File: test_savestate_basic.py

package info (click to toggle)
neuron 8.2.6-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 34,760 kB
  • sloc: cpp: 149,571; python: 58,465; ansic: 50,329; sh: 3,510; xml: 213; pascal: 51; makefile: 35; sed: 5
file content (226 lines) | stat: -rw-r--r-- 7,981 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
def test_savestate_basic(neuron_nosave_instance):
    """Test SaveState works rxd when rxd states are not saved/restored by save
    state"""
    h, rxd, save_path = neuron_nosave_instance
    vtrap, v = rxd.rxdmath.vtrap, rxd.v
    exp, log = rxd.rxdmath.exp, rxd.rxdmath.log

    def saveSS():
        svst = h.SaveState()
        svst.save()
        svst_extra = save_rxd_extra()  # only for below model with one segment.
        return svst, svst_extra

    def restoreSS(svst, svst_extra):
        svst.restore()
        restore_rxd_extra(svst_extra)  # only for below model with one segment.
        h.fcurrent()  # failed hope was that this would properly initialize the currents.

    # parameters
    h.celsius = 6.3
    e = 1.60217662e-19
    scale = 1e-14 / e
    gnabar = 0.12 * scale  # molecules/um2 ms mV
    gkbar = 0.036 * scale
    gl = 0.0003 * scale
    el = -54.3
    q10 = 3.0 ** ((h.celsius - 6.3) / 10.0)

    # sodium activation 'm'
    alpha = 0.1 * vtrap(-(v + 40.0), 10)
    beta = 4.0 * exp(-(v + 65) / 18.0)
    mtau = 1.0 / (q10 * (alpha + beta))
    minf = alpha / (alpha + beta)

    # sodium inactivation 'h'
    alpha = 0.07 * exp(-(v + 65.0) / 20.0)
    beta = 1.0 / (exp(-(v + 35.0) / 10.0) + 1.0)
    htau = 1.0 / (q10 * (alpha + beta))
    hinf = alpha / (alpha + beta)

    # potassium activation 'n'
    alpha = 0.01 * vtrap(-(v + 55.0), 10.0)
    beta = 0.125 * exp(-(v + 65.0) / 80.0)
    ntau = 1.0 / (q10 * (alpha + beta))
    ninf = alpha / (alpha + beta)

    somaA = h.Section("somaA")
    somaA.pt3dclear()
    somaA.pt3dadd(-90, 0, 0, 30)
    somaA.pt3dadd(-60, 0, 0, 30)
    somaA.nseg = 1  # 11

    # Where?
    # intracellular
    cyt = rxd.Region(h.allsec(), name="cyt", nrn_region="i")

    # membrane
    mem = rxd.Region(h.allsec(), name="cell_mem", geometry=rxd.membrane())

    # extracellular
    ecs = rxd.Extracellular(-100, -100, -100, 100, 100, 100, dx=33)

    # Who?  ions & gates

    # intracellular sodium & potassium
    na = rxd.Species([cyt, mem], name="na", d=1, charge=1, initial=10)
    k = rxd.Species([cyt, mem], name="k", d=1, charge=1, initial=54.4)

    # extracellular parameters provide a constant concentration for the Nernst potential and reactions.
    kecs = rxd.Parameter(ecs, name="k", charge=1, value=2.5)
    naecs = rxd.Parameter(ecs, name="na", charge=1, value=140)

    # an undistinguished charged ion for the leak current
    x = rxd.Species([cyt, mem, ecs], name="x", charge=1)

    # define the various species and parameters on the intracellular and extracellular regions
    ki, ko, nai, nao, xi, xo = k[cyt], kecs[ecs], na[cyt], naecs[ecs], x[cyt], x[ecs]

    # the gating states
    ngate = rxd.State([cyt, mem], name="ngate", initial=0.24458654944007166)
    mgate = rxd.State([cyt, mem], name="mgate", initial=0.028905534475191907)
    hgate = rxd.State([cyt, mem], name="hgate", initial=0.7540796658225246)

    # parameter to limit rxd reaction to somaA
    paramA = rxd.Parameter(
        [cyt, mem], name="paramA", value=lambda nd: 1 if nd.segment in somaA else 0
    )

    # What? gates and currents
    m_gate = rxd.Rate(mgate, (minf - mgate) / mtau)
    h_gate = rxd.Rate(hgate, (hinf - hgate) / htau)
    n_gate = rxd.Rate(ngate, (ninf - ngate) / ntau)

    # Nernst potentials
    ena = 1e3 * h.R * (h.celsius + 273.15) * log(nao / nai) / h.FARADAY
    ek = 1e3 * h.R * (h.celsius + 273.15) * log(ko / ki) / h.FARADAY

    gna = paramA * gnabar * mgate**3 * hgate
    gk = paramA * gkbar * ngate**4

    na_current = rxd.MultiCompartmentReaction(
        nai, nao, gna * (v - ena), mass_action=False, membrane=mem, membrane_flux=True
    )
    k_current = rxd.MultiCompartmentReaction(
        ki, ko, gk * (v - ek), mass_action=False, membrane=mem, membrane_flux=True
    )
    leak_current = rxd.MultiCompartmentReaction(
        xi,
        xo,
        paramA * gl * (v - el),
        mass_action=False,
        membrane=mem,
        membrane_flux=True,
    )

    def save_rxd_extra():
        # only for one segment
        sav_rxd_extra_ = []
        sav_rxd_extra_.append(mgate[cyt].nodes(somaA(0.5)).value)
        sav_rxd_extra_.append(ngate[cyt].nodes(somaA(0.5)).value)
        sav_rxd_extra_.append(hgate[cyt].nodes(somaA(0.5)).value)
        sav_rxd_extra_.append(mgate[mem].nodes(somaA(0.5)).value)
        sav_rxd_extra_.append(ngate[mem].nodes(somaA(0.5)).value)
        sav_rxd_extra_.append(hgate[mem].nodes(somaA(0.5)).value)
        return sav_rxd_extra_

    def restore_rxd_extra(sav_rxd_extra_):
        mgate[cyt].nodes(somaA(0.5)).value = sav_rxd_extra_[0]
        ngate[cyt].nodes(somaA(0.5)).value = sav_rxd_extra_[1]
        hgate[cyt].nodes(somaA(0.5)).value = sav_rxd_extra_[2]
        mgate[mem].nodes(somaA(0.5)).value = sav_rxd_extra_[3]
        ngate[mem].nodes(somaA(0.5)).value = sav_rxd_extra_[4]
        hgate[mem].nodes(somaA(0.5)).value = sav_rxd_extra_[5]
        k[cyt].nodes.value = somaA(0.5).ki
        na[cyt].nodes.value = somaA(0.5).nai

    # return list of current values
    def curval():
        a = [h.t, somaA(0.5).v]
        a.append(mgate[cyt].nodes(somaA(0.5)).value)
        a.append(ngate[cyt].nodes(somaA(0.5)).value)
        a.append(hgate[cyt].nodes(somaA(0.5)).value)
        a.append(somaA(0.5).ik)
        a.append(somaA(0.5).ina)
        return a

    def test_savestate_rxd():
        t1 = 7
        t2 = 10
        # record
        tvec = h.Vector().record(h._ref_t)
        vvecA = h.Vector().record(somaA(0.5)._ref_v)
        mvecA = h.Vector().record(mgate[cyt].nodes(somaA(0.5))._ref_value)
        nvecA = h.Vector().record(ngate[cyt].nodes(somaA(0.5))._ref_value)
        hvecA = h.Vector().record(hgate[cyt].nodes(somaA(0.5))._ref_value)
        kvecA = h.Vector().record(somaA(0.5)._ref_ik)
        navecA = h.Vector().record(somaA(0.5)._ref_ina)

        vecs = [tvec, vvecA, mvecA, nvecA, hvecA, kvecA, navecA]

        # Full run to 100 to get standard results.
        h.finitialize(-70)
        h.continuerun(t2)
        vecs_std = [i.c() for i in vecs]

        # Run to t1, savestate, continue run to t2.
        # compare results to standard results (i.e. savestate should
        # not corrupt the run.)
        h.finitialize(-70)
        h.continuerun(t1)
        sav_val = curval()
        print(sav_val)
        svst, svst_extra = saveSS()
        print(curval())
        h.continuerun(t2)
        for i, vec in enumerate(vecs):
            if not vec.eq(vecs_std[i]):
                print(
                    "vecs[%d] error %g" % (i, vecs[i].c().sub(vecs_std[i]).abs().sum())
                )
        for i, vec in enumerate(vecs):
            assert vec.eq(vecs_std[i])

        # Another run stopping at t1, resizing the record vectors to 0
        # and continuing to t2 to be the standard for a later run that will be
        # savestate restored at t1.
        h.finitialize(-70)
        h.continuerun(t1)
        print(curval())
        for vec in vecs:
            vec.resize(0)
        h.continuerun(t2)
        vecs_std_save = [i.c() for i in vecs]

        # Finally, savestate restore at t1, continue to t2, and
        # compare vecs to vecs_std_save
        h.finitialize(-70)
        print(curval())
        restoreSS(svst, svst_extra)
        print(curval())
        for vec in vecs:
            vec.resize(0)
        h.continuerun(t2)
        for i, vec in enumerate(vecs):
            if not vec.eq(vecs_std_save[i]):
                print(
                    "vecs[%d] error %g"
                    % (i, vecs[i].c().sub(vecs_std_save[i]).abs().sum())
                )
        for i, vec in enumerate(vecs):
            assert vec.eq(vecs_std_save[i])
            pass

        h.topology()
        return vecs, vecs_std_save

    # run the test
    return test_savestate_rxd()


if __name__ == "__main__":
    from neuron import h, rxd

    h.load_file("stdrun.hoc")
    instance = h, rxd, None
    vecs, vecs_std_save = test_savestate_basic(instance)