume(0.9, surface_fraction=1.0),
)
org = rxd.Region(h.allsec(), name="org", geometry=rxd.FractionalVolume(0.1))
cyt_org_membrane = rxd.Region(
h.allsec(),
name="mem",
geometry=rxd.ScalableBorder(pi / 2.0, on_cell_surface=False),
)
# the extracellular space
ecs = rxd.Extracellular(
-55, -55, -55, 55, 55, 55, dx=33, volume_fraction=alpha, tortuosity=lambd
)
# Who?
x = rxd.Species(
[cyt, org, cyt_org_membrane, ecs], name="x", d=1.0, charge=1, initial=0
)
Xcyt = x[cyt]
Xorg = x[org]
# What? - produce X in cell 1
# parameter to limit production to cell 1
cell1_param = rxd.Parameter(
org, initial=lambda node: 1.0 if node.segment.sec == cell1 else 0
)
# production with a rate following Michaels Menton kinetics
createX = rxd.Rate(Xorg, cell1_param[org] * 1.0 / (10.0 + Xorg))
# leak between organelles and cytosol
cyt_org_leak = rxd.MultiCompartmentReaction(
Xcyt, Xorg, 1e4, 1e4, membrane=cyt_org_membrane
)
model = (
cell1,
cell2,
cyt,
org,
cyt_org_membrane,
ecs,
x,
Xcyt,
Xorg,
createX,
cell1_param,
createX,
cyt_org_leak,
)
return model
yield (neuron_instance, make_model)
def test_ecs_example(ecs_example):
"""Test ecs_example with fixed step methods"""
(h, rxd, data, save_path), make_model = ecs_example
model = make_model(0.2, 1.6)
h.finitialize(-65)
h.continuerun(1000)
if not save_path:
max_err = compare_data(data)
assert max_err < tol
def test_ecs_example_cvode(ecs_example):
"""Test ecs_example with variable step methods"""
(h, rxd, data, save_path), make_model = ecs_example
model = make_model(0.2, 1.6)
h.CVode().active(True)
h.CVode().atol(1e-5)
h.finitialize(-65)
h.continuerun(1000)
if not save_path:
max_err = compare_data(data)
assert max_err < tol
def test_ecs_example_alpha(ecs_example):
"""Test ecs_example with fixed step and inhomogeneous volume fraction methods"""
(h, rxd, data, save_path), make_model = ecs_example
model = make_model(lambda x, y, z: 0.2, 1.6)
h.finitialize(-65)
h.continuerun(1000)
if not save_path:
max_err = compare_data(data)
assert max_err < tol
def test_ecs_example_cvode_alpha(ecs_example):
"""Test ecs_example with variable step and inhomogeneous volume fraction
methods"""
(h, rxd, data, save_path), make_model = ecs_example
model = make_model(lambda x, y, z: 0.2, 1.6)
h.CVode().active(True)
h.CVode().atol(1e-5)
h.finitialize(-65)
h.continuerun(1000)
if not save_path:
max_err = compare_data(data)
assert max_err < tol
def test_ecs_example_tort(ecs_example):
"""Test ecs_example with fixed step and inhomogeneous tortuosity methods"""
(h, rxd, data, save_path), make_model = ecs_example
model = make_model(lambda x, y, z: 0.2, 1.6)
h.finitialize(-65)
h.continuerun(1000)
if not save_path:
max_err = compare_data(data)
assert max_err < tol
def test_ecs_example_cvode_tort(ecs_example):
"""Test ecs_example with variable step and inhomogeneous tortuosity methods"""
(h, rxd, data, save_path), make_model = ecs_example
model = make_model(lambda x, y, z: 0.2, 1.6)
h.CVode().active(True)
h.CVode().atol(1e-5)
h.finitialize(-65)
h.continuerun(1000)
if not save_path:
max_err = compare_data(data)
assert max_err < tol
def test_ecs_nodelists(ecs_example):
"""Test accessing species nodes with both Node1D and NodeExtracellular"""
(h, rxd, data, save_path), make_model = ecs_example
model = make_model(0.2, 1.6)
ecs, x = model[5], model[6]
# test accessing NodeExtracellular from species with both 1D and ECS
assert len(x.nodes(ecs)) == 64
assert all([nd.region == ecs for nd in x.nodes(ecs)])
# test accessing specific node by location
nd = x[ecs].nodes((-38, 27, 27))[0]
assert (nd.x3d, nd.y3d, nd.z3d) == (-38.5, 27.5, 27.5)
def test_ecs_example_dynamic_tort(ecs_example):
"""Test ecs_example with dynamic tortuosity"""
(h, rxd, data, save_path), make_model = ecs_example
model = make_model(lambda x, y, z: 1.0, 1)
h.finitialize(-65)
(
cell1,
cell2,
cyt,
org,
cyt_org_membrane,
ecs,
x,
Xcyt,
Xorg,
createX,
cell1_param,
createX,
cyt_org_leak,
) = model
perm = rxd.Species(ecs, name="perm", initial=1.0 / 1.6**2)
ecs.permeability = perm
h.continuerun(1000)
if not save_path:
max_err = compare_data(data)
assert max_err < tol
def test_ecs_example_dynamic_alpha(ecs_example):
"""Test ecs_example with fixed step and inhomogeneous tortuosity methods"""
(h, rxd, data, save_path), make_model = ecs_example
model = make_model(lambda x, y, z: 1.0, 1.6)
h.finitialize(-65)
(
cell1,
cell2,
cyt,
org,
cyt_org_membrane,
ecs,
x,
Xcyt,
Xorg,
createX,
cell1_param,
createX,
cyt_org_leak,
) = model
alpha = rxd.Species(ecs, name="alpha", initial=0.2)
ecs.alpha = alpha
h.continuerun(1000)
if not save_path:
max_err = compare_data(data)
assert max_err < tol
|