1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901 12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913 12914 12915 12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975 12976 12977 12978 12979 12980 12981 12982 12983 12984 12985 12986 12987 12988 12989 12990 12991 12992 12993 12994 12995 12996 12997 12998 12999 13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215 13216 13217 13218 13219 13220 13221 13222 13223 13224 13225 13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254 13255 13256 13257 13258 13259 13260 13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322 13323 13324 13325 13326 13327 13328 13329 13330 13331 13332 13333 13334 13335 13336 13337 13338 13339 13340 13341 13342 13343 13344 13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383 13384 13385 13386 13387 13388 13389 13390 13391 13392 13393 13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451 13452 13453 13454 13455 13456 13457 13458 13459 13460 13461 13462 13463 13464 13465 13466 13467 13468 13469 13470 13471 13472 13473 13474 13475 13476 13477 13478 13479 13480 13481 13482 13483 13484 13485 13486 13487 13488 13489 13490 13491 13492 13493 13494 13495 13496 13497 13498 13499 13500 13501 13502 13503 13504 13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516 13517 13518 13519 13520 13521 13522 13523 13524 13525 13526 13527 13528 13529 13530 13531 13532 13533 13534 13535 13536 13537 13538 13539 13540 13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553 13554 13555 13556 13557 13558 13559 13560 13561 13562 13563 13564 13565 13566 13567 13568 13569 13570 13571 13572 13573 13574 13575 13576 13577 13578 13579 13580 13581 13582 13583 13584 13585 13586 13587 13588 13589 13590 13591 13592 13593 13594 13595 13596 13597 13598 13599 13600 13601 13602 13603 13604 13605 13606 13607 13608 13609 13610 13611 13612 13613 13614 13615 13616 13617 13618 13619 13620 13621 13622 13623 13624 13625 13626 13627 13628 13629 13630 13631 13632 13633 13634 13635 13636 13637 13638 13639 13640 13641 13642 13643 13644 13645 13646 13647 13648 13649 13650 13651 13652 13653 13654 13655 13656 13657 13658 13659 13660 13661 13662 13663 13664 13665 13666 13667 13668 13669 13670 13671 13672 13673 13674 13675 13676 13677 13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691 13692 13693 13694 13695 13696 13697 13698 13699 13700 13701 13702 13703 13704 13705 13706 13707 13708 13709 13710 13711 13712 13713 13714 13715 13716 13717 13718 13719 13720 13721 13722 13723 13724 13725 13726 13727 13728 13729 13730 13731 13732 13733 13734 13735 13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746 13747 13748 13749 13750 13751 13752 13753 13754 13755 13756 13757 13758 13759 13760 13761 13762 13763 13764 13765 13766 13767 13768 13769 13770 13771 13772 13773 13774 13775 13776 13777 13778 13779 13780 13781 13782 13783 13784 13785 13786 13787 13788 13789 13790 13791 13792 13793 13794 13795 13796 13797 13798 13799 13800 13801 13802 13803 13804 13805 13806 13807 13808 13809 13810 13811 13812 13813 13814 13815 13816 13817 13818 13819 13820 13821 13822 13823 13824 13825 13826 13827 13828 13829 13830 13831 13832 13833 13834 13835 13836 13837 13838 13839 13840 13841 13842 13843 13844 13845 13846 13847 13848 13849 13850 13851 13852 13853 13854 13855 13856 13857 13858 13859 13860 13861 13862 13863 13864 13865 13866 13867 13868 13869 13870 13871 13872 13873 13874 13875 13876 13877 13878 13879 13880 13881 13882 13883 13884 13885 13886 13887 13888 13889 13890 13891 13892 13893 13894 13895 13896 13897 13898 13899 13900 13901 13902 13903 13904 13905 13906 13907 13908 13909 13910 13911 13912 13913 13914 13915 13916 13917 13918 13919 13920 13921 13922 13923 13924 13925 13926 13927 13928 13929 13930 13931 13932 13933 13934 13935 13936 13937 13938 13939 13940 13941 13942 13943 13944 13945 13946 13947 13948 13949 13950 13951 13952 13953 13954 13955 13956 13957 13958 13959 13960 13961 13962 13963 13964 13965 13966 13967 13968 13969 13970 13971 13972 13973 13974 13975 13976 13977 13978 13979 13980 13981 13982 13983 13984 13985 13986 13987 13988 13989 13990 13991 13992 13993 13994 13995 13996 13997 13998 13999 14000 14001 14002 14003 14004 14005 14006 14007 14008 14009 14010 14011 14012 14013 14014 14015 14016 14017 14018 14019 14020 14021 14022 14023 14024 14025 14026 14027 14028 14029 14030 14031 14032 14033 14034 14035 14036 14037 14038 14039 14040 14041 14042 14043 14044 14045 14046 14047 14048 14049 14050 14051 14052 14053 14054 14055 14056 14057 14058 14059 14060 14061 14062 14063 14064 14065 14066 14067 14068 14069 14070 14071 14072 14073 14074 14075 14076 14077 14078 14079 14080 14081 14082 14083 14084 14085 14086 14087 14088 14089 14090 14091 14092 14093 14094 14095 14096 14097 14098 14099 14100 14101 14102 14103 14104 14105 14106 14107 14108 14109 14110 14111 14112 14113 14114 14115 14116 14117 14118 14119 14120 14121 14122 14123 14124 14125 14126 14127 14128 14129 14130 14131 14132 14133 14134 14135 14136 14137 14138 14139 14140 14141 14142 14143 14144 14145 14146 14147 14148 14149 14150 14151 14152 14153 14154 14155 14156 14157 14158 14159 14160 14161 14162 14163 14164 14165 14166 14167 14168 14169 14170 14171 14172 14173 14174 14175 14176 14177 14178 14179 14180 14181 14182 14183 14184 14185 14186 14187 14188 14189 14190 14191 14192 14193 14194 14195 14196 14197 14198 14199 14200 14201 14202 14203 14204 14205 14206 14207 14208 14209 14210 14211 14212 14213 14214 14215 14216 14217 14218 14219 14220 14221 14222 14223 14224 14225 14226 14227 14228 14229 14230 14231 14232 14233 14234 14235 14236 14237 14238 14239 14240 14241 14242 14243 14244 14245 14246 14247 14248 14249 14250 14251 14252 14253 14254 14255 14256 14257 14258 14259 14260 14261 14262 14263 14264 14265 14266 14267 14268 14269 14270 14271 14272 14273 14274 14275 14276 14277 14278 14279 14280 14281 14282 14283 14284 14285 14286 14287 14288 14289 14290 14291 14292 14293 14294 14295 14296 14297 14298 14299 14300 14301 14302 14303 14304 14305 14306 14307 14308 14309 14310 14311 14312 14313 14314 14315 14316 14317 14318 14319 14320 14321 14322 14323 14324 14325 14326 14327 14328 14329 14330 14331 14332 14333 14334 14335 14336 14337 14338 14339 14340 14341 14342 14343 14344 14345 14346 14347 14348 14349 14350 14351 14352 14353 14354 14355 14356 14357 14358 14359 14360 14361 14362 14363 14364 14365 14366 14367 14368 14369 14370 14371 14372 14373 14374 14375 14376 14377 14378 14379 14380 14381 14382 14383 14384 14385 14386 14387 14388 14389 14390 14391 14392 14393 14394 14395 14396 14397 14398 14399 14400 14401 14402 14403 14404 14405 14406 14407 14408 14409 14410 14411 14412 14413 14414 14415 14416 14417 14418 14419 14420 14421 14422 14423 14424 14425 14426 14427 14428 14429 14430 14431 14432 14433 14434 14435 14436 14437 14438 14439 14440 14441 14442 14443 14444 14445 14446 14447 14448 14449 14450 14451 14452 14453 14454 14455 14456 14457 14458 14459 14460 14461 14462 14463 14464 14465 14466 14467 14468 14469 14470 14471 14472 14473 14474 14475 14476 14477 14478 14479 14480 14481 14482 14483 14484 14485 14486 14487 14488 14489 14490 14491 14492 14493 14494 14495 14496 14497 14498 14499 14500 14501 14502 14503 14504 14505 14506 14507 14508 14509 14510 14511 14512 14513 14514 14515 14516 14517 14518 14519 14520 14521 14522 14523 14524 14525 14526 14527 14528 14529 14530 14531 14532 14533 14534 14535 14536 14537 14538 14539 14540 14541 14542 14543 14544 14545 14546 14547 14548 14549 14550 14551 14552 14553 14554 14555 14556 14557 14558 14559 14560 14561 14562 14563 14564 14565 14566 14567 14568 14569 14570 14571 14572 14573 14574 14575 14576 14577 14578 14579 14580 14581 14582 14583 14584 14585 14586 14587 14588 14589 14590 14591 14592 14593 14594 14595 14596 14597 14598 14599 14600 14601 14602 14603 14604 14605 14606 14607 14608 14609 14610 14611 14612 14613 14614 14615 14616 14617 14618 14619 14620 14621 14622 14623 14624 14625 14626 14627 14628 14629 14630 14631 14632 14633 14634 14635 14636 14637 14638 14639 14640 14641 14642 14643 14644 14645 14646 14647 14648 14649 14650 14651 14652 14653 14654 14655 14656 14657 14658 14659 14660 14661 14662 14663 14664 14665 14666 14667 14668 14669 14670 14671 14672 14673 14674 14675 14676 14677 14678 14679 14680 14681 14682 14683 14684 14685 14686 14687 14688 14689 14690 14691 14692 14693 14694 14695 14696 14697 14698 14699 14700 14701 14702 14703 14704 14705 14706 14707 14708 14709 14710 14711 14712 14713 14714 14715 14716 14717 14718 14719 14720 14721 14722 14723 14724 14725 14726 14727 14728 14729 14730 14731 14732 14733 14734 14735 14736 14737 14738 14739 14740 14741 14742 14743 14744 14745 14746 14747 14748 14749 14750 14751 14752 14753 14754 14755 14756 14757 14758 14759 14760 14761 14762 14763 14764 14765 14766 14767 14768 14769 14770 14771 14772 14773 14774 14775 14776 14777 14778 14779 14780 14781 14782 14783 14784 14785 14786 14787 14788 14789 14790 14791 14792 14793 14794 14795 14796 14797 14798 14799 14800 14801 14802 14803 14804 14805 14806 14807 14808 14809 14810 14811 14812 14813 14814 14815 14816 14817 14818 14819 14820 14821 14822 14823 14824 14825 14826 14827 14828 14829 14830 14831 14832 14833 14834 14835 14836 14837 14838 14839 14840 14841 14842 14843 14844 14845 14846 14847 14848 14849 14850 14851 14852 14853 14854 14855 14856 14857 14858 14859 14860 14861 14862 14863 14864 14865 14866 14867 14868 14869 14870 14871 14872 14873 14874 14875 14876 14877 14878 14879 14880 14881 14882 14883 14884 14885 14886 14887 14888 14889 14890 14891 14892 14893 14894 14895 14896 14897 14898 14899 14900 14901 14902 14903 14904 14905 14906 14907 14908 14909 14910 14911 14912 14913 14914 14915 14916 14917 14918 14919 14920 14921 14922 14923 14924 14925 14926 14927 14928 14929 14930 14931 14932 14933 14934 14935 14936 14937 14938 14939 14940 14941 14942 14943 14944 14945 14946 14947 14948 14949 14950 14951 14952 14953 14954 14955 14956 14957 14958 14959 14960 14961 14962 14963 14964 14965 14966 14967 14968 14969 14970 14971 14972 14973 14974 14975 14976 14977 14978 14979 14980 14981 14982 14983 14984 14985 14986 14987 14988 14989 14990 14991 14992 14993 14994 14995 14996 14997 14998 14999 15000 15001 15002 15003 15004 15005 15006 15007 15008 15009 15010 15011 15012 15013 15014 15015 15016 15017 15018 15019 15020 15021 15022 15023 15024 15025 15026 15027 15028 15029 15030 15031 15032 15033 15034 15035 15036 15037 15038 15039 15040 15041 15042 15043 15044 15045 15046 15047 15048 15049 15050 15051 15052 15053 15054 15055 15056 15057 15058 15059 15060 15061 15062 15063 15064 15065 15066 15067 15068 15069 15070 15071 15072 15073 15074 15075 15076 15077 15078 15079 15080 15081 15082 15083 15084 15085 15086 15087 15088 15089 15090 15091 15092 15093 15094 15095 15096 15097 15098 15099 15100 15101 15102 15103 15104 15105 15106 15107 15108 15109 15110 15111 15112 15113 15114 15115 15116 15117 15118 15119 15120 15121 15122 15123 15124 15125 15126 15127 15128 15129 15130 15131 15132 15133 15134 15135 15136 15137 15138 15139 15140 15141 15142 15143 15144 15145 15146 15147 15148 15149 15150 15151 15152 15153 15154 15155 15156 15157 15158 15159 15160 15161 15162 15163 15164 15165 15166 15167 15168 15169 15170 15171 15172 15173 15174 15175 15176 15177 15178 15179 15180 15181 15182 15183 15184 15185 15186 15187 15188 15189 15190 15191 15192 15193 15194 15195 15196 15197 15198 15199 15200 15201 15202 15203 15204 15205 15206 15207 15208 15209 15210 15211 15212 15213 15214 15215 15216 15217 15218 15219 15220 15221 15222 15223 15224 15225 15226 15227 15228 15229 15230 15231 15232 15233 15234 15235 15236 15237 15238 15239 15240 15241 15242 15243 15244 15245 15246 15247 15248 15249 15250 15251 15252 15253 15254 15255 15256 15257 15258 15259 15260 15261 15262 15263 15264 15265 15266 15267 15268 15269 15270 15271 15272 15273 15274 15275 15276 15277 15278 15279 15280 15281 15282 15283 15284 15285 15286 15287 15288 15289 15290 15291 15292 15293 15294 15295 15296 15297 15298 15299 15300 15301 15302 15303 15304 15305 15306 15307 15308 15309 15310 15311 15312 15313 15314 15315 15316 15317 15318 15319 15320 15321 15322 15323 15324 15325 15326 15327 15328 15329 15330 15331 15332 15333 15334 15335 15336 15337 15338 15339 15340 15341 15342 15343 15344 15345 15346 15347 15348 15349 15350 15351 15352 15353 15354 15355 15356 15357 15358 15359 15360 15361 15362 15363 15364 15365 15366 15367 15368 15369 15370 15371 15372 15373 15374 15375 15376 15377 15378 15379 15380 15381 15382 15383 15384 15385 15386 15387 15388 15389 15390 15391 15392 15393 15394 15395 15396 15397 15398 15399 15400 15401 15402 15403 15404 15405 15406 15407 15408 15409 15410 15411 15412 15413 15414 15415 15416 15417 15418 15419 15420 15421 15422 15423 15424 15425 15426 15427 15428 15429 15430 15431 15432 15433 15434 15435 15436 15437 15438 15439 15440 15441 15442 15443 15444 15445 15446 15447 15448 15449 15450 15451 15452 15453 15454 15455 15456 15457 15458 15459 15460 15461 15462 15463 15464 15465 15466 15467 15468 15469 15470 15471 15472 15473 15474 15475 15476 15477 15478 15479 15480 15481 15482 15483 15484 15485 15486 15487 15488 15489 15490 15491 15492 15493 15494 15495 15496 15497 15498 15499 15500 15501 15502 15503 15504 15505 15506 15507 15508 15509 15510 15511 15512 15513 15514 15515 15516 15517 15518 15519 15520 15521 15522 15523 15524 15525 15526 15527 15528 15529 15530 15531 15532 15533 15534 15535 15536 15537 15538 15539 15540 15541 15542 15543 15544 15545 15546 15547 15548 15549 15550 15551 15552 15553 15554 15555 15556 15557 15558 15559 15560 15561 15562 15563 15564 15565 15566 15567 15568 15569 15570 15571 15572 15573 15574 15575 15576 15577 15578 15579 15580 15581 15582 15583 15584 15585 15586 15587 15588 15589 15590 15591 15592 15593 15594 15595 15596 15597 15598 15599 15600 15601 15602 15603 15604 15605 15606 15607 15608 15609 15610 15611 15612 15613 15614 15615 15616 15617 15618 15619 15620 15621 15622 15623 15624 15625 15626 15627 15628 15629 15630 15631 15632 15633 15634 15635 15636 15637 15638 15639 15640 15641 15642 15643 15644 15645 15646 15647 15648 15649 15650 15651 15652 15653 15654 15655 15656 15657 15658 15659 15660 15661 15662 15663 15664 15665 15666 15667 15668 15669 15670 15671 15672 15673 15674 15675 15676 15677 15678 15679 15680 15681 15682 15683 15684 15685 15686 15687 15688 15689 15690 15691 15692 15693 15694 15695 15696 15697 15698 15699 15700 15701 15702 15703 15704 15705 15706 15707 15708 15709 15710 15711 15712 15713 15714 15715 15716 15717 15718 15719 15720 15721 15722 15723 15724 15725 15726 15727 15728 15729 15730 15731 15732 15733 15734 15735 15736 15737 15738 15739 15740 15741 15742 15743 15744 15745 15746 15747 15748 15749 15750 15751 15752 15753 15754 15755 15756 15757 15758 15759 15760 15761 15762 15763 15764 15765 15766 15767 15768 15769 15770 15771 15772 15773 15774 15775 15776 15777 15778 15779 15780 15781 15782 15783 15784 15785 15786 15787 15788 15789 15790 15791 15792 15793 15794 15795 15796 15797 15798 15799 15800 15801 15802 15803 15804 15805 15806 15807 15808 15809 15810 15811 15812 15813 15814 15815 15816 15817 15818 15819 15820 15821 15822 15823 15824 15825 15826 15827 15828 15829 15830 15831 15832 15833 15834 15835 15836 15837 15838 15839 15840 15841 15842 15843 15844 15845 15846 15847 15848 15849 15850 15851 15852 15853 15854 15855 15856 15857 15858 15859 15860 15861 15862 15863 15864 15865 15866 15867 15868 15869 15870 15871 15872 15873 15874 15875 15876 15877 15878 15879 15880 15881 15882 15883 15884 15885 15886 15887 15888 15889 15890 15891 15892 15893 15894 15895 15896 15897 15898 15899 15900 15901 15902 15903 15904 15905 15906 15907 15908 15909 15910 15911 15912 15913 15914 15915 15916 15917 15918 15919 15920 15921 15922 15923 15924 15925 15926 15927 15928 15929 15930 15931 15932 15933 15934 15935 15936 15937 15938 15939 15940 15941 15942 15943 15944 15945 15946 15947 15948 15949 15950 15951 15952 15953 15954 15955 15956 15957 15958 15959 15960 15961 15962 15963 15964 15965 15966 15967 15968 15969 15970 15971 15972 15973 15974 15975 15976 15977 15978 15979 15980 15981 15982 15983 15984 15985 15986 15987 15988 15989 15990 15991 15992 15993 15994 15995 15996 15997 15998 15999 16000 16001 16002 16003 16004 16005 16006 16007 16008 16009 16010 16011 16012 16013 16014 16015 16016 16017 16018 16019 16020 16021 16022 16023 16024 16025 16026 16027 16028 16029 16030 16031 16032 16033 16034 16035 16036 16037 16038 16039 16040 16041 16042 16043 16044 16045 16046 16047 16048 16049 16050 16051 16052 16053 16054 16055 16056 16057 16058 16059 16060 16061 16062 16063 16064 16065 16066 16067 16068 16069 16070 16071 16072 16073 16074 16075 16076 16077 16078 16079 16080 16081 16082 16083 16084 16085 16086 16087 16088 16089 16090 16091 16092 16093 16094 16095 16096 16097 16098 16099 16100 16101 16102 16103 16104 16105 16106 16107 16108 16109 16110 16111 16112 16113 16114 16115 16116 16117 16118 16119 16120 16121 16122 16123 16124 16125 16126 16127 16128 16129 16130 16131 16132 16133 16134 16135 16136 16137 16138 16139 16140 16141 16142 16143 16144 16145 16146 16147 16148 16149 16150 16151 16152 16153 16154 16155 16156 16157 16158 16159 16160 16161 16162 16163 16164 16165 16166 16167 16168 16169 16170 16171 16172 16173 16174 16175 16176 16177 16178 16179 16180 16181 16182 16183 16184 16185 16186 16187 16188 16189 16190 16191 16192 16193 16194 16195 16196 16197 16198 16199 16200 16201 16202 16203 16204 16205 16206 16207 16208 16209 16210 16211 16212 16213 16214 16215 16216 16217 16218 16219 16220 16221 16222 16223 16224 16225 16226 16227 16228 16229 16230 16231 16232 16233 16234 16235 16236 16237 16238 16239 16240 16241 16242 16243 16244 16245 16246 16247 16248 16249 16250 16251 16252 16253 16254 16255 16256 16257 16258 16259 16260 16261 16262 16263 16264 16265 16266 16267 16268 16269 16270 16271 16272 16273 16274 16275 16276 16277 16278 16279 16280 16281 16282 16283 16284 16285 16286 16287 16288 16289 16290 16291 16292 16293 16294 16295 16296 16297 16298 16299 16300 16301 16302 16303 16304 16305 16306 16307 16308 16309 16310 16311 16312 16313 16314 16315 16316 16317 16318 16319 16320 16321 16322 16323 16324 16325 16326 16327 16328 16329 16330 16331 16332 16333 16334 16335 16336 16337 16338 16339 16340 16341 16342 16343 16344 16345 16346 16347 16348 16349 16350 16351 16352 16353 16354 16355 16356 16357 16358 16359 16360 16361 16362 16363 16364 16365 16366 16367 16368 16369 16370 16371 16372 16373 16374 16375 16376 16377 16378 16379 16380 16381 16382 16383 16384 16385 16386 16387 16388 16389 16390 16391 16392 16393 16394 16395 16396 16397 16398 16399 16400 16401 16402 16403 16404 16405 16406 16407 16408 16409 16410 16411 16412 16413 16414 16415 16416 16417 16418 16419 16420 16421 16422 16423 16424 16425 16426 16427 16428 16429 16430 16431 16432 16433 16434 16435 16436 16437 16438 16439 16440 16441 16442 16443 16444 16445 16446 16447 16448 16449 16450 16451 16452 16453 16454 16455 16456 16457 16458 16459 16460 16461 16462 16463 16464 16465 16466 16467 16468 16469 16470 16471 16472 16473 16474 16475 16476 16477 16478 16479 16480 16481 16482 16483 16484 16485 16486 16487 16488 16489 16490 16491 16492 16493 16494 16495 16496 16497 16498 16499 16500 16501 16502 16503 16504 16505 16506 16507 16508 16509 16510 16511 16512 16513 16514 16515 16516 16517 16518 16519 16520 16521 16522 16523 16524 16525 16526 16527 16528 16529 16530 16531 16532 16533 16534 16535 16536 16537 16538 16539 16540 16541 16542 16543 16544 16545 16546 16547 16548 16549 16550 16551 16552 16553 16554 16555 16556 16557 16558 16559 16560 16561 16562 16563 16564 16565 16566 16567 16568 16569 16570 16571 16572 16573 16574 16575 16576 16577 16578 16579 16580 16581 16582 16583 16584 16585 16586 16587 16588 16589 16590 16591 16592 16593 16594 16595 16596 16597 16598 16599 16600 16601 16602 16603 16604 16605 16606 16607 16608 16609 16610 16611 16612 16613 16614 16615 16616 16617 16618 16619 16620 16621 16622 16623 16624 16625 16626 16627 16628 16629 16630 16631 16632 16633 16634 16635 16636 16637 16638 16639 16640 16641 16642 16643 16644 16645 16646 16647 16648 16649 16650 16651 16652 16653 16654 16655 16656 16657 16658 16659 16660 16661 16662 16663 16664 16665 16666 16667 16668 16669 16670 16671 16672 16673 16674 16675 16676 16677 16678 16679 16680 16681 16682 16683 16684 16685 16686 16687 16688 16689 16690 16691 16692 16693 16694 16695 16696 16697 16698 16699 16700 16701 16702 16703 16704 16705 16706 16707 16708 16709 16710 16711 16712 16713 16714 16715 16716 16717 16718 16719 16720 16721 16722 16723 16724 16725 16726 16727 16728 16729 16730 16731 16732 16733 16734 16735 16736 16737 16738 16739 16740 16741 16742 16743 16744 16745 16746 16747 16748 16749 16750 16751 16752 16753 16754 16755 16756 16757 16758 16759 16760 16761 16762 16763 16764 16765 16766 16767 16768 16769 16770 16771 16772 16773 16774 16775 16776 16777 16778 16779 16780 16781 16782 16783 16784 16785 16786 16787 16788 16789 16790 16791 16792 16793 16794 16795 16796 16797 16798 16799 16800 16801 16802 16803 16804 16805 16806 16807 16808 16809 16810 16811 16812 16813 16814 16815 16816 16817 16818 16819 16820 16821 16822 16823 16824 16825 16826 16827 16828 16829 16830 16831 16832 16833 16834 16835 16836 16837 16838 16839 16840 16841 16842 16843 16844 16845 16846 16847 16848 16849 16850 16851 16852 16853 16854 16855 16856 16857 16858 16859 16860 16861 16862 16863 16864 16865 16866 16867 16868 16869 16870 16871 16872 16873 16874 16875 16876 16877 16878 16879 16880 16881 16882 16883 16884 16885 16886 16887 16888 16889 16890 16891 16892 16893 16894 16895 16896 16897 16898 16899 16900 16901 16902 16903 16904 16905 16906 16907 16908 16909 16910 16911 16912 16913 16914 16915 16916 16917 16918 16919 16920 16921 16922 16923 16924 16925 16926 16927 16928 16929 16930 16931 16932 16933 16934 16935 16936 16937 16938 16939 16940 16941 16942 16943 16944 16945 16946 16947 16948 16949 16950 16951 16952 16953 16954 16955 16956 16957 16958 16959 16960 16961 16962 16963 16964 16965 16966 16967 16968 16969 16970 16971 16972 16973 16974 16975 16976 16977 16978 16979 16980 16981 16982 16983 16984 16985 16986 16987 16988 16989 16990 16991 16992 16993 16994 16995 16996 16997 16998 16999 17000 17001 17002 17003 17004 17005 17006 17007 17008 17009 17010 17011 17012 17013 17014 17015 17016 17017 17018 17019 17020 17021 17022 17023 17024 17025 17026 17027 17028 17029 17030 17031 17032 17033 17034 17035 17036 17037 17038 17039 17040 17041 17042 17043 17044 17045 17046 17047 17048 17049 17050 17051 17052 17053 17054 17055 17056 17057 17058 17059 17060 17061 17062 17063 17064 17065 17066 17067 17068 17069 17070 17071 17072 17073 17074 17075 17076 17077 17078 17079 17080 17081 17082 17083 17084 17085 17086 17087 17088 17089 17090 17091 17092 17093 17094 17095 17096 17097 17098 17099 17100 17101 17102 17103 17104 17105 17106 17107 17108 17109 17110 17111 17112 17113 17114 17115 17116 17117 17118 17119 17120 17121 17122 17123 17124 17125 17126 17127 17128 17129 17130 17131 17132 17133 17134 17135 17136 17137 17138 17139 17140 17141 17142 17143 17144 17145 17146 17147 17148 17149 17150 17151 17152 17153 17154 17155 17156 17157 17158 17159 17160 17161 17162 17163 17164 17165 17166 17167 17168 17169 17170 17171 17172 17173 17174 17175 17176 17177 17178 17179 17180 17181 17182 17183 17184 17185 17186 17187 17188 17189 17190 17191 17192 17193 17194 17195 17196 17197 17198 17199 17200 17201 17202 17203 17204 17205 17206 17207 17208 17209 17210 17211 17212 17213 17214 17215 17216 17217 17218 17219 17220 17221 17222 17223 17224 17225 17226 17227 17228 17229 17230 17231 17232 17233 17234 17235 17236 17237 17238 17239 17240 17241 17242 17243 17244 17245 17246 17247 17248 17249 17250 17251 17252 17253 17254 17255 17256 17257 17258 17259 17260 17261 17262 17263 17264 17265 17266 17267 17268 17269 17270 17271 17272 17273 17274 17275 17276 17277 17278 17279 17280 17281 17282 17283 17284 17285 17286 17287 17288 17289 17290 17291 17292 17293 17294 17295 17296 17297 17298 17299 17300 17301 17302 17303 17304 17305 17306 17307 17308 17309 17310 17311 17312 17313 17314 17315 17316 17317 17318 17319 17320 17321 17322 17323 17324 17325 17326 17327 17328 17329 17330 17331 17332 17333 17334 17335 17336 17337 17338 17339 17340 17341 17342 17343 17344 17345 17346 17347 17348 17349 17350 17351 17352 17353 17354 17355 17356 17357 17358 17359 17360 17361 17362 17363 17364 17365 17366 17367 17368 17369 17370 17371 17372 17373 17374 17375 17376 17377 17378 17379 17380 17381 17382 17383 17384 17385 17386 17387 17388 17389 17390 17391 17392 17393 17394 17395 17396 17397 17398 17399 17400 17401 17402 17403 17404 17405 17406 17407 17408 17409 17410 17411 17412 17413 17414 17415 17416 17417 17418 17419 17420 17421 17422 17423 17424 17425 17426 17427 17428 17429 17430 17431 17432 17433 17434 17435 17436 17437 17438 17439 17440 17441 17442 17443 17444 17445 17446 17447 17448 17449 17450 17451 17452 17453 17454 17455 17456 17457 17458 17459 17460 17461 17462 17463 17464 17465 17466 17467 17468 17469 17470 17471 17472 17473 17474 17475 17476 17477 17478 17479 17480 17481 17482 17483 17484 17485 17486 17487 17488 17489 17490 17491 17492 17493 17494 17495 17496 17497 17498 17499 17500 17501 17502 17503 17504 17505 17506 17507 17508 17509 17510 17511 17512 17513 17514 17515 17516 17517 17518 17519 17520 17521 17522 17523 17524 17525 17526 17527 17528 17529 17530 17531 17532 17533 17534 17535 17536 17537 17538 17539 17540 17541 17542 17543 17544 17545 17546 17547 17548 17549 17550 17551 17552 17553 17554 17555 17556 17557 17558 17559 17560 17561 17562 17563 17564 17565 17566 17567 17568 17569 17570 17571 17572 17573 17574 17575 17576 17577 17578 17579 17580 17581 17582 17583 17584 17585 17586 17587 17588 17589 17590 17591 17592 17593 17594 17595 17596 17597 17598 17599 17600 17601 17602 17603 17604 17605 17606 17607 17608 17609 17610 17611 17612 17613 17614 17615 17616 17617 17618 17619 17620 17621 17622 17623 17624 17625 17626 17627 17628 17629 17630 17631 17632 17633 17634 17635 17636 17637 17638 17639 17640 17641 17642 17643 17644 17645 17646 17647 17648 17649 17650 17651 17652 17653 17654 17655 17656 17657 17658 17659 17660 17661 17662 17663 17664 17665 17666 17667 17668 17669 17670 17671 17672 17673 17674 17675 17676 17677 17678 17679 17680 17681 17682 17683 17684 17685 17686 17687 17688 17689 17690 17691 17692 17693 17694 17695 17696 17697 17698 17699 17700 17701 17702 17703 17704 17705 17706 17707 17708 17709 17710 17711 17712 17713 17714 17715 17716 17717 17718 17719 17720 17721 17722 17723 17724 17725 17726 17727 17728 17729 17730 17731 17732 17733 17734 17735 17736 17737 17738 17739 17740 17741 17742 17743 17744 17745 17746 17747 17748 17749 17750 17751 17752 17753 17754 17755 17756 17757 17758 17759 17760 17761 17762 17763 17764 17765 17766 17767 17768 17769 17770 17771 17772 17773 17774 17775 17776 17777 17778 17779 17780 17781 17782 17783 17784 17785 17786 17787 17788 17789 17790 17791 17792 17793 17794 17795 17796 17797 17798 17799 17800 17801 17802 17803 17804 17805 17806 17807 17808 17809 17810 17811 17812 17813 17814 17815 17816 17817 17818 17819 17820 17821 17822 17823 17824 17825 17826 17827 17828 17829 17830 17831 17832 17833 17834 17835 17836 17837 17838 17839 17840 17841 17842 17843 17844 17845 17846 17847 17848 17849 17850 17851 17852 17853 17854 17855 17856 17857 17858 17859 17860 17861 17862 17863 17864 17865 17866 17867 17868 17869 17870 17871 17872 17873 17874 17875 17876 17877 17878 17879 17880 17881 17882 17883 17884 17885 17886 17887 17888 17889 17890 17891 17892 17893 17894 17895 17896 17897 17898 17899 17900 17901 17902 17903 17904 17905 17906 17907 17908 17909 17910 17911 17912 17913 17914 17915 17916 17917 17918 17919 17920 17921 17922 17923 17924 17925 17926 17927 17928 17929 17930 17931 17932 17933 17934 17935 17936 17937 17938 17939 17940 17941 17942 17943 17944 17945 17946 17947 17948 17949 17950 17951 17952 17953 17954 17955 17956 17957 17958 17959 17960 17961 17962 17963 17964 17965 17966 17967 17968 17969 17970 17971 17972 17973 17974 17975 17976 17977 17978 17979 17980 17981 17982 17983 17984 17985 17986 17987 17988 17989 17990 17991 17992 17993 17994 17995 17996 17997 17998 17999 18000 18001 18002 18003 18004 18005 18006 18007 18008 18009 18010 18011 18012 18013 18014 18015 18016 18017 18018 18019 18020 18021 18022 18023 18024 18025 18026 18027 18028 18029 18030 18031 18032 18033 18034 18035 18036 18037 18038 18039 18040 18041 18042 18043 18044 18045 18046 18047 18048 18049 18050 18051 18052 18053 18054 18055 18056 18057 18058 18059 18060 18061 18062 18063 18064 18065 18066 18067 18068 18069 18070 18071 18072 18073 18074 18075 18076 18077 18078 18079 18080 18081 18082 18083 18084 18085 18086 18087 18088 18089 18090 18091 18092 18093 18094 18095 18096 18097 18098 18099 18100 18101 18102 18103 18104 18105 18106 18107 18108 18109 18110 18111 18112 18113 18114 18115 18116 18117 18118 18119 18120 18121 18122 18123 18124 18125 18126 18127 18128 18129 18130 18131 18132 18133 18134 18135 18136 18137 18138 18139 18140 18141 18142 18143 18144 18145 18146 18147 18148 18149 18150 18151 18152 18153 18154 18155 18156 18157 18158 18159 18160 18161 18162 18163 18164 18165 18166 18167 18168 18169 18170 18171 18172 18173 18174 18175 18176 18177 18178 18179 18180 18181 18182 18183 18184 18185 18186 18187 18188 18189 18190 18191 18192 18193 18194 18195 18196 18197 18198 18199 18200 18201 18202 18203 18204 18205 18206 18207 18208 18209 18210 18211 18212 18213 18214 18215 18216 18217 18218 18219 18220 18221 18222 18223 18224 18225 18226 18227 18228 18229 18230 18231 18232 18233 18234 18235 18236 18237 18238 18239 18240 18241 18242 18243 18244 18245 18246 18247 18248 18249 18250 18251 18252 18253 18254 18255 18256 18257 18258 18259 18260 18261 18262 18263 18264 18265 18266 18267 18268 18269 18270 18271 18272 18273 18274 18275 18276 18277 18278 18279 18280 18281 18282 18283 18284 18285 18286 18287 18288 18289 18290 18291 18292 18293 18294 18295 18296 18297 18298 18299 18300 18301 18302 18303 18304 18305 18306 18307 18308 18309 18310 18311 18312 18313 18314 18315 18316 18317 18318 18319 18320 18321 18322 18323 18324 18325 18326 18327 18328 18329 18330 18331 18332 18333 18334 18335 18336 18337 18338 18339 18340 18341 18342 18343 18344 18345 18346 18347 18348 18349 18350 18351 18352 18353 18354 18355 18356 18357 18358 18359 18360 18361 18362 18363 18364 18365 18366 18367 18368 18369 18370 18371 18372 18373 18374 18375 18376 18377 18378 18379 18380 18381 18382 18383 18384 18385 18386 18387 18388 18389 18390 18391 18392 18393 18394 18395 18396 18397 18398 18399 18400 18401 18402 18403 18404 18405 18406 18407 18408 18409 18410 18411 18412 18413 18414 18415 18416 18417 18418 18419 18420 18421 18422 18423 18424 18425 18426 18427 18428 18429 18430 18431 18432 18433 18434 18435 18436 18437 18438 18439 18440 18441 18442 18443 18444 18445 18446 18447 18448 18449 18450 18451 18452 18453 18454 18455 18456 18457 18458 18459 18460 18461 18462 18463 18464 18465 18466 18467 18468 18469 18470 18471 18472 18473 18474 18475 18476 18477 18478 18479 18480 18481 18482 18483 18484 18485 18486 18487 18488 18489 18490 18491 18492 18493 18494 18495 18496 18497 18498 18499 18500 18501 18502 18503 18504 18505 18506 18507 18508 18509 18510 18511 18512 18513 18514 18515 18516 18517 18518 18519 18520 18521 18522 18523 18524 18525 18526 18527 18528 18529 18530 18531 18532 18533 18534 18535 18536 18537 18538 18539 18540 18541 18542 18543 18544 18545 18546 18547 18548 18549 18550 18551 18552 18553 18554 18555 18556 18557 18558 18559 18560 18561 18562 18563 18564 18565 18566 18567 18568 18569 18570 18571 18572 18573 18574 18575 18576 18577 18578 18579 18580 18581 18582 18583 18584 18585 18586 18587 18588 18589 18590 18591 18592 18593 18594 18595 18596 18597 18598 18599 18600 18601 18602 18603 18604 18605 18606 18607 18608 18609 18610 18611 18612 18613 18614 18615 18616 18617 18618 18619 18620 18621 18622 18623 18624 18625 18626 18627 18628 18629 18630 18631 18632 18633 18634 18635 18636 18637 18638 18639 18640 18641 18642 18643 18644 18645 18646 18647 18648 18649 18650 18651 18652 18653 18654 18655 18656 18657 18658 18659 18660 18661 18662 18663 18664 18665 18666 18667 18668 18669 18670 18671 18672 18673 18674 18675 18676 18677 18678 18679 18680 18681 18682 18683 18684 18685 18686 18687 18688 18689 18690 18691 18692 18693 18694 18695 18696 18697 18698 18699 18700 18701 18702 18703 18704 18705 18706 18707 18708 18709 18710 18711 18712 18713 18714 18715 18716 18717 18718 18719 18720 18721 18722 18723 18724 18725 18726 18727 18728 18729 18730 18731 18732 18733 18734 18735 18736 18737 18738 18739 18740 18741 18742 18743 18744 18745 18746 18747 18748 18749 18750 18751 18752 18753 18754 18755 18756 18757 18758 18759 18760 18761 18762 18763 18764 18765 18766 18767 18768 18769 18770 18771 18772 18773 18774 18775 18776 18777 18778 18779 18780 18781 18782 18783 18784 18785 18786 18787 18788 18789 18790 18791 18792 18793 18794 18795 18796 18797 18798 18799 18800 18801 18802 18803 18804 18805 18806 18807 18808 18809 18810 18811 18812 18813 18814 18815 18816 18817 18818 18819 18820 18821 18822 18823 18824 18825 18826 18827 18828 18829 18830 18831 18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 18879 18880 18881 18882 18883 18884 18885 18886 18887 18888 18889 18890 18891 18892 18893 18894 18895 18896 18897 18898 18899 18900 18901 18902 18903 18904 18905 18906 18907 18908 18909 18910 18911 18912 18913 18914 18915 18916 18917 18918 18919 18920 18921 18922 18923 18924 18925 18926 18927 18928 18929 18930 18931 18932 18933 18934 18935 18936 18937 18938 18939 18940 18941 18942 18943 18944 18945 18946 18947 18948 18949 18950 18951 18952 18953 18954 18955 18956 18957 18958 18959 18960 18961 18962 18963 18964 18965 18966 18967 18968 18969 18970 18971 18972 18973 18974 18975 18976 18977 18978 18979 18980 18981 18982 18983 18984 18985 18986 18987 18988 18989 18990 18991 18992 18993 18994 18995 18996 18997 18998 18999 19000 19001 19002 19003 19004 19005 19006 19007 19008 19009 19010 19011 19012 19013 19014 19015 19016 19017 19018 19019 19020 19021 19022 19023 19024 19025 19026 19027 19028 19029 19030 19031 19032 19033 19034 19035 19036 19037 19038 19039 19040 19041 19042 19043 19044 19045 19046 19047 19048 19049 19050 19051 19052 19053 19054 19055 19056 19057 19058 19059 19060 19061 19062 19063 19064 19065 19066 19067 19068 19069 19070 19071 19072 19073 19074 19075 19076 19077 19078 19079 19080 19081 19082 19083 19084 19085 19086 19087 19088 19089 19090 19091 19092 19093 19094 19095 19096 19097 19098 19099 19100 19101 19102 19103 19104 19105 19106 19107 19108 19109 19110 19111 19112 19113 19114 19115 19116 19117 19118 19119 19120 19121 19122 19123 19124 19125 19126 19127 19128 19129 19130 19131 19132 19133 19134 19135 19136 19137 19138 19139 19140 19141 19142 19143 19144 19145 19146 19147 19148 19149 19150 19151 19152 19153 19154 19155 19156 19157 19158 19159 19160 19161 19162 19163 19164 19165 19166 19167 19168 19169 19170 19171 19172 19173 19174 19175 19176 19177 19178 19179 19180 19181 19182 19183 19184 19185 19186 19187 19188 19189 19190 19191 19192 19193 19194 19195 19196 19197 19198 19199 19200 19201 19202 19203 19204 19205 19206 19207 19208 19209 19210 19211 19212 19213 19214 19215 19216 19217 19218 19219 19220 19221 19222 19223 19224 19225 19226 19227 19228 19229 19230 19231 19232 19233 19234 19235 19236 19237 19238 19239 19240 19241 19242 19243 19244 19245 19246 19247 19248 19249 19250 19251 19252 19253 19254 19255 19256 19257 19258 19259 19260 19261 19262 19263 19264 19265 19266 19267 19268 19269 19270 19271 19272 19273 19274 19275 19276 19277 19278 19279 19280 19281 19282 19283 19284 19285 19286 19287 19288 19289 19290 19291 19292 19293 19294 19295 19296 19297 19298 19299 19300 19301 19302 19303 19304 19305 19306 19307 19308 19309 19310 19311 19312 19313 19314 19315 19316 19317 19318 19319 19320 19321 19322 19323 19324 19325 19326 19327 19328 19329 19330 19331 19332 19333 19334 19335 19336 19337 19338 19339 19340 19341 19342 19343 19344 19345 19346 19347 19348 19349 19350 19351 19352 19353 19354 19355 19356 19357 19358 19359 19360 19361 19362 19363 19364 19365 19366 19367 19368 19369 19370 19371 19372 19373 19374 19375 19376 19377 19378 19379 19380 19381 19382 19383 19384 19385 19386 19387 19388 19389 19390 19391 19392 19393 19394 19395 19396 19397 19398 19399 19400 19401 19402 19403 19404 19405 19406 19407 19408 19409 19410 19411 19412 19413 19414 19415 19416 19417 19418 19419 19420 19421 19422 19423 19424 19425 19426 19427 19428 19429 19430 19431 19432 19433 19434 19435 19436 19437 19438 19439 19440 19441 19442 19443 19444 19445 19446 19447 19448 19449 19450 19451 19452 19453 19454 19455 19456 19457 19458 19459 19460 19461 19462 19463 19464 19465 19466 19467 19468 19469 19470 19471 19472 19473 19474 19475 19476 19477 19478 19479 19480 19481 19482 19483 19484 19485 19486 19487 19488 19489 19490 19491 19492 19493 19494 19495 19496 19497 19498 19499 19500 19501 19502 19503 19504 19505 19506 19507 19508 19509 19510 19511 19512 19513 19514 19515 19516 19517 19518 19519 19520 19521 19522 19523 19524 19525 19526 19527 19528 19529 19530 19531 19532 19533 19534 19535 19536 19537 19538 19539 19540 19541 19542 19543 19544 19545 19546 19547 19548 19549 19550 19551 19552 19553 19554 19555 19556 19557 19558 19559 19560 19561 19562 19563 19564 19565 19566 19567 19568 19569 19570 19571 19572 19573 19574 19575 19576 19577 19578 19579 19580 19581 19582 19583 19584 19585 19586 19587 19588 19589 19590 19591 19592 19593 19594 19595 19596 19597 19598 19599 19600 19601 19602 19603 19604 19605 19606 19607 19608 19609 19610 19611 19612 19613 19614 19615 19616 19617 19618 19619 19620 19621 19622 19623 19624 19625 19626 19627 19628 19629 19630 19631 19632 19633 19634 19635 19636 19637 19638 19639 19640 19641 19642 19643 19644 19645 19646 19647 19648 19649 19650 19651 19652 19653 19654 19655 19656 19657 19658 19659 19660 19661 19662 19663 19664 19665 19666 19667 19668 19669 19670 19671 19672 19673 19674 19675 19676 19677 19678 19679 19680 19681 19682 19683 19684 19685 19686 19687 19688 19689 19690 19691 19692 19693 19694 19695 19696 19697 19698 19699 19700 19701 19702 19703 19704 19705 19706 19707 19708 19709 19710 19711 19712 19713 19714 19715 19716 19717 19718 19719 19720 19721 19722 19723 19724 19725 19726 19727 19728 19729 19730 19731 19732 19733 19734 19735 19736 19737 19738 19739 19740 19741 19742 19743 19744 19745 19746 19747 19748 19749 19750 19751 19752 19753 19754 19755 19756 19757 19758 19759 19760 19761 19762 19763 19764 19765 19766 19767 19768 19769 19770 19771 19772 19773 19774 19775 19776 19777 19778 19779 19780 19781 19782 19783 19784 19785 19786 19787 19788 19789 19790 19791 19792 19793 19794 19795 19796 19797 19798 19799 19800 19801 19802 19803 19804 19805 19806 19807 19808 19809 19810 19811 19812 19813 19814 19815 19816 19817 19818 19819 19820 19821 19822 19823 19824 19825 19826 19827 19828 19829 19830 19831 19832 19833 19834 19835 19836 19837 19838 19839 19840 19841 19842 19843 19844 19845 19846 19847 19848 19849 19850 19851 19852 19853 19854 19855 19856 19857 19858 19859 19860 19861 19862 19863 19864 19865 19866 19867 19868 19869 19870 19871 19872 19873 19874 19875 19876 19877 19878 19879 19880 19881 19882 19883 19884 19885 19886 19887 19888 19889 19890 19891 19892 19893 19894 19895 19896 19897 19898 19899 19900 19901 19902 19903 19904 19905 19906 19907 19908 19909 19910 19911 19912 19913 19914 19915 19916 19917 19918 19919 19920 19921 19922 19923 19924 19925 19926 19927 19928 19929 19930 19931 19932 19933 19934 19935 19936 19937 19938 19939 19940 19941 19942 19943 19944 19945 19946 19947 19948 19949 19950 19951 19952 19953 19954 19955 19956 19957 19958 19959 19960 19961 19962 19963 19964 19965 19966 19967 19968 19969 19970 19971 19972 19973 19974 19975 19976 19977 19978 19979 19980 19981 19982 19983 19984 19985 19986 19987 19988 19989 19990 19991 19992 19993 19994 19995 19996 19997 19998 19999 20000 20001 20002 20003 20004 20005 20006 20007 20008 20009 20010 20011 20012 20013 20014 20015 20016 20017 20018 20019 20020 20021 20022 20023 20024 20025 20026 20027 20028 20029 20030 20031 20032 20033 20034 20035 20036 20037 20038 20039 20040 20041 20042 20043 20044 20045 20046 20047 20048 20049 20050 20051 20052 20053 20054 20055 20056 20057 20058 20059 20060 20061 20062 20063 20064 20065 20066 20067 20068 20069 20070 20071 20072 20073 20074 20075 20076 20077 20078 20079 20080 20081 20082 20083 20084 20085 20086 20087 20088 20089 20090 20091 20092 20093 20094 20095 20096 20097 20098 20099 20100 20101 20102 20103 20104 20105 20106 20107 20108 20109 20110 20111 20112 20113 20114 20115 20116 20117 20118 20119 20120 20121 20122 20123 20124 20125 20126 20127 20128 20129 20130 20131 20132 20133 20134 20135 20136 20137 20138 20139 20140 20141 20142 20143 20144 20145 20146 20147 20148 20149 20150 20151 20152 20153 20154 20155 20156 20157 20158 20159 20160 20161 20162 20163 20164 20165 20166 20167 20168 20169 20170 20171 20172 20173 20174 20175 20176 20177 20178 20179 20180 20181 20182 20183 20184 20185 20186 20187 20188 20189 20190 20191 20192 20193 20194 20195 20196 20197 20198 20199 20200 20201 20202 20203 20204 20205 20206 20207 20208 20209 20210 20211 20212 20213 20214 20215 20216 20217 20218 20219 20220 20221 20222 20223 20224 20225 20226 20227 20228 20229 20230 20231 20232 20233 20234 20235 20236 20237 20238 20239 20240 20241 20242 20243 20244 20245 20246 20247 20248 20249 20250 20251 20252 20253 20254 20255 20256 20257 20258 20259 20260 20261 20262 20263 20264 20265 20266 20267 20268 20269 20270 20271 20272 20273 20274 20275 20276 20277 20278 20279 20280 20281 20282 20283 20284 20285 20286 20287 20288 20289 20290 20291 20292 20293 20294 20295 20296 20297 20298 20299 20300 20301 20302 20303 20304 20305 20306 20307 20308 20309 20310 20311 20312 20313 20314 20315 20316 20317 20318 20319 20320 20321 20322 20323 20324 20325 20326 20327 20328 20329 20330 20331 20332 20333 20334 20335 20336 20337 20338 20339 20340 20341 20342 20343 20344 20345 20346 20347 20348 20349 20350 20351 20352 20353 20354 20355 20356 20357 20358 20359 20360 20361 20362 20363 20364 20365 20366 20367 20368 20369 20370 20371 20372 20373 20374 20375 20376 20377 20378 20379 20380 20381 20382 20383 20384 20385 20386 20387 20388 20389 20390 20391 20392 20393 20394 20395 20396 20397 20398 20399 20400 20401 20402 20403 20404 20405 20406 20407 20408 20409 20410 20411 20412 20413 20414 20415 20416 20417 20418 20419 20420 20421 20422 20423 20424 20425 20426 20427 20428 20429 20430 20431 20432 20433 20434 20435 20436 20437 20438 20439 20440 20441 20442 20443 20444 20445 20446 20447 20448 20449 20450 20451 20452 20453 20454 20455 20456 20457 20458 20459 20460 20461 20462 20463 20464 20465 20466 20467 20468 20469 20470 20471 20472 20473 20474 20475 20476 20477 20478 20479 20480 20481 20482 20483 20484 20485 20486 20487 20488 20489 20490 20491 20492 20493 20494 20495 20496 20497 20498 20499 20500 20501 20502 20503 20504 20505 20506 20507 20508 20509 20510 20511 20512 20513 20514 20515 20516 20517 20518 20519 20520 20521 20522 20523 20524 20525 20526 20527 20528 20529 20530 20531 20532 20533 20534 20535 20536 20537 20538 20539 20540 20541 20542 20543 20544 20545 20546 20547 20548 20549 20550 20551 20552 20553 20554 20555 20556 20557 20558 20559 20560 20561 20562 20563 20564 20565 20566 20567 20568 20569 20570 20571 20572 20573 20574 20575 20576 20577 20578 20579 20580 20581 20582 20583 20584 20585 20586 20587 20588 20589 20590 20591 20592 20593 20594 20595 20596 20597 20598 20599 20600 20601 20602 20603 20604 20605 20606 20607 20608 20609 20610 20611 20612 20613 20614 20615 20616 20617 20618 20619 20620 20621 20622 20623 20624 20625 20626 20627 20628 20629 20630 20631 20632 20633 20634 20635 20636 20637 20638 20639 20640 20641 20642 20643 20644 20645 20646 20647 20648 20649 20650 20651 20652 20653 20654 20655 20656 20657 20658 20659 20660 20661 20662 20663 20664 20665 20666 20667 20668 20669 20670 20671 20672 20673 20674 20675 20676 20677 20678 20679 20680 20681 20682 20683 20684 20685 20686 20687 20688 20689 20690 20691 20692 20693 20694 20695 20696 20697 20698 20699 20700 20701 20702 20703 20704 20705 20706 20707 20708 20709 20710 20711 20712 20713 20714 20715 20716 20717 20718 20719 20720 20721 20722 20723 20724 20725 20726 20727 20728 20729 20730 20731 20732 20733 20734 20735 20736 20737 20738 20739 20740 20741 20742 20743 20744 20745 20746 20747 20748 20749 20750 20751 20752 20753 20754 20755 20756 20757 20758 20759 20760 20761 20762 20763 20764 20765 20766 20767 20768 20769 20770 20771 20772 20773 20774 20775 20776 20777 20778 20779 20780 20781 20782 20783 20784 20785 20786 20787 20788 20789 20790 20791 20792 20793 20794 20795 20796 20797 20798 20799 20800 20801 20802 20803 20804 20805 20806 20807 20808 20809 20810 20811 20812 20813 20814 20815 20816 20817 20818 20819 20820 20821 20822 20823 20824 20825 20826 20827 20828 20829 20830 20831 20832 20833 20834 20835 20836 20837 20838 20839 20840 20841 20842 20843 20844 20845 20846 20847 20848 20849 20850 20851 20852 20853 20854 20855 20856 20857 20858 20859 20860 20861 20862 20863 20864 20865 20866 20867 20868 20869 20870 20871 20872 20873 20874 20875 20876 20877 20878 20879 20880 20881 20882 20883 20884 20885 20886 20887 20888 20889 20890 20891 20892 20893 20894 20895 20896 20897 20898 20899 20900 20901 20902 20903 20904 20905 20906 20907 20908 20909 20910 20911 20912 20913 20914 20915 20916 20917 20918 20919 20920 20921 20922 20923 20924 20925 20926 20927 20928 20929 20930 20931 20932 20933 20934 20935 20936 20937 20938 20939 20940 20941 20942 20943 20944 20945 20946 20947 20948 20949 20950 20951 20952 20953 20954 20955 20956 20957 20958 20959 20960 20961 20962 20963 20964 20965 20966 20967 20968 20969 20970 20971 20972 20973 20974 20975 20976 20977 20978 20979 20980 20981 20982 20983 20984 20985 20986 20987 20988 20989 20990 20991 20992 20993 20994 20995 20996 20997 20998 20999 21000 21001 21002 21003 21004 21005 21006 21007 21008 21009 21010 21011 21012 21013 21014 21015 21016 21017 21018 21019 21020 21021 21022 21023 21024 21025 21026 21027 21028 21029 21030 21031 21032 21033 21034 21035 21036 21037 21038 21039 21040 21041 21042 21043 21044 21045 21046 21047 21048 21049 21050 21051 21052 21053 21054 21055 21056 21057 21058 21059 21060 21061 21062 21063 21064 21065 21066 21067 21068 21069 21070 21071 21072 21073 21074 21075 21076 21077 21078 21079 21080 21081 21082 21083 21084 21085 21086 21087 21088 21089 21090 21091 21092 21093 21094 21095 21096 21097 21098 21099 21100 21101 21102 21103 21104 21105 21106 21107 21108 21109 21110 21111 21112 21113 21114 21115 21116 21117 21118 21119 21120 21121 21122 21123 21124 21125 21126 21127 21128 21129 21130 21131 21132 21133 21134 21135 21136 21137 21138 21139 21140 21141 21142 21143 21144 21145 21146 21147 21148 21149 21150 21151 21152 21153 21154 21155 21156 21157 21158 21159 21160 21161 21162 21163 21164 21165 21166 21167 21168 21169 21170 21171 21172 21173 21174 21175 21176 21177 21178 21179 21180 21181 21182 21183 21184 21185 21186 21187 21188 21189 21190 21191 21192 21193 21194 21195 21196 21197 21198 21199 21200 21201 21202 21203 21204 21205 21206 21207 21208 21209 21210 21211 21212 21213 21214 21215 21216 21217 21218 21219 21220 21221 21222 21223 21224 21225 21226 21227 21228 21229 21230 21231 21232 21233 21234 21235 21236 21237 21238 21239 21240 21241 21242 21243 21244 21245 21246 21247 21248 21249 21250 21251 21252 21253 21254 21255 21256 21257 21258 21259 21260 21261 21262 21263 21264 21265 21266 21267 21268 21269 21270 21271 21272 21273 21274 21275 21276 21277 21278 21279 21280 21281 21282 21283 21284 21285 21286 21287 21288 21289 21290 21291 21292 21293 21294 21295 21296 21297 21298 21299 21300 21301 21302 21303 21304 21305 21306 21307 21308 21309 21310 21311 21312 21313 21314 21315 21316 21317 21318 21319 21320 21321 21322 21323 21324 21325 21326 21327 21328 21329 21330 21331 21332 21333 21334 21335 21336 21337 21338 21339 21340 21341 21342 21343 21344 21345 21346 21347 21348 21349 21350 21351 21352 21353 21354 21355 21356 21357 21358 21359 21360 21361 21362 21363 21364 21365 21366 21367 21368 21369 21370 21371 21372 21373 21374 21375 21376 21377 21378 21379 21380 21381 21382 21383 21384 21385 21386 21387 21388 21389 21390 21391 21392 21393 21394 21395 21396 21397 21398 21399 21400 21401 21402 21403 21404 21405 21406 21407 21408 21409 21410 21411 21412 21413 21414 21415 21416 21417 21418 21419 21420 21421 21422 21423 21424 21425 21426 21427 21428 21429 21430 21431 21432 21433 21434 21435 21436 21437 21438 21439 21440 21441 21442 21443 21444 21445 21446 21447 21448 21449 21450 21451 21452 21453 21454 21455 21456 21457 21458 21459 21460 21461 21462 21463 21464 21465 21466 21467 21468 21469 21470 21471 21472 21473 21474 21475 21476 21477 21478 21479 21480 21481 21482 21483 21484 21485 21486 21487 21488 21489 21490 21491 21492 21493 21494 21495 21496 21497 21498 21499 21500 21501 21502 21503 21504 21505 21506 21507 21508 21509 21510 21511 21512 21513 21514 21515 21516 21517 21518 21519 21520 21521 21522 21523 21524 21525 21526 21527 21528 21529 21530 21531 21532 21533 21534 21535 21536 21537 21538 21539 21540 21541 21542 21543 21544 21545 21546 21547 21548 21549 21550 21551 21552 21553 21554 21555 21556 21557 21558 21559 21560 21561 21562 21563 21564 21565 21566 21567 21568 21569 21570 21571 21572 21573 21574 21575 21576 21577 21578 21579 21580 21581 21582 21583 21584 21585 21586 21587 21588 21589 21590 21591 21592 21593 21594 21595 21596 21597 21598 21599 21600 21601 21602 21603 21604 21605 21606 21607 21608 21609 21610 21611 21612 21613 21614 21615 21616 21617 21618 21619 21620 21621 21622 21623 21624 21625 21626 21627 21628 21629 21630 21631 21632 21633 21634 21635 21636 21637 21638 21639 21640 21641 21642 21643 21644 21645 21646 21647 21648 21649 21650 21651 21652 21653 21654 21655 21656 21657 21658 21659 21660 21661 21662 21663 21664 21665 21666 21667 21668 21669 21670 21671 21672 21673 21674 21675 21676 21677 21678 21679 21680 21681 21682 21683 21684 21685 21686 21687 21688 21689 21690 21691 21692 21693 21694 21695 21696 21697 21698 21699 21700 21701 21702 21703 21704 21705 21706 21707 21708 21709 21710 21711 21712 21713 21714 21715 21716 21717 21718 21719 21720 21721 21722 21723 21724 21725 21726 21727 21728 21729 21730 21731 21732 21733 21734 21735 21736 21737 21738 21739 21740 21741 21742 21743 21744 21745 21746 21747 21748 21749 21750 21751 21752 21753 21754 21755 21756 21757 21758 21759 21760 21761 21762 21763 21764 21765 21766 21767 21768 21769 21770 21771 21772 21773 21774 21775 21776 21777 21778 21779 21780 21781 21782 21783 21784 21785 21786 21787 21788 21789 21790 21791 21792 21793 21794 21795 21796 21797 21798 21799 21800 21801 21802 21803 21804 21805 21806 21807 21808 21809 21810 21811 21812 21813 21814 21815 21816 21817 21818 21819 21820 21821 21822 21823 21824 21825 21826 21827 21828 21829 21830 21831 21832 21833 21834 21835 21836 21837 21838 21839 21840 21841 21842 21843 21844 21845 21846 21847 21848 21849 21850 21851 21852 21853 21854 21855 21856 21857 21858 21859 21860 21861 21862 21863 21864 21865 21866 21867 21868 21869 21870 21871 21872 21873 21874 21875 21876 21877 21878 21879 21880 21881 21882 21883 21884 21885 21886 21887 21888 21889 21890 21891 21892 21893 21894 21895 21896 21897 21898 21899 21900 21901 21902 21903 21904 21905 21906 21907 21908 21909 21910 21911 21912 21913 21914 21915 21916 21917 21918 21919 21920 21921 21922 21923 21924 21925 21926 21927 21928 21929 21930 21931 21932 21933 21934 21935 21936 21937 21938 21939 21940 21941 21942 21943 21944 21945 21946 21947 21948 21949 21950 21951 21952 21953 21954 21955 21956 21957 21958 21959 21960 21961 21962 21963 21964 21965 21966 21967 21968 21969 21970 21971 21972 21973 21974 21975 21976 21977 21978 21979 21980 21981 21982 21983 21984 21985 21986 21987 21988 21989 21990 21991 21992 21993 21994 21995 21996 21997 21998 21999 22000 22001 22002 22003 22004 22005 22006 22007 22008 22009 22010 22011 22012 22013 22014 22015 22016 22017 22018 22019 22020 22021 22022 22023 22024 22025 22026 22027 22028 22029 22030 22031 22032 22033 22034 22035 22036 22037 22038 22039 22040 22041 22042 22043 22044 22045 22046 22047 22048 22049 22050 22051 22052 22053 22054 22055 22056 22057 22058 22059 22060 22061 22062 22063 22064 22065 22066 22067 22068 22069 22070 22071 22072 22073 22074 22075 22076 22077 22078 22079 22080 22081 22082 22083 22084 22085 22086 22087 22088 22089 22090 22091 22092 22093 22094 22095 22096 22097 22098 22099 22100 22101 22102 22103 22104 22105 22106 22107 22108 22109 22110 22111 22112 22113 22114 22115 22116 22117 22118 22119 22120 22121 22122 22123 22124 22125 22126 22127 22128 22129 22130 22131 22132 22133 22134 22135 22136 22137 22138 22139 22140 22141 22142 22143 22144 22145 22146 22147 22148 22149 22150 22151 22152 22153 22154 22155 22156 22157 22158 22159 22160 22161 22162 22163 22164 22165 22166 22167 22168 22169 22170 22171 22172 22173 22174 22175 22176 22177 22178 22179 22180 22181 22182 22183 22184 22185 22186 22187 22188 22189 22190 22191 22192 22193 22194 22195 22196 22197 22198 22199 22200 22201 22202 22203 22204 22205 22206 22207 22208 22209 22210 22211 22212 22213 22214 22215 22216 22217 22218 22219 22220 22221 22222 22223 22224 22225 22226 22227 22228 22229 22230 22231 22232 22233 22234 22235 22236 22237 22238 22239 22240 22241 22242 22243 22244 22245 22246 22247 22248 22249 22250 22251 22252 22253 22254 22255 22256 22257 22258 22259 22260 22261 22262 22263 22264 22265 22266 22267 22268 22269 22270 22271 22272 22273 22274 22275 22276 22277 22278 22279 22280 22281 22282 22283 22284 22285 22286 22287 22288 22289 22290 22291 22292 22293 22294 22295 22296 22297 22298 22299 22300 22301 22302 22303 22304 22305 22306 22307 22308 22309 22310 22311 22312 22313 22314 22315 22316 22317 22318 22319 22320 22321 22322 22323 22324 22325 22326 22327 22328 22329 22330 22331 22332 22333 22334 22335 22336 22337 22338 22339 22340 22341 22342 22343 22344 22345 22346 22347 22348 22349 22350 22351 22352 22353 22354 22355 22356 22357 22358 22359 22360 22361 22362 22363 22364 22365 22366 22367 22368 22369 22370 22371 22372 22373 22374 22375 22376 22377 22378 22379 22380 22381 22382 22383 22384 22385 22386 22387 22388 22389 22390 22391 22392 22393 22394 22395 22396 22397 22398 22399 22400 22401 22402 22403 22404 22405 22406 22407 22408 22409 22410 22411 22412 22413 22414 22415 22416 22417 22418 22419 22420 22421 22422 22423 22424 22425 22426 22427 22428 22429 22430 22431 22432 22433 22434 22435 22436 22437 22438 22439 22440 22441 22442 22443 22444 22445 22446 22447 22448 22449 22450 22451 22452 22453 22454 22455 22456 22457 22458 22459 22460 22461 22462 22463 22464 22465 22466 22467 22468 22469 22470 22471 22472 22473 22474 22475 22476 22477 22478 22479 22480 22481 22482 22483 22484 22485 22486 22487 22488 22489 22490 22491 22492 22493 22494 22495 22496 22497 22498 22499 22500 22501 22502 22503 22504 22505 22506 22507 22508 22509 22510 22511 22512 22513 22514 22515 22516 22517 22518 22519 22520 22521 22522 22523 22524 22525 22526 22527 22528 22529 22530 22531 22532 22533 22534 22535 22536 22537 22538 22539 22540 22541 22542 22543 22544 22545 22546 22547 22548 22549 22550 22551 22552 22553 22554 22555 22556 22557 22558 22559 22560 22561 22562 22563 22564 22565 22566 22567 22568 22569 22570 22571 22572 22573 22574 22575 22576 22577 22578 22579 22580 22581 22582 22583 22584 22585 22586 22587 22588 22589 22590 22591 22592 22593 22594 22595 22596 22597 22598 22599 22600 22601 22602 22603 22604 22605 22606 22607 22608 22609 22610 22611 22612 22613 22614 22615 22616 22617 22618 22619 22620 22621 22622 22623 22624 22625 22626 22627 22628 22629 22630 22631 22632 22633 22634 22635 22636 22637 22638 22639 22640 22641 22642 22643 22644 22645 22646 22647 22648 22649 22650 22651 22652 22653 22654 22655 22656 22657 22658 22659 22660 22661 22662 22663 22664 22665 22666 22667 22668 22669 22670 22671 22672 22673 22674 22675 22676 22677 22678 22679 22680 22681 22682 22683 22684 22685 22686 22687 22688 22689 22690 22691 22692 22693 22694 22695 22696 22697 22698 22699 22700 22701 22702 22703 22704 22705 22706 22707 22708 22709 22710 22711 22712 22713 22714 22715 22716 22717 22718 22719 22720 22721 22722 22723 22724 22725 22726 22727 22728 22729 22730 22731 22732 22733 22734 22735 22736 22737 22738 22739 22740 22741 22742 22743 22744 22745 22746 22747 22748 22749 22750 22751 22752 22753 22754 22755 22756 22757 22758 22759 22760 22761 22762 22763 22764 22765 22766 22767 22768 22769 22770 22771 22772 22773 22774 22775 22776 22777 22778 22779 22780 22781 22782 22783 22784 22785 22786 22787 22788 22789 22790 22791 22792 22793 22794 22795 22796 22797 22798 22799 22800 22801 22802 22803 22804 22805 22806 22807 22808 22809 22810 22811 22812 22813 22814 22815 22816 22817 22818 22819 22820 22821 22822 22823 22824 22825 22826 22827 22828 22829 22830 22831 22832 22833 22834 22835 22836 22837 22838 22839 22840 22841 22842 22843 22844 22845 22846 22847 22848 22849 22850 22851 22852 22853 22854 22855 22856 22857 22858 22859 22860 22861 22862 22863 22864 22865 22866 22867 22868 22869 22870 22871 22872 22873 22874 22875 22876 22877 22878 22879 22880 22881 22882 22883 22884 22885 22886 22887 22888 22889 22890 22891 22892 22893 22894 22895 22896 22897 22898 22899 22900 22901 22902 22903 22904 22905 22906 22907 22908 22909 22910 22911 22912 22913 22914 22915 22916 22917 22918 22919 22920 22921 22922 22923 22924 22925 22926 22927 22928 22929 22930 22931 22932 22933 22934 22935 22936 22937 22938 22939 22940 22941 22942 22943 22944 22945 22946 22947 22948 22949 22950 22951 22952 22953 22954 22955 22956 22957 22958 22959 22960 22961 22962 22963 22964 22965 22966 22967 22968 22969 22970 22971 22972 22973 22974 22975 22976 22977 22978 22979 22980 22981 22982 22983 22984 22985 22986 22987 22988 22989 22990 22991 22992 22993 22994 22995 22996 22997 22998 22999 23000 23001 23002 23003 23004 23005 23006 23007 23008 23009 23010 23011 23012 23013 23014 23015 23016 23017 23018 23019 23020 23021 23022 23023 23024 23025 23026 23027 23028 23029 23030 23031 23032 23033 23034 23035 23036 23037 23038 23039 23040 23041 23042 23043 23044 23045 23046 23047 23048 23049 23050 23051 23052 23053 23054 23055 23056 23057 23058 23059 23060 23061 23062 23063 23064 23065 23066 23067 23068 23069 23070 23071 23072 23073 23074 23075 23076 23077 23078 23079 23080 23081 23082 23083 23084 23085 23086 23087 23088 23089 23090 23091 23092 23093 23094 23095 23096 23097 23098 23099 23100 23101 23102 23103 23104 23105 23106 23107 23108 23109 23110 23111 23112 23113 23114 23115 23116 23117 23118 23119 23120 23121 23122 23123 23124 23125 23126 23127 23128 23129 23130 23131 23132 23133 23134 23135 23136 23137 23138 23139 23140 23141 23142 23143 23144 23145 23146 23147 23148 23149 23150 23151 23152 23153 23154 23155 23156 23157 23158 23159 23160 23161 23162 23163 23164 23165 23166 23167 23168 23169 23170 23171 23172 23173 23174 23175 23176 23177 23178 23179 23180 23181 23182 23183 23184 23185 23186 23187 23188 23189 23190 23191 23192 23193 23194 23195 23196 23197 23198 23199 23200 23201 23202 23203 23204 23205 23206 23207 23208 23209 23210 23211 23212 23213 23214 23215 23216 23217 23218 23219 23220 23221 23222 23223 23224 23225 23226 23227 23228 23229 23230 23231 23232 23233 23234 23235 23236 23237 23238 23239 23240 23241 23242 23243 23244 23245 23246 23247 23248 23249 23250 23251 23252 23253 23254 23255 23256 23257 23258 23259 23260 23261 23262 23263 23264 23265 23266 23267 23268 23269 23270 23271 23272 23273 23274 23275 23276 23277 23278 23279 23280 23281 23282 23283 23284 23285 23286 23287 23288 23289 23290 23291 23292 23293 23294 23295 23296 23297 23298 23299 23300 23301 23302 23303 23304 23305 23306 23307 23308 23309 23310 23311 23312 23313 23314 23315 23316 23317 23318 23319 23320 23321 23322 23323 23324 23325 23326 23327 23328 23329 23330 23331 23332 23333 23334 23335 23336 23337 23338 23339 23340 23341 23342 23343 23344 23345 23346 23347 23348 23349 23350 23351 23352 23353 23354 23355 23356 23357 23358 23359 23360 23361 23362 23363 23364 23365 23366 23367 23368 23369 23370 23371 23372 23373 23374 23375 23376 23377 23378 23379 23380 23381 23382 23383 23384 23385 23386 23387 23388 23389 23390 23391 23392 23393 23394 23395 23396 23397 23398 23399 23400 23401 23402 23403 23404 23405 23406 23407 23408 23409 23410 23411 23412 23413 23414 23415 23416 23417 23418 23419 23420 23421 23422 23423 23424 23425 23426 23427 23428 23429 23430 23431 23432 23433 23434 23435 23436 23437 23438 23439 23440 23441 23442 23443 23444 23445 23446 23447 23448 23449 23450 23451 23452 23453 23454 23455 23456 23457 23458 23459 23460 23461 23462 23463 23464 23465 23466 23467 23468 23469 23470 23471 23472 23473 23474 23475 23476 23477 23478 23479 23480 23481 23482 23483 23484 23485 23486 23487 23488 23489 23490 23491 23492 23493 23494 23495 23496 23497 23498 23499 23500 23501 23502 23503 23504 23505 23506 23507 23508 23509 23510 23511 23512 23513 23514 23515 23516 23517 23518 23519 23520 23521 23522 23523 23524 23525 23526 23527 23528 23529 23530 23531 23532 23533 23534 23535 23536 23537 23538 23539 23540 23541 23542 23543 23544 23545 23546 23547 23548 23549 23550 23551 23552 23553 23554 23555 23556 23557 23558 23559 23560 23561 23562 23563 23564 23565 23566 23567 23568 23569 23570 23571 23572 23573 23574 23575 23576 23577 23578 23579 23580 23581 23582 23583 23584 23585 23586 23587 23588 23589 23590 23591 23592 23593 23594 23595 23596 23597 23598 23599 23600 23601 23602 23603 23604 23605 23606 23607 23608 23609 23610 23611 23612 23613 23614 23615 23616 23617 23618 23619 23620 23621 23622 23623 23624 23625 23626 23627 23628 23629 23630 23631 23632 23633 23634 23635 23636 23637 23638 23639 23640 23641 23642 23643 23644 23645 23646 23647 23648 23649 23650 23651 23652 23653 23654 23655 23656 23657 23658 23659 23660 23661 23662 23663 23664 23665 23666 23667 23668 23669 23670 23671 23672 23673 23674 23675 23676 23677 23678 23679 23680 23681 23682 23683 23684 23685 23686 23687 23688 23689 23690 23691 23692 23693 23694 23695 23696 23697 23698 23699 23700 23701 23702 23703 23704 23705 23706 23707 23708 23709 23710 23711 23712 23713 23714 23715 23716 23717 23718 23719 23720 23721 23722 23723 23724 23725 23726 23727 23728 23729 23730 23731 23732 23733 23734 23735 23736 23737 23738 23739 23740 23741 23742 23743 23744 23745 23746 23747 23748 23749 23750 23751 23752 23753 23754 23755 23756 23757 23758 23759 23760 23761 23762 23763 23764 23765 23766 23767 23768 23769 23770 23771 23772 23773 23774 23775 23776 23777 23778 23779 23780 23781 23782 23783 23784 23785 23786 23787 23788 23789 23790 23791 23792 23793 23794 23795 23796 23797 23798 23799 23800 23801 23802 23803 23804 23805 23806 23807 23808 23809 23810 23811 23812 23813 23814 23815 23816 23817 23818 23819 23820 23821 23822 23823 23824 23825 23826 23827 23828 23829 23830 23831 23832 23833 23834 23835 23836 23837 23838 23839 23840 23841 23842 23843 23844 23845 23846 23847 23848 23849 23850 23851 23852 23853 23854 23855 23856 23857 23858 23859 23860 23861 23862 23863 23864 23865 23866 23867 23868 23869 23870 23871 23872 23873 23874 23875 23876 23877 23878 23879 23880 23881 23882 23883 23884 23885 23886 23887 23888 23889 23890 23891 23892 23893 23894 23895 23896 23897 23898 23899 23900 23901 23902 23903 23904 23905 23906 23907 23908 23909 23910 23911 23912 23913 23914 23915 23916 23917 23918 23919 23920 23921 23922 23923 23924 23925 23926 23927 23928 23929 23930 23931 23932 23933 23934 23935 23936 23937 23938 23939 23940 23941 23942 23943 23944 23945 23946 23947 23948 23949 23950 23951 23952 23953 23954 23955 23956 23957 23958 23959 23960 23961 23962 23963 23964 23965 23966 23967 23968 23969 23970 23971 23972 23973 23974 23975 23976 23977 23978 23979 23980 23981 23982 23983 23984 23985 23986 23987 23988 23989 23990 23991 23992 23993 23994 23995 23996 23997 23998 23999 24000 24001 24002 24003 24004 24005 24006 24007 24008 24009 24010 24011 24012 24013 24014 24015 24016 24017 24018 24019 24020 24021 24022 24023 24024 24025 24026 24027 24028 24029 24030 24031 24032 24033 24034 24035 24036 24037 24038 24039 24040 24041 24042 24043 24044 24045 24046 24047 24048 24049 24050 24051 24052 24053 24054 24055 24056 24057 24058 24059 24060 24061 24062 24063 24064 24065 24066 24067 24068 24069 24070 24071 24072 24073 24074 24075 24076 24077 24078 24079 24080 24081 24082 24083 24084 24085 24086 24087 24088 24089 24090 24091 24092 24093 24094 24095 24096 24097 24098 24099 24100 24101 24102 24103 24104 24105 24106 24107 24108 24109 24110 24111 24112 24113 24114 24115 24116 24117 24118 24119 24120 24121 24122 24123 24124 24125 24126 24127 24128 24129 24130 24131 24132 24133 24134 24135 24136 24137 24138 24139 24140 24141 24142 24143 24144 24145 24146 24147 24148 24149 24150 24151 24152 24153 24154 24155 24156 24157 24158 24159 24160 24161 24162 24163 24164 24165 24166 24167 24168 24169 24170 24171 24172 24173 24174 24175 24176 24177 24178 24179 24180 24181 24182 24183 24184 24185 24186 24187 24188 24189 24190 24191 24192 24193 24194 24195 24196 24197 24198 24199 24200 24201 24202 24203 24204 24205 24206 24207 24208 24209 24210 24211 24212 24213 24214 24215 24216 24217 24218 24219 24220 24221 24222 24223 24224 24225 24226 24227 24228 24229 24230 24231 24232 24233 24234 24235 24236 24237 24238 24239 24240 24241 24242 24243 24244 24245 24246 24247 24248 24249 24250 24251 24252 24253 24254 24255 24256 24257 24258 24259 24260 24261 24262 24263 24264 24265 24266 24267 24268 24269 24270 24271 24272 24273 24274 24275 24276 24277 24278 24279 24280 24281 24282 24283 24284 24285 24286 24287 24288 24289 24290 24291 24292 24293 24294 24295 24296 24297 24298 24299 24300 24301 24302 24303 24304 24305 24306 24307 24308 24309 24310 24311 24312 24313 24314 24315 24316 24317 24318 24319 24320 24321 24322 24323 24324 24325 24326 24327 24328 24329 24330 24331 24332 24333 24334 24335 24336 24337 24338 24339 24340 24341 24342 24343 24344 24345 24346 24347 24348 24349 24350 24351 24352 24353 24354 24355 24356 24357 24358 24359 24360 24361 24362 24363 24364 24365 24366 24367 24368 24369 24370 24371 24372 24373 24374 24375 24376 24377 24378 24379 24380 24381 24382 24383 24384 24385 24386 24387 24388 24389 24390 24391 24392 24393 24394 24395 24396 24397 24398 24399 24400 24401 24402 24403 24404 24405 24406 24407 24408 24409 24410 24411 24412 24413 24414 24415 24416 24417 24418 24419 24420 24421 24422 24423 24424 24425 24426 24427 24428 24429 24430 24431 24432 24433 24434 24435 24436 24437 24438 24439 24440 24441 24442 24443 24444 24445 24446 24447 24448 24449 24450 24451 24452 24453 24454 24455 24456 24457 24458 24459 24460 24461 24462 24463 24464 24465 24466 24467 24468 24469 24470 24471 24472 24473 24474 24475 24476 24477 24478 24479 24480 24481 24482 24483 24484 24485 24486 24487 24488 24489 24490 24491 24492 24493 24494 24495 24496 24497 24498 24499 24500 24501 24502 24503 24504 24505 24506 24507 24508 24509 24510 24511 24512 24513 24514 24515 24516 24517 24518 24519 24520 24521 24522 24523 24524 24525 24526 24527 24528 24529 24530 24531 24532 24533 24534 24535 24536 24537 24538 24539 24540 24541 24542 24543 24544 24545 24546 24547 24548 24549 24550 24551 24552 24553 24554 24555 24556 24557 24558 24559 24560 24561 24562 24563 24564 24565 24566 24567 24568 24569 24570 24571 24572 24573 24574 24575 24576 24577 24578 24579 24580 24581 24582 24583 24584 24585 24586 24587 24588 24589 24590 24591 24592 24593 24594 24595 24596 24597 24598 24599 24600 24601 24602 24603 24604 24605 24606 24607 24608 24609 24610 24611 24612 24613 24614 24615 24616 24617 24618 24619 24620 24621 24622 24623 24624 24625 24626 24627 24628 24629 24630 24631 24632 24633 24634 24635 24636 24637 24638 24639 24640 24641 24642 24643 24644 24645 24646 24647 24648 24649 24650 24651 24652 24653 24654 24655 24656 24657 24658 24659 24660 24661 24662 24663 24664 24665 24666 24667 24668 24669 24670 24671 24672 24673 24674 24675 24676 24677 24678 24679 24680 24681 24682 24683 24684 24685 24686 24687 24688 24689 24690 24691 24692 24693 24694 24695 24696 24697 24698 24699 24700 24701 24702 24703 24704 24705 24706 24707 24708 24709 24710 24711 24712 24713 24714 24715 24716 24717 24718 24719 24720 24721 24722 24723 24724 24725 24726 24727 24728 24729 24730 24731 24732 24733 24734 24735 24736 24737 24738 24739 24740 24741 24742 24743 24744 24745 24746 24747 24748 24749 24750 24751 24752 24753 24754 24755 24756 24757 24758 24759 24760 24761 24762 24763 24764 24765 24766 24767 24768 24769 24770 24771 24772 24773 24774 24775 24776 24777 24778 24779 24780 24781 24782 24783 24784 24785 24786 24787 24788 24789 24790 24791 24792 24793 24794 24795 24796 24797 24798 24799 24800 24801 24802 24803 24804 24805 24806 24807 24808 24809 24810 24811 24812 24813 24814 24815 24816 24817 24818 24819 24820 24821 24822 24823 24824 24825 24826 24827 24828 24829 24830 24831 24832 24833 24834 24835 24836 24837 24838 24839 24840 24841 24842 24843 24844 24845 24846 24847 24848 24849 24850 24851 24852 24853 24854 24855 24856 24857 24858 24859 24860 24861 24862 24863 24864 24865 24866 24867 24868 24869 24870 24871 24872 24873 24874 24875 24876 24877 24878 24879 24880 24881 24882 24883 24884 24885 24886 24887 24888 24889 24890 24891 24892 24893 24894 24895 24896 24897 24898 24899 24900 24901 24902 24903 24904 24905 24906 24907 24908 24909 24910 24911 24912 24913 24914 24915 24916 24917 24918 24919 24920 24921 24922 24923 24924 24925 24926 24927 24928 24929 24930 24931 24932 24933 24934 24935 24936 24937 24938 24939 24940 24941 24942 24943 24944 24945 24946 24947 24948 24949 24950 24951 24952 24953 24954 24955 24956 24957 24958 24959 24960 24961 24962 24963 24964 24965 24966 24967 24968 24969 24970 24971 24972 24973 24974 24975 24976 24977 24978 24979 24980 24981 24982 24983 24984 24985 24986 24987 24988 24989 24990 24991 24992 24993 24994 24995 24996 24997 24998 24999 25000 25001 25002 25003 25004 25005 25006 25007 25008 25009 25010 25011 25012 25013 25014 25015 25016 25017 25018 25019 25020 25021 25022 25023 25024 25025 25026 25027 25028 25029 25030 25031 25032 25033 25034 25035 25036 25037 25038 25039 25040 25041 25042 25043 25044 25045 25046 25047 25048 25049 25050 25051 25052 25053 25054 25055 25056 25057 25058 25059 25060 25061 25062 25063 25064 25065 25066 25067 25068 25069 25070 25071 25072 25073 25074 25075 25076 25077 25078 25079 25080 25081 25082 25083 25084 25085 25086 25087 25088 25089 25090 25091 25092 25093 25094 25095 25096 25097 25098 25099 25100 25101 25102 25103 25104 25105 25106 25107 25108 25109 25110 25111 25112 25113 25114 25115 25116 25117 25118 25119 25120 25121 25122 25123 25124 25125 25126 25127 25128 25129 25130 25131 25132 25133 25134 25135 25136 25137 25138 25139 25140 25141 25142 25143 25144 25145 25146 25147 25148 25149 25150 25151 25152 25153 25154 25155 25156 25157 25158 25159 25160 25161 25162 25163 25164 25165 25166 25167 25168 25169 25170 25171 25172 25173 25174 25175 25176 25177 25178 25179 25180 25181 25182 25183 25184 25185 25186 25187 25188 25189 25190 25191 25192 25193 25194 25195 25196 25197 25198 25199 25200 25201 25202 25203 25204 25205 25206 25207 25208 25209 25210 25211 25212 25213 25214 25215 25216 25217 25218 25219 25220 25221 25222 25223 25224 25225 25226 25227 25228 25229 25230 25231 25232 25233 25234 25235 25236 25237 25238 25239 25240 25241 25242 25243 25244 25245 25246 25247 25248 25249 25250 25251 25252 25253 25254 25255 25256 25257 25258 25259 25260 25261 25262 25263 25264 25265 25266 25267 25268 25269 25270 25271 25272 25273 25274 25275 25276 25277 25278 25279 25280 25281 25282 25283 25284 25285 25286 25287 25288 25289 25290 25291 25292 25293 25294 25295 25296 25297 25298 25299 25300 25301 25302 25303 25304 25305 25306 25307 25308 25309 25310 25311 25312 25313 25314 25315 25316 25317 25318 25319 25320 25321 25322 25323 25324 25325 25326 25327 25328 25329 25330 25331 25332 25333 25334 25335 25336 25337 25338 25339 25340 25341 25342 25343 25344 25345 25346 25347 25348 25349 25350 25351 25352 25353 25354 25355 25356 25357 25358 25359 25360 25361 25362 25363 25364 25365 25366 25367 25368 25369 25370 25371 25372 25373 25374 25375 25376 25377 25378 25379 25380 25381 25382 25383 25384 25385 25386 25387 25388 25389 25390 25391 25392 25393 25394 25395 25396 25397 25398 25399 25400 25401 25402 25403 25404 25405 25406 25407 25408 25409 25410 25411 25412 25413 25414 25415 25416 25417 25418 25419 25420 25421 25422 25423 25424 25425 25426 25427 25428 25429 25430 25431 25432 25433 25434 25435 25436 25437 25438 25439 25440 25441 25442 25443 25444 25445 25446 25447 25448 25449 25450 25451 25452 25453 25454 25455 25456 25457 25458 25459 25460 25461 25462 25463 25464 25465 25466 25467 25468 25469 25470 25471 25472 25473 25474 25475 25476 25477 25478 25479 25480 25481 25482 25483 25484 25485 25486 25487 25488 25489 25490 25491 25492 25493 25494 25495 25496 25497 25498 25499 25500 25501 25502 25503 25504 25505 25506 25507 25508 25509 25510 25511 25512 25513 25514 25515 25516 25517 25518 25519 25520 25521 25522 25523 25524 25525 25526 25527 25528 25529 25530 25531 25532 25533 25534 25535 25536 25537 25538 25539 25540 25541 25542 25543 25544 25545 25546 25547 25548 25549 25550 25551 25552 25553 25554 25555 25556 25557 25558 25559 25560 25561 25562 25563 25564 25565 25566 25567 25568 25569 25570 25571 25572 25573 25574 25575 25576 25577 25578 25579 25580 25581 25582 25583 25584 25585 25586 25587 25588 25589 25590 25591 25592 25593 25594 25595 25596 25597 25598 25599 25600 25601 25602 25603 25604 25605 25606 25607 25608 25609 25610 25611 25612 25613 25614 25615 25616 25617 25618 25619 25620 25621 25622 25623 25624 25625 25626 25627 25628 25629 25630 25631 25632 25633 25634 25635 25636 25637 25638 25639 25640 25641 25642 25643 25644 25645 25646 25647 25648 25649 25650 25651 25652 25653 25654 25655 25656 25657 25658 25659 25660 25661 25662 25663 25664 25665 25666 25667 25668 25669 25670 25671 25672 25673 25674 25675 25676 25677 25678 25679 25680 25681 25682 25683 25684 25685 25686 25687 25688 25689 25690 25691 25692 25693 25694 25695 25696 25697 25698 25699 25700 25701 25702 25703 25704 25705 25706 25707 25708 25709 25710 25711 25712 25713 25714 25715 25716 25717 25718 25719 25720 25721 25722 25723 25724 25725 25726 25727 25728 25729 25730 25731 25732 25733 25734 25735 25736 25737 25738 25739 25740 25741 25742 25743 25744 25745 25746 25747 25748 25749 25750 25751 25752 25753 25754 25755 25756 25757 25758 25759 25760 25761 25762 25763 25764 25765 25766 25767 25768 25769 25770 25771 25772 25773 25774 25775 25776 25777 25778 25779 25780 25781 25782 25783 25784 25785 25786 25787 25788 25789 25790 25791 25792 25793 25794 25795 25796 25797 25798 25799 25800 25801 25802 25803 25804 25805 25806 25807 25808 25809 25810 25811 25812 25813 25814 25815 25816 25817 25818 25819 25820 25821 25822 25823 25824 25825 25826 25827 25828 25829 25830 25831 25832 25833 25834 25835 25836 25837 25838 25839 25840 25841 25842 25843 25844 25845 25846 25847 25848 25849 25850 25851 25852 25853 25854 25855 25856 25857 25858 25859 25860 25861 25862 25863 25864 25865 25866 25867 25868 25869 25870 25871 25872 25873 25874 25875 25876 25877 25878 25879 25880 25881 25882 25883 25884 25885 25886 25887 25888 25889 25890 25891 25892 25893 25894 25895 25896 25897 25898 25899 25900 25901 25902 25903 25904 25905 25906 25907 25908 25909 25910 25911 25912 25913 25914 25915 25916 25917 25918 25919 25920 25921 25922 25923 25924 25925 25926 25927 25928 25929 25930 25931 25932 25933 25934 25935 25936 25937 25938 25939 25940 25941 25942 25943 25944 25945 25946 25947 25948 25949 25950 25951 25952 25953 25954 25955 25956 25957 25958 25959 25960 25961 25962 25963 25964 25965 25966 25967 25968 25969 25970 25971 25972 25973 25974 25975 25976 25977 25978 25979 25980 25981 25982 25983 25984 25985 25986 25987 25988 25989 25990 25991 25992 25993 25994 25995 25996 25997 25998 25999 26000 26001 26002 26003 26004 26005 26006 26007 26008 26009 26010 26011 26012 26013 26014 26015 26016 26017 26018 26019 26020 26021 26022 26023 26024 26025 26026 26027 26028 26029 26030 26031 26032 26033 26034 26035 26036 26037 26038 26039 26040 26041 26042 26043 26044 26045 26046 26047 26048 26049 26050 26051 26052 26053 26054 26055 26056 26057 26058 26059 26060 26061 26062 26063 26064 26065 26066 26067 26068 26069 26070 26071 26072 26073 26074 26075 26076 26077 26078 26079 26080 26081 26082 26083 26084 26085 26086 26087 26088 26089 26090 26091 26092 26093 26094 26095 26096 26097 26098 26099 26100 26101 26102 26103 26104 26105 26106 26107 26108 26109 26110 26111 26112 26113 26114 26115 26116 26117 26118 26119 26120 26121 26122 26123 26124 26125 26126 26127 26128 26129 26130 26131 26132 26133 26134 26135 26136 26137 26138 26139 26140 26141 26142 26143 26144 26145 26146 26147 26148 26149 26150 26151 26152 26153 26154 26155 26156 26157 26158 26159 26160 26161 26162 26163 26164 26165 26166 26167 26168 26169 26170 26171 26172 26173 26174 26175 26176 26177 26178 26179 26180 26181 26182 26183 26184 26185 26186 26187 26188 26189 26190 26191 26192 26193 26194 26195 26196 26197 26198 26199 26200 26201 26202 26203 26204 26205 26206 26207 26208 26209 26210 26211 26212 26213 26214 26215 26216 26217 26218 26219 26220 26221 26222 26223 26224 26225 26226 26227 26228 26229 26230 26231 26232 26233 26234 26235 26236 26237 26238 26239 26240 26241 26242 26243 26244 26245 26246 26247 26248 26249 26250 26251 26252 26253 26254 26255 26256 26257 26258 26259 26260 26261 26262 26263 26264 26265 26266 26267 26268 26269 26270 26271 26272 26273 26274 26275 26276 26277 26278 26279 26280 26281 26282 26283 26284 26285 26286 26287 26288 26289 26290 26291 26292 26293 26294 26295 26296 26297 26298 26299 26300 26301 26302 26303 26304 26305 26306 26307 26308 26309 26310 26311 26312 26313 26314 26315 26316 26317 26318 26319 26320 26321 26322 26323 26324 26325 26326 26327 26328 26329 26330 26331 26332 26333 26334 26335 26336 26337 26338 26339 26340 26341 26342 26343 26344 26345 26346 26347 26348 26349 26350 26351 26352 26353 26354 26355 26356 26357 26358 26359 26360 26361 26362 26363 26364 26365 26366 26367 26368 26369 26370 26371 26372 26373 26374 26375 26376 26377 26378 26379 26380 26381 26382 26383 26384 26385 26386 26387 26388 26389 26390 26391 26392 26393 26394 26395 26396 26397 26398 26399 26400 26401 26402 26403 26404 26405 26406 26407 26408 26409 26410 26411 26412 26413 26414 26415 26416 26417 26418 26419 26420 26421 26422 26423 26424 26425 26426 26427 26428 26429 26430 26431 26432 26433 26434 26435 26436 26437 26438 26439 26440 26441 26442 26443 26444 26445 26446 26447 26448 26449 26450 26451 26452 26453 26454 26455 26456 26457 26458 26459 26460 26461 26462 26463 26464 26465 26466 26467 26468 26469 26470 26471 26472 26473 26474 26475 26476 26477 26478 26479 26480 26481 26482 26483 26484 26485 26486 26487 26488 26489 26490 26491 26492 26493 26494 26495 26496 26497 26498 26499 26500 26501 26502 26503 26504 26505 26506 26507 26508 26509 26510 26511 26512 26513 26514 26515 26516 26517 26518 26519 26520 26521 26522 26523 26524 26525 26526 26527 26528 26529 26530 26531 26532 26533 26534 26535 26536 26537 26538 26539 26540 26541 26542 26543 26544 26545 26546 26547 26548 26549 26550 26551 26552 26553 26554 26555 26556 26557 26558 26559 26560 26561 26562 26563 26564 26565 26566 26567 26568 26569 26570 26571 26572 26573 26574 26575 26576 26577 26578 26579 26580 26581 26582 26583 26584 26585 26586 26587 26588 26589 26590 26591 26592 26593 26594 26595 26596 26597 26598 26599 26600 26601 26602 26603 26604 26605 26606 26607 26608 26609 26610 26611 26612 26613 26614 26615 26616 26617 26618 26619 26620 26621 26622 26623 26624 26625 26626 26627 26628 26629 26630 26631 26632 26633 26634 26635 26636 26637 26638 26639 26640 26641 26642 26643 26644 26645 26646 26647 26648 26649 26650 26651 26652 26653 26654 26655 26656 26657 26658 26659 26660 26661 26662 26663 26664 26665 26666 26667 26668 26669 26670 26671 26672 26673 26674 26675 26676 26677 26678 26679 26680 26681 26682 26683 26684 26685 26686 26687 26688 26689 26690 26691 26692 26693 26694 26695 26696 26697 26698 26699 26700 26701 26702 26703 26704 26705 26706 26707 26708 26709 26710 26711 26712 26713 26714 26715 26716 26717 26718 26719 26720 26721 26722 26723 26724 26725 26726 26727 26728 26729 26730 26731 26732 26733 26734 26735 26736 26737 26738 26739 26740 26741 26742 26743 26744 26745 26746 26747 26748 26749 26750 26751 26752 26753 26754 26755 26756 26757 26758 26759 26760 26761 26762 26763 26764 26765 26766 26767 26768 26769 26770 26771 26772 26773 26774 26775 26776 26777 26778 26779 26780 26781 26782 26783 26784 26785 26786 26787 26788 26789 26790 26791 26792 26793 26794 26795 26796 26797 26798 26799 26800 26801 26802 26803 26804 26805 26806 26807 26808 26809 26810 26811 26812 26813 26814 26815 26816 26817 26818 26819 26820 26821 26822 26823 26824 26825 26826 26827 26828 26829 26830 26831 26832 26833 26834 26835 26836 26837 26838 26839 26840 26841 26842 26843 26844 26845 26846 26847 26848 26849 26850 26851 26852 26853 26854 26855 26856 26857 26858 26859 26860 26861 26862 26863 26864 26865 26866 26867 26868 26869 26870 26871 26872 26873 26874 26875 26876 26877 26878 26879 26880 26881 26882 26883 26884 26885 26886 26887 26888 26889 26890 26891 26892 26893 26894 26895 26896 26897 26898 26899 26900 26901 26902 26903 26904 26905 26906 26907 26908 26909 26910 26911 26912 26913 26914 26915 26916 26917 26918 26919 26920 26921 26922 26923 26924 26925 26926 26927 26928 26929 26930 26931 26932 26933 26934 26935 26936 26937 26938 26939 26940 26941 26942 26943 26944 26945 26946 26947 26948 26949 26950 26951 26952 26953 26954 26955 26956 26957 26958 26959 26960 26961 26962 26963 26964 26965 26966 26967 26968 26969 26970 26971 26972 26973 26974 26975 26976 26977 26978 26979 26980 26981 26982 26983 26984 26985 26986 26987 26988 26989 26990 26991 26992 26993 26994 26995 26996 26997 26998 26999 27000 27001 27002 27003 27004 27005 27006 27007 27008 27009 27010 27011 27012 27013 27014 27015 27016 27017 27018 27019 27020 27021 27022 27023 27024 27025 27026 27027 27028 27029 27030 27031 27032 27033 27034 27035 27036 27037 27038 27039 27040 27041 27042 27043 27044 27045 27046 27047 27048 27049 27050 27051 27052 27053 27054 27055 27056 27057 27058 27059 27060 27061 27062 27063 27064 27065 27066 27067 27068 27069 27070 27071 27072 27073 27074 27075 27076 27077 27078 27079 27080 27081 27082 27083 27084 27085 27086 27087 27088 27089 27090 27091 27092 27093 27094 27095 27096 27097 27098 27099 27100 27101 27102 27103 27104 27105 27106 27107 27108 27109 27110 27111 27112 27113 27114 27115 27116 27117 27118 27119 27120 27121 27122 27123 27124 27125 27126 27127 27128 27129 27130 27131 27132 27133 27134 27135 27136 27137 27138 27139 27140 27141 27142 27143 27144 27145 27146 27147 27148 27149 27150 27151 27152 27153 27154 27155 27156 27157 27158 27159 27160 27161 27162 27163 27164 27165 27166 27167 27168 27169 27170 27171 27172 27173 27174 27175 27176 27177 27178 27179 27180 27181 27182 27183 27184 27185 27186 27187 27188 27189 27190 27191 27192 27193 27194 27195 27196 27197 27198 27199 27200 27201 27202 27203 27204 27205 27206 27207 27208 27209 27210 27211 27212 27213 27214 27215 27216 27217 27218 27219 27220 27221 27222 27223 27224 27225 27226 27227 27228 27229 27230 27231 27232 27233 27234 27235 27236 27237 27238 27239 27240 27241 27242 27243 27244 27245 27246 27247 27248 27249 27250 27251 27252 27253 27254 27255 27256 27257 27258 27259 27260 27261 27262 27263 27264 27265 27266 27267 27268 27269 27270 27271 27272 27273 27274 27275 27276 27277 27278 27279 27280 27281 27282 27283 27284 27285 27286 27287 27288 27289 27290 27291 27292 27293 27294 27295 27296 27297 27298 27299 27300 27301 27302 27303 27304 27305 27306 27307 27308 27309 27310 27311 27312 27313 27314 27315 27316 27317 27318 27319 27320 27321 27322 27323 27324 27325 27326 27327 27328 27329 27330 27331 27332 27333 27334 27335 27336 27337 27338 27339 27340 27341 27342 27343 27344 27345 27346 27347 27348 27349 27350 27351 27352 27353 27354 27355 27356 27357 27358 27359 27360 27361 27362 27363 27364 27365 27366 27367 27368 27369 27370 27371 27372 27373 27374 27375 27376 27377 27378 27379 27380 27381 27382 27383 27384 27385 27386 27387 27388 27389 27390 27391 27392 27393 27394 27395 27396 27397 27398 27399 27400 27401 27402 27403 27404 27405 27406 27407 27408 27409 27410 27411 27412 27413 27414 27415 27416 27417 27418 27419 27420 27421 27422 27423 27424 27425 27426 27427 27428 27429 27430 27431 27432 27433 27434 27435 27436 27437 27438 27439 27440 27441 27442 27443 27444 27445 27446 27447 27448 27449 27450 27451 27452 27453 27454 27455 27456 27457 27458 27459 27460 27461 27462 27463 27464 27465 27466 27467 27468 27469 27470 27471 27472 27473 27474 27475 27476 27477 27478 27479 27480 27481 27482 27483 27484 27485 27486 27487 27488 27489 27490 27491 27492 27493 27494 27495 27496 27497 27498 27499 27500 27501 27502 27503 27504 27505 27506 27507 27508 27509 27510 27511 27512 27513 27514 27515 27516 27517 27518 27519 27520 27521 27522 27523 27524 27525 27526 27527 27528 27529 27530 27531 27532 27533 27534 27535 27536 27537 27538 27539 27540 27541 27542 27543 27544 27545 27546 27547 27548 27549 27550 27551 27552 27553 27554 27555 27556 27557 27558 27559 27560 27561 27562 27563 27564 27565 27566 27567 27568 27569 27570 27571 27572 27573 27574 27575 27576 27577 27578 27579 27580 27581 27582 27583 27584 27585 27586 27587 27588 27589 27590 27591 27592 27593 27594 27595 27596 27597 27598 27599 27600 27601 27602 27603 27604 27605 27606 27607 27608 27609 27610 27611 27612 27613 27614 27615 27616 27617 27618 27619 27620 27621 27622 27623 27624 27625 27626 27627 27628 27629 27630 27631 27632 27633 27634 27635 27636 27637 27638 27639 27640 27641 27642 27643 27644 27645 27646 27647 27648 27649 27650 27651 27652 27653 27654 27655 27656 27657 27658 27659 27660 27661 27662 27663 27664 27665 27666 27667 27668 27669 27670 27671 27672 27673 27674 27675 27676 27677 27678 27679 27680 27681 27682 27683 27684 27685 27686 27687 27688 27689 27690 27691 27692 27693 27694 27695 27696 27697 27698 27699 27700 27701 27702 27703 27704 27705 27706 27707 27708 27709 27710 27711 27712 27713 27714 27715 27716 27717 27718 27719 27720 27721 27722 27723 27724 27725 27726 27727 27728 27729 27730 27731 27732 27733 27734 27735 27736 27737 27738 27739 27740 27741 27742 27743 27744 27745 27746 27747 27748 27749 27750 27751 27752 27753 27754 27755 27756 27757 27758 27759 27760 27761 27762 27763 27764 27765 27766 27767 27768 27769 27770 27771 27772 27773 27774 27775 27776 27777 27778 27779 27780 27781 27782 27783 27784 27785 27786 27787 27788 27789 27790 27791 27792 27793 27794 27795 27796 27797 27798 27799 27800 27801 27802 27803 27804 27805 27806 27807 27808 27809 27810 27811 27812 27813 27814 27815 27816 27817 27818 27819 27820 27821 27822 27823 27824 27825 27826 27827 27828 27829 27830 27831 27832 27833 27834 27835 27836 27837 27838 27839 27840 27841 27842 27843 27844 27845 27846 27847 27848 27849 27850 27851 27852 27853 27854 27855 27856 27857 27858 27859 27860 27861 27862 27863 27864 27865 27866 27867 27868 27869 27870 27871 27872 27873 27874 27875 27876 27877 27878 27879 27880 27881 27882 27883 27884 27885 27886 27887 27888 27889 27890 27891 27892 27893 27894 27895 27896 27897 27898 27899 27900 27901 27902 27903 27904 27905 27906 27907 27908 27909 27910 27911 27912 27913 27914 27915 27916 27917 27918 27919 27920 27921 27922 27923 27924 27925 27926 27927 27928 27929 27930 27931 27932 27933 27934 27935 27936 27937 27938 27939 27940 27941 27942 27943 27944 27945 27946 27947 27948 27949 27950 27951 27952 27953 27954 27955 27956 27957 27958 27959 27960 27961 27962 27963 27964 27965 27966 27967 27968 27969 27970 27971 27972 27973 27974 27975 27976 27977 27978 27979 27980 27981 27982 27983 27984 27985 27986 27987 27988 27989 27990 27991 27992 27993 27994 27995 27996 27997 27998 27999 28000 28001 28002 28003 28004 28005 28006 28007 28008 28009 28010 28011 28012 28013 28014 28015 28016 28017 28018 28019 28020 28021 28022 28023 28024 28025 28026 28027 28028 28029 28030 28031 28032 28033 28034 28035 28036 28037 28038 28039 28040 28041 28042 28043 28044 28045 28046 28047 28048 28049 28050 28051 28052 28053 28054 28055 28056 28057 28058 28059 28060 28061 28062 28063 28064 28065 28066 28067 28068 28069 28070 28071 28072 28073 28074 28075 28076 28077 28078 28079 28080 28081 28082 28083 28084 28085 28086 28087 28088 28089 28090 28091 28092 28093 28094 28095 28096 28097 28098 28099 28100 28101 28102 28103 28104 28105 28106 28107 28108 28109 28110 28111 28112 28113 28114 28115 28116 28117 28118 28119 28120 28121 28122 28123 28124 28125 28126 28127 28128 28129 28130 28131 28132 28133 28134 28135 28136 28137 28138 28139 28140 28141 28142 28143 28144 28145 28146 28147 28148 28149 28150 28151 28152 28153 28154 28155 28156 28157 28158 28159 28160 28161 28162 28163 28164 28165 28166 28167 28168 28169 28170 28171 28172 28173 28174 28175 28176 28177 28178 28179 28180 28181 28182 28183 28184 28185 28186 28187 28188 28189 28190 28191 28192 28193 28194 28195 28196 28197 28198 28199 28200 28201 28202 28203 28204 28205 28206 28207 28208 28209 28210 28211 28212 28213 28214 28215 28216 28217 28218 28219 28220 28221 28222 28223 28224 28225 28226 28227 28228 28229 28230 28231 28232 28233 28234 28235 28236 28237 28238 28239 28240 28241 28242 28243 28244 28245 28246 28247 28248 28249 28250 28251 28252 28253 28254 28255 28256 28257 28258 28259 28260 28261 28262 28263 28264 28265 28266 28267 28268 28269 28270 28271 28272 28273 28274 28275 28276 28277 28278 28279 28280 28281 28282 28283 28284 28285 28286 28287 28288 28289 28290 28291 28292 28293 28294 28295 28296 28297 28298 28299 28300 28301 28302 28303 28304 28305 28306 28307 28308 28309 28310 28311 28312 28313 28314 28315 28316 28317 28318 28319 28320 28321 28322 28323 28324 28325 28326 28327 28328 28329 28330 28331 28332 28333 28334 28335 28336 28337 28338 28339 28340 28341 28342 28343 28344 28345 28346 28347 28348 28349 28350 28351 28352 28353 28354 28355 28356 28357 28358 28359 28360 28361 28362 28363 28364 28365 28366 28367 28368 28369 28370 28371 28372 28373 28374 28375 28376 28377 28378 28379 28380 28381 28382 28383 28384 28385 28386 28387 28388 28389 28390 28391 28392 28393 28394 28395 28396 28397 28398 28399 28400 28401 28402 28403 28404 28405 28406 28407 28408 28409 28410 28411 28412 28413 28414 28415 28416 28417 28418 28419 28420 28421 28422 28423 28424 28425 28426 28427 28428 28429 28430 28431 28432 28433 28434 28435 28436 28437 28438 28439 28440 28441 28442 28443 28444 28445 28446 28447 28448 28449 28450 28451 28452 28453 28454 28455 28456 28457 28458 28459 28460 28461 28462 28463 28464 28465 28466 28467 28468 28469 28470 28471 28472 28473 28474 28475 28476 28477 28478 28479 28480 28481 28482 28483 28484 28485 28486 28487 28488 28489 28490 28491 28492 28493 28494 28495 28496 28497 28498 28499 28500 28501 28502 28503 28504 28505 28506 28507 28508 28509 28510 28511 28512 28513 28514 28515 28516 28517 28518 28519 28520 28521 28522 28523 28524 28525 28526 28527 28528 28529 28530 28531 28532 28533 28534 28535 28536 28537 28538 28539 28540 28541 28542 28543 28544 28545 28546 28547 28548 28549 28550 28551 28552 28553 28554 28555 28556 28557 28558 28559 28560 28561 28562 28563 28564 28565 28566 28567 28568 28569 28570 28571 28572 28573 28574 28575 28576 28577 28578 28579 28580 28581 28582 28583 28584 28585 28586 28587 28588 28589 28590 28591 28592 28593 28594 28595 28596 28597 28598 28599 28600 28601 28602 28603 28604 28605 28606 28607 28608 28609 28610 28611 28612 28613 28614 28615 28616 28617 28618 28619 28620 28621 28622 28623 28624 28625 28626 28627 28628 28629 28630 28631 28632 28633 28634 28635 28636 28637 28638 28639 28640 28641 28642 28643 28644 28645 28646 28647 28648 28649 28650 28651 28652 28653 28654 28655 28656 28657 28658 28659 28660 28661 28662 28663 28664 28665 28666 28667 28668 28669 28670 28671 28672 28673 28674 28675 28676 28677 28678 28679 28680 28681 28682 28683 28684 28685 28686 28687 28688 28689 28690 28691 28692 28693 28694 28695 28696 28697 28698 28699 28700 28701 28702 28703 28704 28705 28706 28707 28708 28709 28710 28711 28712 28713 28714 28715 28716 28717 28718 28719 28720 28721 28722 28723 28724 28725 28726 28727 28728 28729 28730 28731 28732 28733 28734 28735 28736 28737 28738 28739 28740 28741 28742 28743 28744 28745 28746 28747 28748 28749 28750 28751 28752 28753 28754 28755 28756 28757 28758 28759 28760 28761 28762 28763 28764 28765 28766 28767 28768 28769 28770 28771 28772 28773 28774 28775 28776 28777 28778 28779 28780 28781 28782 28783 28784 28785 28786 28787 28788 28789 28790 28791 28792 28793 28794 28795 28796 28797 28798 28799 28800 28801 28802 28803 28804 28805 28806 28807 28808 28809 28810 28811 28812 28813 28814 28815 28816 28817 28818 28819 28820 28821 28822 28823 28824 28825 28826 28827 28828 28829 28830 28831 28832 28833 28834 28835 28836 28837 28838 28839 28840 28841 28842 28843 28844 28845 28846 28847 28848 28849 28850 28851 28852 28853 28854 28855 28856 28857 28858 28859 28860 28861 28862 28863 28864 28865 28866 28867 28868 28869 28870 28871 28872 28873 28874 28875 28876 28877 28878 28879 28880 28881 28882 28883 28884 28885 28886 28887 28888 28889 28890 28891 28892 28893 28894 28895 28896 28897 28898 28899 28900 28901 28902 28903 28904 28905 28906 28907 28908 28909 28910 28911 28912 28913 28914 28915 28916 28917 28918 28919 28920 28921 28922 28923 28924 28925 28926 28927 28928 28929 28930 28931 28932 28933 28934 28935 28936 28937 28938 28939 28940 28941 28942 28943 28944 28945 28946 28947 28948 28949 28950 28951 28952 28953 28954 28955 28956 28957 28958 28959 28960 28961 28962 28963 28964 28965 28966 28967 28968 28969 28970 28971 28972 28973 28974 28975 28976 28977 28978 28979 28980 28981 28982 28983 28984 28985 28986 28987 28988 28989 28990 28991 28992 28993 28994 28995 28996 28997 28998 28999 29000 29001 29002 29003 29004 29005 29006 29007 29008 29009 29010 29011 29012 29013 29014 29015 29016 29017 29018 29019 29020 29021 29022 29023 29024 29025 29026 29027 29028 29029 29030 29031 29032 29033 29034 29035 29036 29037 29038 29039 29040 29041 29042 29043 29044 29045 29046 29047 29048 29049 29050 29051 29052 29053 29054 29055 29056 29057 29058 29059 29060 29061 29062 29063 29064 29065 29066 29067 29068 29069 29070 29071 29072 29073 29074 29075 29076 29077 29078 29079 29080 29081 29082 29083 29084 29085 29086 29087 29088 29089 29090 29091 29092 29093 29094 29095 29096 29097 29098 29099 29100 29101 29102 29103 29104 29105 29106 29107 29108 29109 29110 29111 29112 29113 29114 29115 29116 29117 29118 29119 29120 29121 29122 29123 29124 29125 29126 29127 29128 29129 29130 29131 29132 29133 29134 29135 29136 29137 29138 29139 29140 29141 29142 29143 29144 29145 29146 29147 29148 29149 29150 29151 29152 29153 29154 29155 29156 29157 29158 29159 29160 29161 29162 29163 29164 29165 29166 29167 29168 29169 29170 29171 29172 29173 29174 29175 29176 29177 29178 29179 29180 29181 29182 29183 29184 29185 29186 29187 29188 29189 29190 29191 29192 29193 29194 29195 29196 29197 29198 29199 29200 29201 29202 29203 29204 29205 29206 29207 29208 29209 29210 29211 29212 29213 29214 29215 29216 29217 29218 29219 29220 29221 29222 29223 29224 29225 29226 29227 29228 29229 29230 29231 29232 29233 29234 29235 29236 29237 29238 29239 29240 29241 29242 29243 29244 29245 29246 29247 29248 29249 29250 29251 29252 29253 29254 29255 29256 29257 29258 29259 29260 29261 29262 29263 29264 29265 29266 29267 29268 29269 29270 29271 29272 29273 29274 29275 29276 29277 29278 29279 29280 29281 29282 29283 29284 29285 29286 29287 29288 29289 29290 29291 29292 29293 29294 29295 29296 29297 29298 29299 29300 29301 29302 29303 29304 29305 29306 29307 29308 29309 29310 29311 29312 29313 29314 29315 29316 29317 29318 29319 29320 29321 29322 29323 29324 29325 29326 29327 29328 29329 29330 29331 29332 29333 29334 29335 29336 29337 29338 29339 29340 29341 29342 29343 29344 29345 29346 29347 29348 29349 29350 29351 29352 29353 29354 29355 29356 29357 29358 29359 29360 29361 29362 29363 29364 29365 29366 29367 29368 29369 29370 29371 29372 29373 29374 29375 29376 29377 29378 29379 29380 29381 29382 29383 29384 29385 29386 29387 29388 29389 29390 29391 29392 29393 29394 29395 29396 29397 29398 29399 29400 29401 29402 29403 29404 29405 29406 29407 29408 29409 29410 29411 29412 29413 29414 29415 29416 29417 29418 29419 29420 29421 29422 29423 29424 29425 29426 29427 29428 29429 29430 29431 29432 29433 29434 29435 29436 29437 29438 29439 29440 29441 29442 29443 29444 29445 29446 29447 29448 29449 29450 29451 29452 29453 29454 29455 29456 29457 29458 29459 29460 29461 29462 29463 29464 29465 29466 29467 29468 29469 29470 29471 29472 29473 29474 29475 29476 29477 29478 29479 29480 29481 29482 29483 29484 29485 29486 29487 29488 29489 29490 29491 29492 29493 29494 29495 29496 29497 29498 29499 29500 29501 29502 29503 29504 29505 29506 29507 29508 29509 29510 29511 29512 29513 29514 29515 29516 29517 29518 29519 29520 29521 29522 29523 29524 29525 29526 29527 29528 29529 29530 29531 29532 29533 29534 29535 29536 29537 29538 29539 29540 29541 29542 29543 29544 29545 29546 29547 29548 29549 29550 29551 29552 29553 29554 29555 29556 29557 29558 29559 29560 29561 29562 29563 29564 29565 29566 29567 29568 29569 29570 29571 29572 29573 29574 29575 29576 29577 29578 29579 29580 29581 29582 29583 29584 29585 29586 29587 29588 29589 29590 29591 29592 29593 29594 29595 29596 29597 29598 29599 29600 29601 29602 29603 29604 29605 29606 29607 29608 29609 29610 29611 29612 29613 29614 29615 29616 29617 29618 29619 29620 29621 29622 29623 29624 29625 29626 29627 29628 29629 29630 29631 29632 29633 29634 29635 29636 29637 29638 29639 29640 29641 29642 29643 29644 29645 29646 29647 29648 29649 29650 29651 29652 29653 29654 29655 29656 29657 29658 29659 29660 29661 29662 29663 29664 29665 29666 29667 29668 29669 29670 29671 29672 29673 29674 29675 29676 29677 29678 29679 29680 29681 29682 29683 29684 29685 29686 29687 29688 29689 29690 29691 29692 29693 29694 29695 29696 29697 29698 29699 29700 29701 29702 29703 29704 29705 29706 29707 29708 29709 29710 29711 29712 29713 29714 29715 29716 29717 29718 29719 29720 29721 29722 29723 29724 29725 29726 29727 29728 29729 29730 29731 29732 29733 29734 29735 29736 29737 29738 29739 29740 29741 29742 29743 29744 29745 29746 29747 29748 29749 29750 29751 29752 29753 29754 29755 29756 29757 29758 29759 29760 29761 29762 29763 29764 29765 29766 29767 29768 29769 29770 29771 29772 29773 29774 29775 29776 29777 29778 29779 29780 29781 29782 29783 29784 29785 29786 29787 29788 29789 29790 29791 29792 29793 29794 29795 29796 29797 29798 29799 29800 29801 29802 29803 29804 29805 29806 29807 29808 29809 29810 29811 29812 29813 29814 29815 29816 29817 29818 29819 29820 29821 29822 29823 29824 29825 29826 29827 29828 29829 29830 29831 29832 29833 29834 29835 29836 29837 29838 29839 29840 29841 29842 29843 29844 29845 29846 29847 29848 29849 29850 29851 29852 29853 29854 29855 29856 29857 29858 29859 29860 29861 29862 29863 29864 29865 29866 29867 29868 29869 29870 29871 29872 29873 29874 29875 29876 29877 29878 29879 29880 29881 29882 29883 29884 29885 29886 29887 29888 29889 29890 29891 29892 29893 29894 29895 29896 29897 29898 29899 29900 29901 29902 29903 29904 29905 29906 29907 29908 29909 29910 29911 29912 29913 29914 29915 29916 29917 29918 29919 29920 29921 29922 29923 29924 29925 29926 29927 29928 29929 29930 29931 29932 29933 29934 29935 29936 29937 29938 29939 29940 29941 29942 29943 29944 29945 29946 29947 29948 29949 29950 29951 29952 29953 29954 29955 29956 29957 29958 29959 29960 29961 29962 29963 29964 29965 29966 29967 29968 29969 29970 29971 29972 29973 29974 29975 29976 29977 29978 29979 29980 29981 29982 29983 29984 29985 29986 29987 29988 29989 29990 29991 29992 29993 29994 29995 29996 29997 29998 29999 30000 30001 30002 30003 30004 30005 30006 30007 30008 30009 30010 30011 30012 30013 30014 30015 30016 30017 30018 30019 30020 30021 30022 30023 30024 30025 30026 30027 30028 30029 30030 30031 30032 30033 30034 30035 30036 30037 30038 30039 30040 30041 30042 30043 30044 30045 30046 30047 30048 30049 30050 30051 30052 30053 30054 30055 30056 30057 30058 30059 30060 30061 30062 30063 30064 30065 30066 30067 30068 30069 30070 30071 30072 30073 30074 30075 30076 30077 30078 30079 30080 30081 30082 30083 30084 30085 30086 30087 30088 30089 30090 30091 30092 30093 30094 30095 30096 30097 30098 30099 30100 30101 30102 30103 30104 30105 30106 30107 30108 30109 30110 30111 30112 30113 30114 30115 30116 30117 30118 30119 30120 30121 30122 30123 30124 30125 30126 30127 30128 30129 30130 30131 30132 30133 30134 30135 30136 30137 30138 30139 30140 30141 30142 30143 30144 30145 30146 30147 30148 30149 30150 30151 30152 30153 30154 30155 30156 30157 30158 30159 30160 30161 30162 30163 30164 30165 30166 30167 30168 30169 30170 30171 30172 30173 30174 30175 30176 30177 30178 30179 30180 30181 30182 30183 30184 30185 30186 30187 30188 30189 30190 30191 30192 30193 30194 30195 30196 30197 30198 30199 30200 30201 30202 30203 30204 30205 30206 30207 30208 30209 30210 30211 30212 30213 30214 30215 30216 30217 30218 30219 30220 30221 30222 30223 30224 30225 30226 30227 30228 30229 30230 30231 30232 30233 30234 30235 30236 30237 30238 30239 30240 30241 30242 30243 30244 30245 30246 30247 30248 30249 30250 30251 30252 30253 30254 30255 30256 30257 30258 30259 30260 30261 30262 30263 30264 30265 30266 30267 30268 30269 30270 30271 30272 30273 30274 30275 30276 30277 30278 30279 30280 30281 30282 30283 30284 30285 30286 30287 30288 30289 30290 30291 30292 30293 30294 30295 30296 30297 30298 30299 30300 30301 30302 30303 30304 30305 30306 30307 30308 30309 30310 30311 30312 30313 30314 30315 30316 30317 30318 30319 30320 30321 30322 30323 30324 30325 30326 30327 30328 30329 30330 30331 30332 30333 30334 30335 30336 30337 30338 30339 30340 30341 30342 30343 30344 30345 30346 30347 30348 30349 30350 30351 30352 30353 30354 30355 30356 30357 30358 30359 30360 30361 30362 30363 30364 30365 30366 30367 30368 30369 30370 30371 30372 30373 30374 30375 30376 30377 30378 30379 30380 30381 30382 30383 30384 30385 30386 30387 30388 30389 30390 30391 30392 30393 30394 30395 30396 30397 30398 30399 30400 30401 30402 30403 30404 30405 30406 30407 30408 30409 30410 30411 30412 30413 30414 30415 30416 30417 30418 30419
|
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
<meta name="author" content="Lutz Mueller"/>
<meta name="keywords" content="newLISP Lisp SCHEME programming language
manual reference Artificial Intelligence AI NUEVATEC"/>
<meta name="description" content="newLISP User Manual and Reference"/>
<title>newLISP v.10.7.5 Manual and Reference</title>
<style type="text/css" media="screen">
.divider {
margin-top: 2em;
margin-bottom: 1em;
font-family: Times New Roman, Times, serif;
color: #ffAA28;
}
.title {
font-family:Optima, Georgia, Times New Roman, Times, serif;
font-size: 500%;
color: #404040;
}
span.arw {
color:#303030;
font-size: 100%;
font-weight: bold;
}
span.err {
color:#cc0000;
}
span.function {
font-family: Verdana, Lucida Sans, Helvetica, sans-serif;
color:#dd0000;
}
span.gnu {
font-family: Verdana, Lucida Sans, Helvetica, sans-serif;
color:#dd0000;
}
h4 {
font-family: Verdana, Lucida Sans, Helvetica, sans-serif;
color: #404040;
}
b {
font-family: Verdana, Lucida Sans, Helvetica, sans-serif;
color: #606060;
font-weight: 600;
}
body, h1, h2, h3 {
font-family: Helvetica, sans-serif;
color: #404040;
line-height: 120%;
}
h1, h2, h3 {
font-family: Helvetica, sans-serif;
color: #101010;
line-height: 120%;
font-weight: 100;
}
p {
font-family: Helvetica Neue, Verdana, Lucida Sans, sans-serif;
color: #404040;
line-height: 120%;
}
table {
margin: 0px;
margin-left: 10px;
border-style: solid;
border-color: #888888;
border-width: 0px;
padding: 0px;
background: #f8ffff;
font-size: 95%;
}
th {
border-style: solid;
border-width: 1px;
border-color: #888888;
padding: 3px;
background: #eeeeee;
font-size: 100%;
}
td {
border-style: solid;
border-width: 1px;
border-color: #888888;
padding: 3px;
background: #f8ffff;
font-size: 100%;
}
pre {
margin: 0px;
margin-left: 10px;
margin-right: 10px;
border-style: dashed;
border-width: 1px;
border-color: #888888;
padding: 4px;
font-family: Andale Mono, "Bitstream Vera Sans Mono", Monaco, "Courier New";
font-size: 90%;
background: #f8ffff;
}
tt {
font-family: Andale Mono, "Bitstream Vera Sans Mono", Monaco, "Courier New";
font-size: 100%;
}
.license {
margin: 30px;
}
</style>
</head>
<body text="#000000" bgcolor="#FFFFFF" link="#376590" vlink="#551A8B" alink="#ffAA28">
<br/><br/><br/><br/><br/><br/><br/><br/><br/>
<center>
<span class="title">newLISP<font size='3'>®</font></span>
</center>
<br/>
<center>
<b>For macOS, GNU Linux, Unix and Windows</b>
</center>
<center>
<h2>User Manual and Reference v.10.7.5</h2>
</center>
<br/><br/><br/><br/>
<center>
<span style="line-height:80%;">
<font size='1'>
<br/>Copyright © 2019 Lutz Mueller <a href="http://www.nuevatec.com">www.nuevatec.com</a>.
All rights reserved.<br/><br/>
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License,<br/> Version 1.2 or any later version
published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,<br/>
and no Back-Cover Texts. A copy of the license is included in the section entitled
<a href="#GNUFDL">GNU Free Documentation License</a>.<br/>
The accompanying software is protected by the
<a href="#GNUGPL">GNU General Public License</a> V.3, June 2007.<br/>
newLISP is a registered trademark of Lutz Mueller.
</font>
</span>
</center>
<br/><br/><br/>
<center><h1>Contents</h1></center>
<h3><a href="#users_manual">User Manual</a></h3>
<ol>
<li><a href="#introduction">Introduction</a></li>
<li><a href="#deprecated">Deprecated functions and future changes</a></li>
<li><a href="#REPL">Interactive Lisp mode</a></li>
<li><a href="#options">Command line options</a>
<ul>
<li><a href="#cmd_help">Command line help summary</a></li>
<li><a href="#url_files">Specifying files as URLs</a></li>
<li><a href="#no_init">No loading of init.lsp</a></li>
<li><a href="#stack_size">Stack size</a></li>
<li><a href="#max_mem">Maximum memory usage</a></li>
<li><a href="#direct_exec">Direct execution mode</a></li>
<li><a href="#logging">Logging I/O</a></li>
<li><a href="#working_dir">Specifying the working directory</a></li>
<li><a href="#tcpip_server">newLISP as a TCP/IP server</a></li>
<li><a href="#daemon">TCP/IP daemon mode</a></li>
<li><a href="#prompt">Suppressing the prompt and HTTP processing</a></li>
<li><a href="#forcing_prompt">Forcing prompts in pipe I/O mode</a></li>
<li><a href="#http_mode">HTTP only server mode</a></li>
<li><a href="#local_domain_server">Local domain Unix socket server</a></li>
<li><a href="#conn_timeout">Connection timeout</a></li>
<li><a href="#inetd_daemon"><tt>inetd</tt> daemon mode</a></li>
<li><a href="#link">Linking a source file with newLISP for a new executable</a></li>
</ul>
</li>
<li><a href="#startup">Startup, directories, environment</a>
<ul>
<li><a href="#environment">Environment variable NEWLISPDIR</a></li>
<li><a href="#initialization">The initialization file <tt>init.lsp</tt></a></li>
<li><a href="#directories_unix">Directories on Linux, BSD, macOS</a></li>
<li><a href="#directories_win">Directories on MS Windows</a></li>
</ul>
</li>
<li><a href="#shared-lib">Extending newLISP with shared libraries</a></li>
<li><a href="#newlisp-lib">newLISP as a shared library</a></li>
<ul>
<li><a href="#newlisp-lib">newLISP as a C library</a></li>
<li><a href="#newlisp-js-lib">newLISP as a JavaScript library</a></li>
</ul>
<li><a href="#expressions">Evaluating newLISP expressions</a>
<ul>
<li><a href="#multiline">Interactive multiline expressions</a></li>
<li><a href="#int_float">Integer, floating point data and operators</a></li>
<li><a href="#big_int">Big integer, unlimited precision arithmetic</a></li>
<li><a href="#eval_rules">Evaluation rules and data types</a></li>
</ul>
</li>
<li><a href="#lambda_expressions">Lambda expressions in newLISP</a></li>
<li><a href="#nil_and_true"><tt>nil</tt>, <tt>true</tt>, <tt>cons</tt> and <tt>()</tt> in newLISP</a></li>
<li><a href="#arrays">Arrays</a></li>
<li><a href="#indexing">Indexing elements of strings, lists and arrays</a>
<ul>
<li><a href="#implicit_indexing">Implicit indexing for <tt>nth</tt></a></li>
<li><a href="#implicit_default">Implicit indexing and the default functor</a></li>
<li><a href="#implicit_rest_slice">Implicit indexing for <tt>rest</tt> and <tt>slice</tt></a></li>
<li><a href="#implicit_modify">Modify references in lists, arrays and strings</a></li>
</ul>
</li>
<li><a href="#destructive">Destructive versus non-destructive functions</a>
<ul>
<li><a href="#make_nondestructive">Make a destructive function non-destructive</a></li>
</ul>
</li>
<li><a href="#return">Early return from functions, loops, blocks</a>
<ul>
<li><a href="#flow_catch_throw">Using <tt>catch</tt> and <tt>throw</tt></a></li>
<li><a href="#flow_and_or">Using <tt>and</tt> and <tt>or</tt></a></li>
</ul>
</li>
<li><a href="#scoping">Dynamic and lexical scoping</a></li>
<li><a href="#contexts">Contexts</a>
<ul>
<li><a href="#context_rules">Symbol creation in contexts</a></li>
<li><a href="#creating_contexts">Creating contexts</a></li>
<li><a href="#scope_global">Global scope</a></li>
<li><a href="#protection">Symbol protection</a></li>
<li><a href="#overwrite">Overwriting global symbols and built-ins</a></li>
<li><a href="#context_vars">Variables holding contexts</a></li>
<li><a href="#sequence_creating">Sequence of creating contexts</a></li>
<li><a href="#context_modules">Contexts as programming modules</a></li>
<li><a href="#context_data">Contexts as data containers</a></li>
<li><a href="#loading_contexts">Loading and declaring contexts</a></li>
<li><a href="#serializing">Serializing context objects</a></li>
</ul>
</li>
<li><a href="#default_function">The context default functor</a>
<ul>
<li><a href="#func_memory">Functions with memory</a></li>
<li><a href="#hash">Hash functions and dictionaries</a></li>
<li><a href="#pass_big">Passing data by reference</a></li>
</ul>
</li>
<li><a href="#foop">Functional object-oriented programming</a>
<ul>
<li><a href="#newlisp_classes">FOOP classes and constructors</a></li>
<li><a href="#newlisp_objects">Objects</a></li>
<li><a href="#colon_operator">The colon <tt>:</tt> operator and polymorphism</a></li>
<li><a href="#structure_foop">Structuring a larger FOOP program</a></li>
</ul>
</li>
<li><a href="#multi_processing">Concurrent processing and distributed computing</a>
<ul>
<li><a href="#cilk">The Cilk API</a></li>
<li><a href="#distributed">Distributed network computing</a></li>
</ul>
</li>
<li><a href="#JSON_XML">JSON, XML, SXML and XML-RPC</a></li>
<li><a href="#internationalization">Customization, localization and UTF-8</a>
<ul>
<li><a href="#naming">Customizing function names</a></li>
<li><a href="#switching">Switching the locale</a></li>
<li><a href="#decimal_point">Decimal point and decimal comma</a></li>
<li><a href="#unicode_utf8">Unicode and UTF-8 encoding</a></li>
<li><a href="#utf8_capable">Functions working on UTF-8 characters</a></li>
<li><a href="#utf8_version">Functions only available on UTF-8 enabled versions</a></li>
</ul>
</li>
<li><a href="#commas">Commas in parameter lists</a></li>
</ol>
<h3><a href="#function_ref">Function Reference</a></h3>
<ol>
<li><a href="#symbol_names">Syntax of symbol variables and numbers</a></li>
<li><a href="#type_ids">Data types and names in the reference</a></li>
<li><a href="#functions">Functions in groups</a>
<ul>
<li><a href="#list_processing">List processing, flow control, and integer arithmetic</a></li>
<li><a href="#string_operators">String and conversion functions</a></li>
<li><a href="#floating_point">Floating point math and special functions</a></li>
<li><a href="#matrices">Matrix functions</a></li>
<li><a href="#array-funcs">Array functions</a></li>
<li><a href="#bit_operators">Bit operators</a></li>
<li><a href="#predicates">Predicates</a></li>
<li><a href="#timedate">Date and time functions</a></li>
<li><a href="#montecarlo">Statistics, simulation and modeling functions</a></li>
<li><a href="#pattern">Pattern matching</a></li>
<li><a href="#financial">Financial math functions</a></li>
<li><a href="#input_output">File and I/O operations</a></li>
<li><a href="#processes">Processes and the Cilk API</a></li>
<li><a href="#directory_management">File and directory management</a></li>
<li><a href="#http_api">HTTP networking API</a></li>
<li><a href="#socket_tcpip">Socket TCP/IP, UDP and ICMP network API</a></li>
<li><a href="#JS">API for newLISP in a web browser</a></li>
<li><a href="#reflection">Reflection and customization</a></li>
<li><a href="#system_functions">System functions</a></li>
<li><a href="#importing_libraries">Importing libraries</a></li>
<li><a href="#internals">newLISP internals API</a></li>
</ul>
</li>
<li><a href="#functions_alphabetical">Functions in alphabetical order</a>
<p>
<b>
<a href="newlisp_manual.html#shell">!</a>
<a href="newlisp_manual.html#arithmetic">+-*/%</a>
<a href="newlisp_manual.html#abort">Ab</a>
<a href="newlisp_manual.html#append">Ap</a>
<a href="newlisp_manual.html#asin">As</a>
<a href="newlisp_manual.html#base64-dec">Ba</a>
<a href="newlisp_manual.html#callback">Ca</a>
<a href="newlisp_manual.html#clean">Cl</a>
<a href="newlisp_manual.html#command-event">Co</a>
<a href="newlisp_manual.html#current-line">Cu</a>
<a href="newlisp_manual.html#dec">De</a>
<a href="newlisp_manual.html#difference">Di</a>
<a href="newlisp_manual.html#do-until">Do</a>
<a href="newlisp_manual.html#encrypt">En</a>
<br/>
<a href="newlisp_manual.html#exec">Ex</a>
<a href="newlisp_manual.html#file-info">Fi</a>
<a href="newlisp_manual.html#flat">Fl</a>
<a href="newlisp_manual.html#gammaln">Ga</a>
<a href="newlisp_manual.html#global">Gl</a>
<a href="newlisp_manual.html#inc">In</a>
<a href="newlisp_manual.html#lambdap">La</a>
<a href="newlisp_manual.html#listp">Li</a>
<a href="newlisp_manual.html#macrop">Ma</a>
<a href="newlisp_manual.html#mul">Mu</a>
<a href="newlisp_manual.html#net-accept">Net</a>
<a href="newlisp_manual.html#new">New</a>
<a href="newlisp_manual.html#nth">Nt</a>
<a href="newlisp_manual.html#pack">Pa</a>
<br/>
<a href="newlisp_manual.html#pretty-print">Pr</a>
<a href="newlisp_manual.html#randomize">Ra</a>
<a href="newlisp_manual.html#read">Rea</a>
<a href="newlisp_manual.html#regex">Reg</a>
<a href="newlisp_manual.html#search">Sea</a>
<a href="newlisp_manual.html#sequence">Seq</a>
<a href="newlisp_manual.html#sleep">Sl</a>
<a href="newlisp_manual.html#starts-with">St</a>
<a href="newlisp_manual.html#sync">Sy</a>
<a href="newlisp_manual.html#time-of-day">Ti</a>
<a href="newlisp_manual.html#truep">Tr</a>
<a href="newlisp_manual.html#utf8">Ut</a>
<a href="newlisp_manual.html#write-file">Wr</a>
</b>
</p>
</li>
</ol>
<h3><a href="#appendix">Appendix</a></h3>
<ul>
<li><a href="#error_codes">Error Codes</a></li>
<li><a href="#system_symbols">System Symbols</a></li>
<li><a href="#GNUFDL">GNU Free Documentation License</a></li>
<li><a href="#GNUGPL">GNU General Public License</a></li>
</ul>
<br/>
<a name="introduction"></a>
<center style="font-size: 150%">
<span class="divider">( <font color="#7ba9d4">∂</font> )</span>
</center>
<br/><br/>
<a name="users_manual"></a>
<center><h1>newLISP User Manual</h1></center>
<h2>1. Introduction</h2>
<p>
newLISP focuses on the core components of Lisp: <em>lists</em>, <em>symbols</em>,
and <em>lambda expressions</em>. To these, newLISP adds <em>arrays</em>,
<em>implicit indexing</em> on lists and arrays, and <em>dynamic</em> and
<em>lexical scoping</em>. Lexical scoping is implemented using separate namespaces
called <em>contexts</em>.</p>
<p>The result is an easier-to-learn Lisp that is even smaller than most Scheme
implementations, but which still has about 350 built-in functions.
Not much over 200k in size on BSD systems, newLISP is built for high portability
using only the most common Unix system C-libraries. It loads quickly and has
a small memory footprint. newLISP is as fast or faster than other popular
scripting languages and uses very few resources.</p>
<p>Both built-in and user-defined functions, along with variables, share the
same global symbol tree and are manipulated by the same functions. Lambda expressions
and user-defined functions can be handled like any other list expression.</p>
<p>newLISP is dynamically scoped inside lexically separated contexts (namespaces).
Contexts in newLISP are used for multiple purposes. They allow (1) partitioning of
programs into modules, (2) the definition of <em>Classes</em> in FOOP
(Functional Object Oriented Programming), (3) the definition of functions with
state and (4) the creation of Hash trees for associative key → value storage.</p>
<p>newLISP's efficient <em>red-black</em> tree implementation can handle millions
of symbols in namespaces or hashes without degrading performance.</p>
<p>newLISP allocates and reclaims memory automatically, without using traditional
asynchronous garbage collection.
All objects — except for contexts, built-in primitives, and symbols —
are passed by value and are referenced only once. Upon creation objects are scheduled
for delayed deletion and Lisp cells are recycled for newly created objects.
This results in predictable processing times without the pauses found in traditional
garbage collection. newLISP's unique automatic memory management makes it the fastest
interactive Lisp available. More than any other Lisp, it implements the
<em>data equals program</em> paradigm and full self reflection.</p>
<p>Many of newLISP's built-in functions are polymorphic and accept a variety
of data types and optional parameters. This greatly reduces the number of
functions and syntactic forms necessary to learn and implement.
High-level functions are available for string and list processing, financial math,
statistics, and Artificial Intelligence applications.</p>
<p>newLISP has functions to modify, insert, or delete elements inside
complex <em>nested</em> lists or <em>multi-dimensional</em> array structures.</p>
<p>Because strings can contain null characters in newLISP, they can be used to
process binary data with most string manipulating functions.</p>
<p>newLISP can also be extended with a shared library interface
to import functions that access data in foreign binary data structures.
The distribution contains modules for importing popular C-library APIs.</p>
<p>newLISP's HTTP, TCP/IP, and UDP socket interfaces make it easy to write
distributed networked applications. Its built-in XML interface, along with
its text-processing features — Perl Compatible Regular Expressions (PCRE)
and text-parsing functions — make newLISP a useful tool for CGI processing.
The source distribution includes examples of HTML forms processing.
newLISP can be run a as a CGI capable web server using its built-in http mode option.</p>
<p>newLISP has built-in support for distributed processing on networks and parallel,
concurrent processing on the same CPU with one or more processing cores.</p>
<p>The source distribution can be compiled for Linux, macOS/Darwin, BSDs, many
other Unix flavors and MS Windows. newLISP can be compiled as a 64-bit LP64 application
for full 64-bit memory addressing.</p>
<p>Since version 10.5.7, newLISP also can be compiled to JavaScript and run in
a <a href="http://www.newlisp.org/newlisp-js/">web browser</a>.</p>
<br/>
<h3>Licensing</h3>
<p>newLISP are licensed under version 3
of the <a href="#GNUGPL">GPL (General Public License)</a>.
The newLISP documentation as well as other documentation packaged with newLISP
are licensed under the <a href="#GNUFDL">GNU Free Documentation License</a>. </p>
<br/>
<center>
<span class="divider">( <font color="#7ba9d4">§</font> )</span>
</center>
<br/>
<a name="deprecated"></a>
<h2>2. Deprecated functions since version 10.3.0</h2>
<p>Since version 10.3.0 newLISP can switch between IPv4 and IPv6 modes during
run-time using the new <a href="#net-ipv">net-ipv</a> function. The
<tt>-6</tt> commandline option can be used to start newLISP in IPv6 mode.
After transition to IPv6 the <tt>-6</tt>
commandline switch will be changed to <tt>-4</tt> for starting up in IPv4
mode.</p>
<p>The old writing <tt>parse-date</tt> of <a href="#date-parse">date-parse</a>
is still recognized but deprecated since version 10.3.0. The old writing will
be removed in a future version.</p>
<p>Since version 10.4.2 <tt>if-not</tt> is deprecated and will be removed in a
future version.</p>
<p>Since version 10.4.6 newLISP has a built-in function <a href="#json-parse">
json-parse</a> for translating JSON data into S-expressions. The module
file <tt>json.lsp</tt> is removed from the distribution.</p>
<p>Since version 10.4.8 newLISP has built-in support for unlimited precision
integers. This makes the GNU GMP module <tt>gmp.lsp</tt> obsolete.</p>
<br/>
<center>
<span class="divider">( <font color="#7ba9d4">§</font> )</span>
</center>
<br/>
<a name="REPL"></a>
<h2>3. Interactive Lisp mode</h2>
<p>The best way to experience Lisp and experiment with it, is using interactive
mode in a terminal window or operating system command shell. Since version 10.3,
newLISP's read-eval-print-loop (REPL) accepts multi-line statements.</p>
<p>To enter a multi-line statement hit the [enter] key on an empty line after
the system prompt. To exit multi-line mode, hit the [enter] key again on an empty
line. In the following example computer output is shown in bold letters:</p>
<pre>
<b>></b>
(define (foo x y)
(+ x y))
<b>(lambda (x y) (+ x y))
></b> (foo 3 4)
<b>7
></b>
</pre>
<p>Note, that multi-line mode is only possible in an OS command terminal window
or command shell.</p>
<p>Interactive Lisp mode can accept operating system shell commands. To hit
an OS command enter the '<tt>!</tt>' character right after the prompt, immediately
followed by the shell command:</p>
<pre>
<b>> </b>!ls *.html
<b>CodePatterns.html MemoryManagement.html newLISPdoc.html
ExpressionEvaluation.html manual_frame.html newlisp_index.html
License.html newLISP-10.3-Release.html newlisp_manual.html
> </b>
</pre>
<p>In the example a <tt>ls</tt> shell command is entered to show HTML files
in the current directory. On MS Windows a <tt>dir</tt> command could be used
in the same fashion.</p>
<p>The mode can also be used to call an editor or any other program:</p>
<pre>
<b>> </b>!vi foo.lsp
</pre>
<p>The Vi editor will open to edit the program "foo.lsp". After leaving
the editor the program could be run using a load statement:</p>
<pre>
<b>> </b>(load "foo.lsp")
</pre>
<p>The program <tt>foo.lsp</tt> is now run.</p>
<p>When using a Unix terminal or command shell, tab-expansion for built-in newLISP
functions can be used:</p>
<pre>
<b>> </b>(pri
<b>print println primitive?
> (pri</b>
</pre>
<p>After entering the characters <tt> (pri </tt> hit the [tab] key once to
show all the built-in functions starting with the same characters. When hitting
[tab] twice before a function name has started, all built-in function names will
be displayed.</p>
<p>On most Unix, parenthesis matching can be enabled on the commandline by
including the following line in the file <tt>.inputrc</tt> in the home
directory:</p>
<pre>
set blink-matching-paren on
</pre>
<p>Not all systems have a version of <tt>libreadline</tt> advanced enough for
this to work.</p>
<br/>
<center>
<span class="divider">( <font color="#7ba9d4">§</font> )</span>
</center>
<br/>
<a name="options"></a>
<h2>4. Command-line options, startup and directories</h2>
<a name="cmd_help"></a>
<h3>Command line help summary</h3>
<p>When starting newLISP from the command-line several switches and options and
source files can be specified. Executing:</p>
<pre>
newlisp -h
</pre>
<p>in a command shell will produce the following summary of options and switches:</p>
<pre>
-h this help (no init.lsp)
-n no init.lsp (must be first)
-x <source> <target> link (no init.lsp)
-v version
-s <stacksize>
-m <max-mem-MB> cell memory
-e <quoted lisp expression>
-l <path-file> log connections
-L <path-file> log all
-w <working dir>
-c no prompts, HTTP
-C force prompts
-t <usec-server-timeout>
-p <port-no>
-d <port-no> demon mode
-http only
-http-safe safe mode
-6 IPv6 mode
</pre>
<p>Before or after the command-line switches, files to load and execute can
be specified. If a newLISP executable program is followed by parameters,
the program must finish with and <tt>(exit)</tt> statement, else newLISP
will take command-line parameters as additional newLISP scripts to be
loaded and executed.</p>
<p>On Linux and other Unix systems, a <tt>newlisp</tt> <em>man page</em>
can be found:</p>
<pre>
man newlisp
</pre>
<p>This will display a man page in the Linux/Unix shell.</p>
<br/>
<a name="url_files"></a>
<h3>Specifying files as URLs</h3>
<p>newLISP will load and execute files specified on the command-line. Files are
specified with either their pathname or a <tt>file://</tt> URL on the local file
system or with a <tt>http://</tt> URL on remote file systems running an HTTP
server. That HTTP server can be newLISP running in HTTP server mode.</p>
<pre>
newlisp aprog.lsp bprog.lsp prog.lsp
newlisp http://newlisp.org/example.lsp
newlisp file:///usr/home/newlisp/demo.lsp
</pre>
<br/>
<a name="no_init"></a>
<h3>No loading of init.lsp</h3>
<p>This option suppresses loading of any present initialization file <tt>init.lsp</tt>
or <tt>.init.lsp</tt>. In order to work, this must be the first option specified:</p>
<pre>
newlisp -n
</pre>
<p>More about <a href="#initialization">initialization files.</a></p>
<br/>
<a name="stack_size"></a>
<h3>Stack size</h3>
<pre>
newlisp -s 4000
newlisp -s 100000 aprog bprog
newlisp -s 6000 myprog
newlisp -s 6000 http://asite.com/example.lsp
</pre>
<p>The above examples show starting newLISP with different stack sizes using
the <tt>-s</tt> option, as well as loading one or more newLISP source files
and loading files specified by an URL. When no stack size is specified,
the stack defaults to 2048. Per stack position about 80 bytes of memory are
preallocated.</p>
<br/>
<a name="max_mem"></a>
<h3>Maximum memory usage</h3>
<pre>
newlisp -m 128
</pre>
<p>This example limits newLISP cell memory to 128 megabytes. In 32-bit newLISP,
each Lisp cell consumes 16 bytes, so the argument <tt>128</tt> would
represent a maximum of 8,388,608 newLISP cells. This information is returned
by <a href="#sys-info">sys-info</a> as the list's second element. Although
Lisp cell memory is not the only memory consumed by newLISP, it is a good
estimate of overall dynamic memory usage.</p>
<br/>
<a name="direct_exec"></a>
<h3>Direct execution mode</h3>
<p>Small pieces of newLISP code can be executed directly from the command-line:</p>
<pre>
newlisp -e "(+ 3 4)" <span class="arw">→</span> 7 ; On MS Windows and Unix
newlisp -e '(append "abc" "def")' <span class="arw">→</span> "abcdef" ; On Unix
</pre>
<p>The expression enclosed in quotation marks is evaluated, and the result is
printed to standard out (STDOUT). In most Unix system shells, single quotes
can also be used as command string delimiters. Note that there is a space between
<tt>-e</tt> and the quoted command string.</p>
<br/>
<a name="logging"></a>
<h3>Logging I/O</h3>
<p>In any mode, newLISP can write a log when started with the <tt>-l</tt> or <tt>-L</tt>
option. Depending on the mode newLISP is running, different output is written to the log
file. Both options always must specify the path of a log-file. The path may be a relative
path and can be either attached or detached to the <tt>-l</tt> or <tt>-L</tt> option.
If the file does not exist, it is created when the first logging output is written.</p>
<pre>
newlisp -l./logfile.txt -c
newlisp -L /usr/home/www/log.txt -http -w /usr/home/www/htpdocs
</pre>
<p>The following table shows the items logged in different situations:</p>
<table width="98%" summary="logging formats">
<tr align="left"><th>logging mode</th><th>command-line and net-eval with
<tt>-c</tt></th><th>HTTP server with <tt>-http</tt></th></tr>
<tr><td><tt>newlisp -l</tt></td>
<td>log only input and network connections</td>
<td>log only network connections</td></tr>
<tr><td><tt>newlisp -L</tt></td>
<td>log also newLISP output (w/o prompts)</td>
<td>log also HTTP requests</td></tr>
</table><br/>
<p>All logging output is written to the file specified after the <tt>-l</tt>
or <tt>-L</tt> option.</p>
<br/>
<a name="working_dir"></a>
<h3>Specifying the working directory</h3>
<p>The <tt>-w</tt> option specifies the initial working directory for newLISP
after startup:</p>
<pre>
newlisp -w /usr/home/newlisp
</pre>
<p>All file requests without a directory path will now be directed to the path
specified with the <tt>-w</tt> option.</p>
<br/>
<a name="prompt"></a>
<h3>Suppressing the prompt and HTTP processing</h3>
<p>The command-line prompt and initial copyright banner can be suppressed:</p>
<pre>
newlisp -c
</pre>
<p>Listen and connection messages are suppressed if logging is not enabled.
The <tt>-c</tt> option is useful when controlling newLISP
from other programs; it is mandatory when setting it up
as a <a href="#net-eval">net-eval</a> server.</p>
<p>The <tt>-c</tt> option also enables newLISP server nodes to answer
<tt>HTTP GET</tt>, <tt>PUT</tt>, <tt>POST</tt> and <tt>DELETE</tt> requests,
as well as perform CGI processing. Using the <tt>-c</tt> option,
together with the <tt>-w</tt> and <tt>-d</tt> options,
newLISP can serve as a standalone <tt>httpd</tt> webserver:</p>
<pre>
newlisp -c -d 8080 -w /usr/home/www
</pre>
<p>When running newLISP as a <tt>inetd</tt> or <tt>xinetd</tt> enabled
server on Unix machines, use:</p>
<pre>
newlisp -c -w /usr/home/www
</pre>
<p>
In <tt>-c</tt> mode, newLISP processes command-line requests as well as
HTTP and <a href="#net-eval">net-eval</a> requests. Running
newLISP in this mode is only recommended on a machine behind
a firewall. This mode should not be run on machines open and accessible
through the Internet. To suppress the processing of
<a href="#net-eval">net-eval</a> and command-line–like requests, use
the safer <tt>-http</tt> option.</p>
<br/>
<a name="forcing_prompt"></a>
<h3>Forcing prompts in pipe I/O mode</h3>
<p>A capital <tt>C</tt> forces prompts when running newLISP in pipe I/O mode
inside the Emacs editor:</p>
<pre>
newlisp -C
</pre>
<p>
To suppress console output from return values from evaluations,
use <a href="#silent">silent</a>.</p>
<br/>
<a name="tcpip_server"></a>
<h3>newLISP as a TCP/IP server</h3>
<pre>
newlisp some.lsp -p 9090
</pre>
<p>
This example shows how newLISP can listen for commands on a TCP/IP socket
connection. In this case, standard I/O is redirected to the port specified with
the <tt>-p</tt> option. <tt>some.lsp</tt> is an optional file loaded during
startup, before listening for a connection begins.</p>
<p>
The <tt>-p</tt> option is mainly used to control newLISP from another
application, such as a newLISP GUI front-end or a program written in another
language. As soon as the controlling client closes the connection, newLISP
will exit.</p>
<p>
A telnet application can be used to test running newLISP as a server. First
enter:</p>
<pre>
newlisp -p 4711 &
</pre>
<p>
The <tt>&</tt> indicates to a Unix shell to run the process in the
background. On Windows, start the server process without the <tt>&</tt>
in the foreground and open a second command window for the telnet application.
Now connect with a telnet:</p>
<pre>
telnet localhost 4711
</pre>
<p>
If connected, the newLISP sign-on banner and prompt appear. Instead of
<tt>4711</tt>, any other port number could be used.</p>
<p>
When the client application closes the connection, newLISP will exit, too.
</p>
<br/>
<a name="daemon"></a>
<h3>TCP/IP daemon mode</h3>
<p>When the connection to the client is closed in <tt>-p</tt> mode, newLISP
exits. To avoid this, use the <tt>-d</tt> option instead of the <tt>-p</tt>
option:</p>
<pre>
newlisp -d 4711 &
</pre>
<p>
This works like the <tt>-p</tt> option, but newLISP does not exit after a
connection closes. Instead, it stays in memory, listening for a new connection
and preserving its state. An <a href="#exit">exit</a> issued from a client
application closes the network connection, and the newLISP daemon remains
resident, waiting for a new connection. Any port number could be used in place
of <tt>4711</tt>. </p>
<p>After each transaction, when a connection closes, newLISP will go through a
reset process, reinitialize stack and signals and go to the <tt>MAIN</tt>
context. Only the contents of program and variable symbols will be preserved
when running a stateful server.</p>
<p>
When running in <tt>-p</tt> or <tt>-d</tt> mode, the opening and closing tags
<tt>[cmd]</tt> and <tt>[/cmd]</tt> must be used to enclose multiline
statements. They must each appear on separate lines. This makes it possible
to transfer larger portions of code from controlling applications. </p>
<p>The following variant of the <tt>-d</tt> mode is frequently used in a
distributed computing environment, together with
<a href="#net-eval">net-eval</a> on the client side:</p>
<pre>
newlisp -c -d 4711 &
</pre>
<p>The <tt>-c</tt> spec suppresses prompts, making this mode suitable
for receiving requests from the <a href="#net-eval">net-eval</a> function.</p>
<p>newLISP server nodes running will also answer <tt>HTTP GET</tt>,
<tt>PUT</tt> and <tt>DELETE</tt> requests. This can be used to retrieve and
store files with <a href="#get-url">get-url</a>, <a href="#put-url">put-url</a>,
<a href="#delete-url">delete-url</a>, <a href="#read-file">read-file</a>,
<a href="#write-file">write-file</a> and <a href="#append-file">append-file</a>,
or to load and save programs using <a href="#load">load</a> and
<a href="#save">save</a> from and to remote server nodes. See the chapters for
the <tt>-c</tt> and <tt>-http</tt> options for more details.</p>
<br/>
<a name="http_mode"></a>
<h3>HTTP-only server mode</h3>
<p> newLISP can be limited to HTTP processing using the <tt>-http</tt> option.
With this mode, a secure <tt>httpd</tt> web server daemon can be configured:</p>
<pre>
newlisp -http -d 8080 -w /usr/home/www
</pre>
<p> When running newLISP as an <tt>inetd</tt> or <tt>xinetd</tt>-enabled
server on Unix machines, use:</p>
<pre>
newlisp -http -w /usr/home/www
</pre>
<p>To further enhance security and HTTP processing, load a program during
startup when using this mode:</p>
<pre>
newlisp httpd-conf.lsp -http -w /usr/home/www
</pre>
<p>The file <tt>httpd-conf.lsp</tt> contains a <a href="#command-event">command-event</a>
function configuring a user-defined function to analyze, filter and translate requests.
See the reference for this function for a working example.</p>
<p>In the HTTP modes enabled by either <tt>-c</tt> or <tt>-http</tt>, the
following file types are recognized, and a correctly formatted
<tt>Content-Type:</tt> header is sent back:</p>
<table summary="media types">
<tr align="left"><th>file extension</th><th>media type</th></tr>
<tr><td>.avi</td><td>video/x-msvideo</td></tr>
<tr><td>.css</td><td>text/css</td></tr>
<tr><td>.gif</td><td>image/gif</td></tr>
<tr><td>.htm</td><td>text/htm</td></tr>
<tr><td>.html</td><td>text/html</td></tr>
<tr><td>.jpg</td><td>image/jpg</td></tr>
<tr><td>.js</td><td>application/javascript</td></tr>
<tr><td>.mov</td><td>video/quicktime</td></tr>
<tr><td>.mp3</td><td>audio/mpeg</td></tr>
<tr><td>.mpg</td><td>video/mpeg</td></tr>
<tr><td>.pdf</td><td>application/pdf</td></tr>
<tr><td>.png</td><td>image/png</td></tr>
<tr><td>.wav</td><td>audio/x-wav</td></tr>
<tr><td>.zip</td><td>application/zip</td></tr>
<tr><td><em>any other</em></td><td>text/plain</td></tr>
</table><br/>
<p>To serve CGI, HTTP server mode needs a <tt>/tmp</tt> directory on Unix-like
platforms or a <tt>C:\tmp</tt> directory on MS Windows. newLISP can process GET, PUT,
POST and DELETE requests and create custom response headers. CGI files must have
the extension <tt>.cgi</tt> and have executable permission on Unix. More
information about CGI processing for newLISP server modes can be found in the
document <a href="http://www.newlisp.org/CodePatterns.html">
Code Patterns in newLISP</a>. </p>
<p>In both server modes <tt>-c</tt> and <tt>-http</tt> the environment
variables DOCUMENT_ROOT, HTTP_HOST, REMOTE_ADDR, REQUEST_METHOD, REQUEST_URI,
SERVER_SOFTWARE and QUERY_STRING are set. The variables CONTENT_TYPE,
CONTENT_LENGTH, HTTP_HOST, HTTP_USER_AGENT and HTTP_COOKIE are also set, if
present in the HTTP header sent by the client. Environment variables can be
read using the <a href="#env">env</a> function.</p>
<br/>
<a name="local_domain_server"></a>
<h3>Local domain Unix socket server</h3>
<p>Instead of a port, a local domain Unix socket path can be specified in
the <tt>-d</tt> or <tt>-p</tt> server modes.</p>
<pre>
newlisp -c -d /tmp/mysocket &
</pre>
<p>Test the server using another newLISP process:</p>
<pre>
newlisp -e '(net-eval "/tmp/mysocket" 0 "(symbols)")'
</pre>
<p>A list of all built-in symbols will be printed to the terminal</p>
<p>This mode will work together with local domain socket modes of
<a href="#net-connect">net-connect</a>, <a href="#net-listen">net-listen</a>,
and <a href="#net-eval">net-eval</a>. Local domain sockets opened with
<tt>net-connect</tt> and <tt>net-listen</tt> can be served using
<a href="#net-accept">net-accept</a>, <a href="#net-receive">net-receive</a>,
and <a href="#net-send">net-send</a>. Local domain socket connections
can be monitored using <a href="#net-peek">net-peek</a> and
<a href="#net-select">net-select</a>.</p>
<p>Local domain socket connections are much faster than normal TCP/IP network
connections and preferred for communications between processes on
the same local file system in distributed applications. This mode is not
available on MS Windows.</p>
<br/>
<a name="conn_timeout"></a>
<h3>Connection timeout</h3>
<p>Specifies a connection timeout when running in <tt>-p</tt> or <tt>-d</tt>
demon mode. A newLISP Server will disconnect when no further input is read
after accepting a client connection. The timeout is specified in micro
seconds:</p>
<pre>
newlisp -c -t 3000000 -d 4711 &
</pre>
<p>The example specifies a timeout of three seconds.</p>
<br/>
<a name="inetd_daemon"></a>
<h3><tt>inetd</tt> daemon mode</h3>
<p>
The <tt>inetd</tt> server running on virtually all Linux/Unix OSes can function
as a proxy for newLISP. The server accepts TCP/IP or UDP connections and passes
on requests via standard I/O to newLISP. <tt>inetd</tt> starts a newLISP
process for each client connection. When a client disconnects, the connection
is closed and the newLISP process exits.</p>
<p>
<tt>inetd</tt> and newLISP together can handle multiple connections efficiently
because of newLISP's small memory footprint, fast executable, and short program
load times. When working with <a href="#net-eval">net-eval</a>, this mode is
preferred for efficiently handling multiple requests in a distributed computing
environment.</p>
<p>
Two files must be configured: <tt>services</tt> and <tt>inetd.conf</tt>.
Both are ASCII-editable and can usually be found at <tt>/etc/services</tt> and
<tt>/etc/inetd.conf</tt>.
</p>
<p>
Put one of the following lines into <tt>inetd.conf:</tt>
</p>
<pre>
net-eval stream tcp nowait root /usr/local/bin/newlisp -c
# as an alternative, a program can also be preloaded
net-eval stream tcp nowait root /usr/local/bin/newlisp -c myprog.lsp
</pre>
<p>
Instead of <tt>root</tt>, another user and optional group can be specified.
For details, see the Unix man page for <tt>inetd</tt>.
</p>
<p>
The following line is put into the <tt>services</tt> file:
</p>
<pre>
net-eval 4711/tcp # newLISP net-eval requests
</pre>
<p>
On macOS and some Unix systems, <tt>xinetd</tt> can be used instead of
<tt>inetd</tt>. Save the following to a file named <tt>net-eval</tt> in the
<tt>/etc/xinetd.d/</tt> directory:
</p>
<pre>
service net-eval
{
socket_type = stream
wait = no
user = root
server = /usr/local/bin/newlisp
port = 4711
server_args = -c
only_from = localhost
}
</pre>
<p>
For security reasons, <tt>root</tt> should be changed to a different user
and file permissions of the www document directory adjusted accordingly.
The <tt>only_from</tt> spec can be left out to permit remote access.
</p>
<p>
See the man pages for <tt>xinetd</tt> and <tt>xinetd.conf</tt>
for other configuration options.
</p>
<p>
After configuring the daemon, <tt>inetd</tt> or
<tt>xinetd</tt> must be restarted to
allow the new or changed configuration files to be read:
</p>
<pre>
kill -HUP <pid>
</pre>
<p>
Replace <tt><pid></tt> with the process ID of the
running <tt>xinetd</tt> process.
</p>
<p>A number or network protocol other than 4711 or TCP can be specified.</p>
<p>
newLISP handles everything as if the input were being entered
on a newLISP command-line without a prompt. To test the
<tt>inetd</tt> setup, the <tt>telnet</tt> program can be used:
</p>
<pre>
telnet localhost 4711
</pre>
<p>
newLISP expressions can now be entered, and <tt>inetd</tt> will
automatically handle the startup and communications of a newLISP
process. Multiline expressions can be entered by bracketing them
with <tt>[cmd]</tt> and <tt>[/cmd]</tt> tags, each on separate lines.
</p>
<p>newLISP server nodes answer <tt>HTTP GET</tt> and <tt>PUT</tt> requests.
This can be used to retrieve and store files
with <a href="#get-url">get-url</a>, <a href="#put-url">put-url</a>,
<a href="#read-file">read-file</a>, <a href="#write-file">write-file</a>
and <a href="#append-file">append-file</a>,
or to load and save programs using <a href="#load">load</a>
and <a href="#save">save</a> from and to remote server nodes.</p>
<br/>
<a name="link"></a>
<h3>Linking a source file with newLISP for a new executable</h3>
<p>Source code and the newLISP executable can be linked together to build a
self-contained application by using the <tt>-x</tt> command line flag.</p>
<pre>
;; uppercase.lsp - Link example
(println (upper-case (main-args 1)))
(exit)
</pre>
<p>The program <tt>uppercase.lsp</tt> takes the first word on the command-line
and converts it to uppercase.</p>
<p>To build this program as a self-contained executable,
follow these steps:</p>
<pre>
# on OSX, Linux and other UNIX
newlisp -x uppercase.lsp uppercase
chmod 755 uppercase # give executable permission
# on Windows the target needs .exe extension
newlisp -x uppercase.lsp uppercase.exe
</pre>
<p>newLISP will find a newLISP executable in the execution path of the
environment and link a copy of the source code.</p>
<pre>
uppercase "convert me to uppercase"
</pre>
<p>On Linux and other UNIX, if the current directory is not in the
executable path:</p>
<pre>
./uppercase "convert me to uppercase"
</pre>
<p>The console should print:</p>
<pre>
CONVERT ME TO UPPERCASE
</pre>
<p>Note that neither one of the initialization files <tt>init.lsp</tt> nor
<tt>.init.lsp</tt> is loaded during startup of linked programs.</p>
<br/>
<center>
<span class="divider">( <font color="#7ba9d4">§</font> )</span>
</center>
<br/>
<a name="startup"></a>
<h2>5. Startup, directories, environment</h2>
<a name="environment"></a>
<h3>Environment variable <tt>NEWLISPDIR</tt></h3>
<p>During startup, newLISP sets the environment variable <tt>NEWLISPDIR</tt>,
if it is not set already. On Linux, BSDs, macOS and other Unixes the
variable is set to <tt>/usr/local/share/newlisp</tt>. On MS Windows the variable is set
to <tt>%PROGRAMFILES%/newlisp</tt>. On most MS Windows systems <tt>%PROGRAMFILES%</tt> evaluates to the <tt>C:\Program Files (x86)\</tt> directory.</p>
<p>The environment variable <tt>NEWLISPDIR</tt> is useful when loading files
installed with newLISP:</p>
<pre>
(load (append (env "NEWLISPDIR") "/modules/mysql.lsp"))
</pre>
<p>A predefined function <tt>module</tt> can be used to shorten
the second statement loading from the <tt>modules/</tt>
directory:</p>
<pre>
(module "mysql.lsp")
</pre>
<br/>
<a name="initialization"></a>
<h3> The initialization file <tt>init.lsp</tt></h3>
<p>Before loading any files specified on the command-line, and before the
banner and prompt are shown. newLISP tries to load a file <tt>.init.lsp</tt>
from the home directory of the user starting newLISP. On macOS, Linux and
other Unix the home directory is found in the <tt>HOME</tt> environment
variable. On MS Windows the directory name is contained in the <tt>USERPROFILE</tt>
or <tt>DOCUMENT_ROOT</tt> environment variable.</p>
<p>If a <tt>.init.lsp</tt> cannot be found in the home directory newLISP tries
to load the file <tt>init.lsp</tt> from the directory found in the
environment variable <tt>NEWLISPDIR</tt>.</p>
<p>When newLISP is run as a shared library, an initialization file is looked
for in the environment variable <tt>NEWLISPLIB_INIT</tt>. The full path-name
of the initialization file must be specified. If <tt>NEWLISPLIB_INIT</tt> is
not defined, no initialization file will be loaded by the library module.</p>
<p> Although newLISP does not require <tt>init.lsp</tt> to run, it is
convenient for defining functions and system-wide variables.</p>
<p>Note that neither one of the initialization files <tt>init.lsp</tt> nor
<tt>.init.lsp</tt> is loaded during startup of linked programs or
when one of the options <tt>-n</tt>, <tt>-h</tt>, <tt>-x</tt> is
specified.</p>
<br/>
<a name="directories_unix"></a>
<h3> Directories on Linux, BSD, macOS and other Unix </h3>
<p>
The directory <tt>/usr/local/share/newlisp/modules</tt> contains modules with useful
functions POP3 mail, etc. The directory <tt>/usr/local/share/doc/newlisp/</tt>
contains documentation in HTML format.</p>
<br/>
<a name="directories_win"></a>
<h3>Directories on MS Windows</h3>
<p>
On MS Windows systems, all files are installed in the default directory
<tt>%PROGRAMFILES%\newlisp</tt>. <tt>PROGRAMFILES</tt> is a MS Windows environment
variable that resolves to <tt>C:\Program files\newlisp\</tt> in English
language installations. The subdirectory <tt>%PROGRAMFILES%\newlisp\modules</tt>
contains modules for interfacing to external libraries and sample programs.</p>
<br/>
<center>
<span class="divider">( <font color="#7ba9d4">§</font> )</span>
</center>
<br/>
<a name="shared-lib"></a>
<h2>6. Extending newLISP with shared libraries</h2>
<p>Many shared libraries on Unix and MS Windows systems can be used to
extend newLISP's functionality. Examples are libraries for writing graphical
user interfaces, libraries for encryption or decryption and libraries for
accessing databases.</p>
<p>The function <a href="#import">import</a> is used to import functions from
external libraries. The function <a href="#callback">callback</a> is used to
register callback functions in external libraries.
Other functions like <a href="#pack">pack</a>,
<a href="#unpack">unpack</a>, <a href="#get-char">get-char</a>, <a href="#get-string">get-string</a>,
<a href="#get-int">get-int</a> and <a href="#get-long">get-long</a> exist
to facilitate formatting input and output to and from imported library
functions. The fucntion <a href="#cpymem">cpymem</a> allows direct memory-to-memory
copy specifying addresses.</p>
<p>Most of the functions used when writing APIs for share libraries can cause
newLISP to segfault when not used correctly. The reference documentation marks
these functions with a <a href="#shared-lib"><font size="+1">⚠</font></a> character linking
to this chapter.</p>
<p>See also the chapter
<a href="http://www.newlisp.org/downloads/CodePatterns.html#toc-23">
23. Extending newLISP</a> in the
<a href="http://www.newlisp.org/downloads/CodePatterns.html">
Code Patterns in newLISP</a> document.</p>
<br/>
<center>
<span class="divider">( <font color="#7ba9d4">§</font> )</span>
</center>
<br/>
<a name="newlisp-lib"></a>
<h2>7. newLISP as a shared library</h2>
<h3>newLISP as C library</h3>
<p>newLISP can be compiled as a shared C library. On Linux, BSDs and other Unix
flavors the library is called <tt>newlisp.so</tt>. On Windows it is called
<tt>newlisp.dll</tt> and <tt>newlisp.dylib</tt> on macOS. A newLISP shared
library is used like any other shared library. A newLISP shared library is
only required for importing newLISP functionality into other programming
languages.</p>
<p>The main function to import is <tt>newlispEvalStr</tt>. Like
<a href="#eval-string">eval-string</a>, this function takes a string containing
a newLISP expression and stores the result in a string address. The result can
be retrieved using <a href="#get-string">get-string</a>. The returned string
is formatted like output from a command-line session. It contains terminating
line-feed characters, but not the prompt string.</p>
<p>When calling <tt>newlispEvalStr</tt>, output normally directed to the
console (e.g. return values or <a href="#print">print</a> statements) is
returned in the form of an integer string pointer. The output can be accessed
by passing this pointer to the <tt>get-string</tt> function. To silence the
output from return values, use the <a href="#silent">silent</a> function.</p>
<p>To enable <em>stdio</em> on the console, import the function <tt>newlispLibConsole</tt>
and call it with a parameter of <tt>1</tt> for enabling I/O on the console
with <em>stdin</em> and <em>stdout</em>.</p>
<p>Since v.10.3.3 callbacks can also be registered using
<tt>newlispCallback</tt>. For more information read the chapter
<a href="http://www.newlisp.org/downloads/CodePatterns.html#toc-24">
24. newLISP compiled as a shared library</a> in the
<a href="http://www.newlisp.org/downloads/CodePatterns.html">
Code Patterns in newLISP</a> document.</p>
<a name="newlisp-js-lib"></a>
<h3>newLISP as a JavaScript library</h3>
<p>Since version 10.5.7, newLISP can be compiled to JavaScript using the
<a href="https://github.com/kripken/emscripten/wiki">Emscripten</a>
toolset. The library can be used to run newLISP clientr-side in a web
browser, just like JavaScript or HTML. An HTML page can host both,
newLISP code and JavaScript code together. Both languages can call
each other. For more information see the <tt>newlisp-js-x.x.x.zip</tt>
distribution package which contains the library <tt>newlisp-js-lib.js</tt>,
documentaion and example applications. A small newLISP development
environment hosted in a browser can also be accessed here:
<a href="http://www.newlisp.org/newlisp-js/">newlisp-js</a>
The application contains links to another example application,
documentation and a download link for the whole package.</p>
<p>newLISP compiled as a JavaScript library adds new functions linked
from <a href="newlisp_manual.html#JS">API for newLISP in a web browser</a>.
</p>
<br/>
<center>
<span class="divider">( <font color="#7ba9d4">§</font> )</span>
</center>
<br/>
<a name="expressions"></a>
<h2>8. Evaluating newLISP expressions</h2>
<p>The following is a short introduction to newLISP statement evaluation
and the role of integer and floating point arithmetic in newLISP.</p>
<p>Top-level expressions are evaluated when using the
<a href="#load"> load</a> function or when entering expressions in console
mode on the command-line.</p>
<br/>
<a name="multiline"></a>
<h3>Interactive multiline expressions</h3>
<p>Multiline expressions can be entered by entering an empty line first.
Once in multiline mode, another empty line returns from entry mode
and evaluates the statement(s) entered (ouput in boldface):</p>
<pre>
>
(define (foo x y)
(+ x y))
<b>(lambda (x y) (+ x y))</b>
> (foo 3 4)
<b>7</b>
> _
</pre>
<p>Entering multiline mode by hitting the enter key on an empty line
suppresses the prompt. Entering another empty line will leave the multiline
mode and evaluate expressions.</p>
<p>As an alternativo to entering empty lines, the <tt>[cmd]</tt> and
<tt>[/cmd]</tt> tags are used, each entered on separate lines. This mode is
used by some interactive IDEs controlling newLISP and internally by the
<a href="#net-eval">net-eval</a> function.</p>
<br/>
<a name="int_float"></a>
<h3>Integer, floating point data and operators</h3>
<p>newLISP functions and operators accept integer and floating point numbers,
converting them into the needed format. For example, a bit-manipulating
operator converts a floating point number into an integer by omitting the
fractional part. In the same fashion, a trigonometric function will
internally convert an integer into a floating point number before performing
its calculation.</p>
<p>The symbol operators
(<tt>+</tt> <tt>-</tt> <tt>*</tt> <tt>/</tt> <tt>%</tt>
<tt>$</tt> <tt>~</tt> <tt>|</tt> <tt>^</tt> <tt><<</tt>
<tt>>></tt>) return values of type integer. Functions and operators named
with a word instead of a symbol (e.g., <tt>add</tt> rather than <tt>+</tt>)
return floating point numbers. Integer operators truncate floating point
numbers to integers, discarding the fractional parts.</p>
<p>newLISP has two types of basic arithmetic operators: integer (<tt>+</tt>
<tt>-</tt> <tt>*</tt> <tt>/</tt>) and floating point (<tt>add</tt> <tt>sub</tt>
<tt>mul</tt> <tt>div</tt>). The arithmetic functions convert their arguments into types compatible
with the function's own type: integer function arguments into integers,
floating point function arguments into floating points. To make newLISP
behave more like other scripting languages, the integer operators
<tt>+</tt>, <tt>-</tt>, <tt>*</tt>, and <tt>/</tt> can be redefined to
perform the floating point operators <tt>add</tt>, <tt>sub</tt>,
<tt>mul</tt>, and <tt>div</tt>:</p>
<pre>
(constant '+ add)
(constant '- sub)
(constant '* mul)
(constant '/ div)
;; or all 4 operators at once
(constant '+ add '- sub '* mul '/ div)
</pre>
<p>
Now the common arithmetic operators <tt>+</tt>, <tt>-</tt>, <tt>*</tt>,
and <tt>/</tt> accept both integer and floating point numbers and return
floating point results. </p>
<p>Care must be taken when <a href="#import">importing</a> from libraries
that use functions expecting integers. After redefining <tt>+, -, *</tt>,
and <tt>/</tt>, a double floating point number may be unintentionally passed
to an imported function instead of an integer. In this case, floating point
numbers can be converted into integers by using the function
<a href="#int">int</a>. Likewise, integers can be transformed into
floating point numbers using the <a href="#float">float</a> function:</p>
<pre>
(import "mylib.dll" "foo") ; importing int foo(int x) from C
(foo (int x)) ; passed argument as integer
(import "mylib.dll" "bar") ; importing C int bar(double y)
(bar (float y)) ; force double float
</pre>
<p>Some of the modules shipping with newLISP are written assuming the
default implementations of <tt>+</tt>, <tt>-</tt>, <tt>*</tt>, and <tt>/</tt>.
This gives imported library functions maximum speed when performing address
calculations.</p>
<p>The newLISP preference is to leave <tt>+</tt>, <tt>-</tt>, <tt>*</tt>, and
<tt>/</tt> defined as integer operators and use <tt>add</tt>, <tt>sub</tt>,
<tt>mul</tt>, and <tt>div</tt> when explicitly required. Since version 8.9.7,
integer operations in newLISP are 64 bit operations, whereas 64 bit double
floating point numbers offer only 52 bits of resolution in the integer part
of the number.</p>
<br/>
<a name="big_int"></a>
<h3>Big integer, multiple precision arithmetic</h3>
<p>The following operators, functions and predicates work on big integers:</p>
<table summary="functions working on big integers">
<tr align="left"><th>function</th><th>description</th></tr>
<tr>
<td width="16%"><a href="#arithmetic">+ - * / ++ -- %</a></td>
<td width="80%">arithmetic operators</td>
</tr>
<tr>
<td><a href="#logical">< > = <= >= !=</a></td>
<td>logical operators</td>
</tr>
<tr>
<td><a href="#abs">abs</a></td>
<td>returns the absolute value of a number</td>
</tr>
<tr>
<td><a href="#gcd">gcd</a></td>
<td>calculates the greatest common divisor of a group of integers</td>
</tr>
<tr>
<td><a href="#evenp">even?</a></td>
<td>checks the parity of an integer number</td>
</tr>
<tr>
<td><a href="#oddp">odd?</a></td>
<td>checks the parity of an integer number</td>
</tr>
<tr>
<td><a href="#numberp">number?</a></td>
<td>checks if an expression is a float or an integer</td>
</tr>
<tr>
<td><a href="#zerop">zero?</a></td>
<td>checks if an expression is 0 or 0.0</td>
</tr>
</table>
<p>If the first argument in any of these operators and functions is a big
integer, the calculation performed will be in big integer mode. In the
<a href="#function_ref">Function Reference</a> section of this manual
these are marked with a <a href="#big_int"><font size="-1">bigint</font></a>
suffix.</p>
<p>Literal integer values greater than 9223372036854775807
or smaller than -9223372036854775808, or integers with an appended letter L,
will be converted and processed in big integer mode. The function
<a href="#bigint">bigint</a> can be used to convert from integer, float or string
format to big integer. The predicate <a href="#bigintp">bigint?</a> checks for
big integer type.</p>
<pre>
; first argument triggers big integer mode because it's big enough
(+ 123456789012345678901234567890 12345) <span class='arw'>→</span> 123456789012345678901234580235L
; first small literal put in big integer format by
; appending L to guarantee big integer mode
(+ 12345L 123456789012345678901234567890) <span class='arw'>→</span> 123456789012345678901234580235L
(setq x 1234567890123456789012345)
(* x x) <span class='arw'>→</span> 1524157875323883675049533479957338669120562399025L
; conversion from bigint to float introduces rounding errors
(bigint (float (* x x))) <span class='arw'>→</span> 1524157875323883725344000000000000000000000000000L
; sequence itself does not take big integers, before using
; apply, the sequence is converted with bigint
(apply * (map bigint (sequence 1 100))) ; calculate 100!
<span class='arw'>→</span> 93326215443944152681699238856266700490715968264381
62146859296389521759999322991560894146397615651828
62536979208272237582511852109168640000000000000000
00000000L
; only the first operand needs to be bigint for apply
; to work. The following gives the same result
(apply * (cons 1L (sequence 2 100)))
; length on big integers returns the number of decimal digits
(length (apply * (map bigint (sequence 1 100))))
<span class='arw'>→</span> 158 ; decimal digits
; all fibonacci numbers up to 200, only the first number
; needs to be formatted as big integer, the rest follows
; automatically - when executed from the command line in
; a 120 char wide terminal, this shows a beautiful pattern
(let (x 1L) (series x (fn (y) (+ x (swap y x))) 200))
</pre>
<p> When doing mixed integer / big integer arithmetic, the first
argument should be a big integer to avoid erratic behaviour.</p>
<pre>
; because the first argument is 64-bit, no big integer arithmetic
; will be done, although the second argument is big integer
(+ 123 12345L)
<span class='arw'>→</span> 12468
; the second argument is recognized as a big integer
; and overflows the capacity of a 64-bit integer
(+ 123 123453456735645634565463563546)
<span class='arw'>→</span> <span class="err">ERR: number overflows in function +</span>
; now the first argument converts to big integer and the
; whole expression evaluates in big integer mode
(+ 123L 123453456735645634565463563546)
<span class='arw'>→</span> 123453456735645634565463563669L
</pre>
<p>Under most circumstances mixing float, integers and big integers is
transparent. Functions automatically do conversions when needed on the
second argument. The overflow behavior when using normal integers and
floats only, has not changed from newLISP versions previous to 10.5.0.</p>
<br/>
<a name="eval_rules"></a>
<h3>Evaluation rules and data types</h3>
<p>Evaluate expressions by entering and editing them on the command-line.
More complicated programs can be entered using editors like Emacs and VI,
which have modes to show matching parentheses while typing. Load a saved
file back into a console session by using the <a href="#load">load</a> function.
</p>
<p>
A line comment begins with a <tt>;</tt> (semicolon) or a <tt>#</tt> (number sign)
and extends to the end of the line. newLISP ignores this line during evaluation.
The <tt>#</tt> is useful when using newLISP as a scripting language in
Linux/Unix environments, where the <tt>#</tt> is commonly used as a line comment
in scripts and shells.</p>
<p>When evaluation occurs from the command-line, the result is printed to the
console window.</p>
<p>The following examples can be entered on the command-line by typing the code
to the left of the <span class='arw'>→</span> symbol. The
result that appears on the next line should match the code to the right of the
<span class='arw'>→</span> symbol.</p>
<p><b>nil</b> and <b>true</b> are Boolean data types that
evaluate to themselves:</p>
<pre>
nil <span class='arw'>→</span> nil
true <span class='arw'>→</span> true
</pre>
<p><b>Integers</b>, <b>big integers</b> and <b>floating point</b> numbers evaluate to themselves:</p>
<pre>
123 <span class='arw'>→</span> 123 ; decimal integer
0xE8 <span class='arw'>→</span> 232 ; hexadecimal prefixed by 0x
055 <span class='arw'>→</span> 45 ; octal prefixed by 0 (zero)
0b101010 <span class='arw'>→</span> 42 ; binary prefixed by 0b
1.23 <span class='arw'>→</span> 1.23 ; float
123e-3 <span class='arw'>→</span> 0.123 ; float in scientific notation
123456789012345678901234567890
<span class='arw'>→</span> 123456789012345678901234567890L ; parses to big integer
</pre>
<p>
Integers are 64-bit including the sign bit. Valid integers
are numbers between -9,223,372,036,854,775,808 and
+9,223,372,036,854,775,807. Larger numbers converted from floating point
numbers are truncated to one of the two limits. Integers internal to newLISP,
which are limited to 32-bit numbers, overflow to either +2,147,483,647 or
-2,147,483,648.</p>
<p>Floating point numbers are IEEE 754 64-bit doubles.
Unsigned numbers up to 18,446,744,073,709,551,615 can be displayed
using special formatting characters for <a href="#format">format</a>.</p>
<p>Big integers are of unlimited precision and only limited in size by memory.
The memory requirement of a big integer is:</p>
<blockquote>
<b><i>bytes = 4 * ceil(digits / 9) + 4.</i></b>
</blockquote>
<p>Where <i>digits</i> are decimal digits, <i>bytes</i> are 8 bits and <i>ceil</i>
is the ceiling function rounding up to the next integer.</p>
<p>
<b>Strings</b> may contain null characters and can have different
delimiters. They evaluate to themselves.</p>
<pre>
"hello" <span class='arw'>→</span>"hello"
"\032\032\065\032" <span class='arw'>→</span>" A "
"\x20\x20\x41\x20" <span class='arw'>→</span>" A "
"\t\r\n" <span class='arw'>→</span>"\t\r\n"
"\x09\x0d\x0a" <span class='arw'>→</span>"\t\r\n"
;; null characters are legal in strings:
"\000\001\002" <span class='arw'>→</span> "\000\001\002"
{this "is" a string} <span class='arw'>→</span> "this \"is\" a string"
;; use [text] tags for text longer than 2047 bytes:
[text]this is a string, too[/text]
<span class='arw'>→</span> "this is a string, too"
</pre>
<p>Strings delimited by <tt>"</tt> (double quotes) will also process
the following characters escaped with a <tt>\</tt> (backslash):</p>
<table width="98%" summary="special characters in strings">
<tr align="left"><th>character</th><th>description</th></tr>
<tr><td><tt>\"</tt></td>
<td>for a double quote inside a quoted string</td></tr>
<tr><td><tt>\n</tt></td>
<td>for a line-feed character (ASCII 10)</td></tr>
<tr><td><tt>\r</tt></td>
<td>for a return character (ASCII 13)</td></tr>
<tr><td><tt>\b</tt></td>
<td>for a backspace BS character (ASCII 8)</td></tr>
<tr><td><tt>\t</tt></td>
<td>for a TAB character (ASCII 9)</td></tr>
<tr><td><tt>\f</tt></td>
<td>for a formfeed FF character (ASCII 12)</td></tr>
<tr><td><tt>\nnn</tt></td>
<td>for a three-digit ASCII number (nnn format
between 000 and 255)</td></tr>
<tr><td><tt>\xnn</tt></td>
<td>for a two-digit-hex ASCII number (xnn format between x00 and xff)</td></tr>
<tr><td><tt>\unnnn</tt></td>
<td>for a unicode character encoded in the four <tt>nnnn</tt> hexadecimal
digits. newLISP will translate this to a UTF8 character in the UTF8 enabled
versions of newLISP.</td>
</tr>
<tr><td><tt>\\</tt></td><td>for the backslash character (ASCII 92)
itself</td></tr>
</table><br/>
<p>Quoted strings cannot exceed 2,047 characters. Longer strings should use
the <tt>[text]</tt> and <tt>[/text]</tt> tag delimiters. newLISP automatically
uses these tags for string output longer than 2,047 characters.</p>
<p>The <tt>{</tt> (left curly bracket), <tt>}</tt> (right curly bracket),
and <tt>[text], [/text]</tt> delimiters do not perform escape character
processing.</p>
<p><b>Lambda and lambda-macro expressions</b> evaluate to themselves:</p>
<pre>
(lambda (x) (* x x)) <span class='arw'>→</span> (lambda (x) (* x x))
(lambda-macro (a b) (set (eval a) b)) <span class='arw'>→</span> (lambda-macro (a b) (set (eval a) b))
(fn (x) (* x x)) <span class='arw'>→</span> (lambda (x) (* x x)) ; an alternative syntax
</pre>
<p><b>Symbols</b> evaluate to their contents:</p>
<pre>
(set 'something 123) <span class='arw'>→</span> 123
something <span class='arw'>→</span> 123
</pre>
<p><b>Contexts</b> evaluate to themselves:</p>
<pre>
(context 'CTX) <span class='arw'>→</span> CTX
CTX <span class='arw'>→</span> CTX
</pre>
<p><b>Built-in functions</b> also evaluate to themselves:</p>
<pre>
add <span class='arw'>→</span> add <B845770D>
(eval (eval add)) <span class='arw'>→</span> add <B845770D>
(constant '+ add) <span class='arw'>→</span> add <B845770D>
+ <span class='arw'>→</span> add <B845770D>
</pre>
<p>In the above example, the number between the < > (angle brackets)
is the hexadecimal memory address (machine-dependent) of the
<tt>add</tt> function. It is displayed when printing a built-in primitive.</p>
<p><b>Quoted expressions</b> lose one ' (single quote) when evaluated:
</p>
<pre>
'something <span class='arw'>→</span> something
''''any <span class='arw'>→</span> '''any
'(a b c d) <span class='arw'>→</span> (a b c d)
</pre>
<p>A single quote is often used to <em>protect</em> an expression
from evaluation (e.g., when referring to the symbol itself instead
of its contents or to a list representing data instead of a function).</p>
<p><b>Lists</b> are evaluated by first evaluating the first list element
before the rest of the expression (as in Scheme). The result of the
evaluation is applied to the remaining elements in the list and must
be one of the following: a <tt>lambda</tt> expression, <tt>lambda-macro</tt>
expression, or <tt>primitive</tt> (built-in) function.</p>
<pre>
(+ 1 2 3 4) <span class='arw'>→</span> 10
(define (double x) (+ x x)) <span class='arw'>→</span> (lambda (x) (+ x x))
</pre>
<p>or</p>
<pre>
(set 'double (lambda (x) (+ x x)))
(double 20) <span class='arw'>→</span> 40
((lambda (x) (* x x)) 5) <span class='arw'>→</span> 25
</pre>
<p>For a user-defined lambda expression, newLISP evaluates the arguments from
left to right and binds the results to the parameters (also from left to
right), before using the results in the body of the expression. </p>
<p>Like Scheme, newLISP evaluates the <em>functor</em> (function object)
part of an expression before applying the result to its arguments. For
example:</p>
<pre>
((if (> X 10) * +) X Y)
</pre>
<p>Depending on the value of X, this expression applies the <tt>*</tt>
(product) or <tt>+</tt> (sum) function to X and Y.
</p>
<p>Because their arguments are not evaluated, <tt>lambda-macro</tt>
expressions are useful for extending the syntax of the language. Most
built-in functions evaluate their arguments from left to right (as needed)
when executed. Some exceptions to this rule are indicated in the reference
section of this manual. Lisp functions that do not evaluate all or some of
their arguments are called <em>special forms</em>.</p>
<p><b>Arrays</b> evaluate to themselves:</p>
<pre>
(set 'A (array 2 2 '(1 2 3 4))) <span class='arw'>→</span> ((1 2) (3 4))
(eval A) <span class='arw'>→</span> ((1 2) (3 4))
</pre>
<p><b>Shell commands</b>: If an <tt>!</tt> (exclamation mark)
is entered as the first character on the command-line followed by a shell
command, the command will be executed. For example, <tt>!ls</tt> on Unix or
<tt>!dir</tt> on MS Windows will display a listing of the present working directory.
No spaces are permitted between the <tt>!</tt> and the shell command. Symbols
beginning with an <tt>!</tt> are still allowed inside expressions or on the
command-line when preceded by a space. Note: This mode only works when running
in the shell and does not work when controlling newLISP from another
application.
</p>
<p>To exit the newLISP shell on Linux/Unix, press <tt>Ctrl-D</tt>; on MS Windows,
type <tt>(exit)</tt> or <tt>Ctrl-C</tt>, then the x key.
</p>
<p>Use the <a href="#exec">exec</a> function to access shell commands from
other applications or to pass results back to newLISP.
</p>
<br/>
<center>
<span class="divider">( <font color="#7ba9d4">§</font> )</span>
</center>
<br/>
<a name="lambda_expressions"></a>
<h2>9. Lambda expressions in newLISP</h2>
<p>Lambda expressions in newLISP evaluate to themselves and can be treated
just like regular lists:</p>
<pre>
(set 'double (lambda (x) (+ x x)))
(set 'double (fn (x) (+ x x))) ; alternative syntax
(last double) <span class='arw'>→</span> (+ x x) ; treat lambda as a list
</pre>
<p>Note: No <tt>'</tt> is necessary before the lambda expression because
lambda expressions evaluate to themselves in newLISP.</p>
<p>
The second line uses the keyword <tt>fn</tt>, an alternative syntax first suggested
by Paul Graham for his Arc language project.
</p>
<p>
A lambda expression is a <em>lambda list</em>, a subtype of <em>list</em>, and its
arguments can associate from left to right or right to left. When using
<a href="#append">append</a>, for example, the arguments associate from left to right:
</p>
<pre>
(append (lambda (x)) '((+ x x))) <span class='arw'>→</span> (lambda (x) (+ x x))
</pre> <p>
<a href="#cons">cons</a>, on the other hand, associates the arguments from right to left:
</p>
<pre>
(cons '(x) (lambda (+ x x))) <span class='arw'>→</span> (lambda (x) (+ x x))
</pre> <p>
Note that the <tt>lambda</tt> keyword is not a symbol in a list, but a
designator of a special <em>type</em> of list: the <em>lambda list</em>.
</p>
<pre>
(length (lambda (x) (+ x x))) <span class='arw'>→</span> 2
(first (lambda (x) (+ x x))) <span class='arw'>→</span> (x)
</pre> <p>
Lambda expressions can be mapped or applied onto arguments to work as user-defined, anonymous functions:
</p>
<pre>
((lambda (x) (+ x x)) 123) <span class='arw'>→</span> 246
(apply (lambda (x) (+ x x)) '(123)) <span class='arw'>→</span> 246
(map (lambda (x) (+ x x)) '(1 2 3)) <span class='arw'>→</span> (2 4 6)
</pre>
<p>A lambda expression can be assigned to a symbol, which in turn can be
used as a function:</p>
<pre>
(set 'double (lambda (x) (+ x x))) <span class='arw'>→</span> (lambda (x) (+ x x))
(double 123) <span class='arw'>→</span> 246
</pre>
<p>The <a href="#define">define</a> function is just a shorter way of
assigning a lambda expression to a symbol:</p>
<pre>
(define (double x) (+ x x))) <span class='arw'>→</span> (lambda (x) (+ x x))
(double 123) <span class='arw'>→</span> 246
</pre>
<p>In the above example, the expressions inside the lambda list are still
accessible within <tt>double</tt>:</p>
<pre>
(set 'double (lambda (x) (+ x x))) <span class='arw'>→</span> (lambda (x) (+ x x))
(last double) <span class='arw'>→</span> (+ x x)
</pre>
<p>A lambda list can be manipulated as a first-class object using any function
that operates on lists:</p>
<pre>
(setf (nth 1 double) '(mul 2 x)) <span class='arw'>→</span> (lambda (x) (mul 2 x))
double <span class='arw'>→</span> (lambda (x) (mul 2 x))
(double 123) <span class='arw'>→</span> 246
</pre>
<p>All arguments are optional when applying lambda expressions and default to <tt>nil</tt>
when not supplied by the user. This makes it possible to write functions with
multiple parameter signatures.</p>
<br/>
<center>
<span class="divider">( <font color="#7ba9d4">§</font> )</span>
</center>
<br/>
<a name="nil_and_true"></a>
<h2>10. <tt>nil</tt>, <tt>true</tt>, <tt>cons</tt>, and <tt>()</tt></h2>
<p>In newLISP, <tt>nil</tt> and <tt>true</tt> represent both the symbols and the
Boolean values <em>false</em> and <em>true</em>. Depending on their context,
<tt>nil</tt> and <tt>true</tt> are treated differently. The following examples use
<tt>nil</tt>, but they can be applied to <tt>true</tt> by simply reversing the logic.
</p>
<p>Evaluation of <tt>nil</tt> yields a Boolean false and is treated as such inside
flow control expressions such as <tt>if</tt>, <tt>unless</tt>, <tt>while</tt>,
<tt>until</tt>, and <tt>not</tt>. Likewise, evaluating <tt>true</tt> yields true.</p>
<pre>
(set 'lst '(nil nil nil)) <span class='arw'>→</span> (nil nil nil)
(map symbol? lst) <span class='arw'>→</span> (true true true)
</pre>
<p>In the above example, <tt>nil</tt> represents a symbol. In the following example,
<tt>nil</tt> and <tt>true</tt> are evaluated and represent Boolean values:</p>
<pre>
(if nil "no" "yes") <span class='arw'>→</span> "yes"
(if true "yes" "no") <span class='arw'>→</span> "yes"
(map not lst) <span class='arw'>→</span> (true true true)
</pre>
<p>In newLISP, <tt>nil</tt> and the empty list <tt>()</tt> are not the same as in
some other Lisps. Only in conditional expressions are they treated as a Boolean
false, as in <tt>and</tt>, <tt>or</tt>, <tt>if</tt>, <tt>while</tt>,
<tt>unless</tt>, <tt>until</tt>, and <tt>cond</tt>.</p>
<p>Evaluation of <tt>(cons 'x '())</tt> yields <tt>(x)</tt>, but <tt>(cons 'x nil)</tt>
yields <tt>(x nil)</tt> because <tt>nil</tt> is treated as a Boolean value when
evaluated, not as an empty list. The <tt>cons</tt> of two atoms in newLISP
does not yield a dotted pair, but rather a two-element list. The predicate
<tt>atom?</tt> is true for <tt>nil</tt>, but false for the empty list. The empty
list in newLISP is only an empty list and not equal to <tt>nil</tt>.</p>
<p>A list in newLISP is a newLISP cell of type list. It acts like a container for the
linked list of elements making up the list cell's contents. There is no
<em>dotted pair</em> in newLISP because the <em>cdr</em> (tail) part of a Lisp
cell always points to another Lisp cell and never to a basic data type, such as a
number or a symbol. Only the <em>car</em> (head) part may contain a basic data type.
Early Lisp implementations used <em>car</em> and <em>cdr</em> for the names
<em>head</em> and <em>tail</em>.</p>
<br/>
<center>
<span class="divider">( <font color="#7ba9d4">§</font> )</span>
</center>
<br/>
<a name="arrays"></a>
<h2>11. Arrays</h2>
<p>newLISP's arrays enable fast element access within large lists. New arrays
can be constructed and initialized with the contents of an existing list
using the function <a href="#array">array</a>. Lists can be converted into
arrays, and vice versa. Most of the same functions used for modifying and
accessing lists can be applied to arrays, as well. Arrays can hold any type
of data or combination thereof.</p>
<p>In particular, the following functions can be used for creating, accessing,
and modifying arrays:</p>
<table summary="functions using arrays">
<tr align="left"><th>function</th><th>description</th></tr>
<tr>
<td width="16%"><a href="#append">append</a></td>
<td width="80%">appends arrays</td>
</tr>
<tr>
<td><a href="#apply">apply</a></td>
<td>apply a function or operator to a list of arguments.</td>
</tr>
<tr>
<td><a href="#array">array</a></td>
<td>creates and initializes an array with up to 16 dimensions</td>
</tr>
<tr>
<td><a href="#array-list">array-list</a></td>
<td>converts an array into a list</td>
</tr>
<tr>
<td><a href="#arrayp">array?</a></td>
<td>checks if expression is an array</td>
</tr>
<tr>
<td><a href="#corr">corr</a></td>
<td>calculates the <em>product-moment correlation</em> coefficient</td>
</tr>
<tr>
<td><a href="#det">det</a></td>
<td>returns the determinant of a matrix</td>
</tr>
<tr>
<td><a href="#dolist">dolist</a></td>
<td>evaluates once for each element in an array vector</td>
</tr>
<tr>
<td><a href="#first">first</a></td>
<td>returns the first row of an array</td>
</tr>
<tr>
<td><a href="#invert">invert</a></td>
<td>returns the inversion of a matrix</td>
</tr>
<tr>
<td><a href="#last">last</a></td>
<td>returns the last row of an array</td>
</tr>
<tr>
<td><a href="#length">length</a></td>
<td>returns the number of rows in an array or elements in a vector</td>
</tr>
<tr>
<td><a href="#map">map</a></td>
<td>applies a function to vector(s) of arguments
and returns results in a list.</td>
</tr>
<tr>
<td><a href="#mat">mat</a></td>
<td>perform scalar operations on matrices</td>
</tr>
<tr>
<td><a href="#multiply">multiply</a></td>
<td>multiplies two matrices</td>
</tr>
<tr>
<td><a href="#nth">nth</a></td>
<td>returns an element of and array</td>
</tr>
<tr>
<td><a href="#rest">rest</a></td>
<td>returns all but the first row of an array</td>
</tr>
<tr>
<td><a href="#reverse">reverse</a></td>
<td>reverses the elements or rows in an array</td>
</tr>
<tr>
<td><a href="#setf">setf</a></td>
<td>sets contents of an array reference</td>
</tr>
<tr>
<td><a href="#slice">slice</a></td>
<td>returns a slice of an array</td>
</tr>
<tr>
<td><a href="#sort">sort</a></td>
<td>sort the elements in an array</td>
</tr>
<tr>
<td><a href="#stats">stats</a></td>
<td>calculates some basic statistics for a data vector</td>
</tr>
<tr>
<td><a href="#t-test">t-test</a></td>
<td>compares means of data samples using the <em>Student's t</em> statistic</td>
</tr>
<tr>
<td><a href="#transpose">transpose</a></td>
<td>transposes a matrix</td>
</tr>
</table><br/>
<p>
newLISP represents multidimensional arrays with an array of arrays
(i.e., the elements of the array are themselves arrays).
</p>
<p>When used interactively, newLISP prints and displays arrays as lists,
with no way of distinguishing between them.</p>
<p>Use the <a href="#source">source</a> or <a href="#save">save</a>
functions to serialize arrays (or the variables containing them).
The <a href="#array">array</a> statement is included as part of
the definition when serializing arrays.</p>
<p>Like lists, negative indices can be used to enumerate the elements
of an array, starting from the last element.</p>
<p>An out-of-bounds index will cause an error message on an array or list.</p>
<p>Arrays can be non-rectangular, but they are made rectangular
during serialization when using <a href="#source">source</a> or <a href="#save">save</a>.
The <a href="#array">array</a> function always constructs arrays in rectangular form.</p>
<p>The matrix functions <a href="#det">det</a>, <a href="#transpose">transpose</a>,
<a href="#multiply">multiply</a>, and <a href="#invert">invert</a> can be used on
matrices built with nested lists or arrays built with <a href="#array">array</a>.</p>
<p>For more details, see <a href="#array">array</a>, <a href="#arrayp">array?</a>,
and <a href="#array-list">array-list</a> in the reference section of this manual.</p>
<br/>
<center>
<span class="divider">( <font color="#7ba9d4">§</font> )</span>
</center>
<br/>
<a name="indexing"></a>
<h2>12. Indexing elements of strings, lists, and arrays</h2>
<p>Some functions take array, list, or string elements (characters)
specified by one or more <em>int-index</em> (integer index). The positive
indices run <tt>0, 1, …, N-2, N-1</tt>, where <tt>N</tt> is the
number of elements in the list. If <em>int-index</em> is negative, the sequence
is <tt>-N, -N+1, …, -2, -1</tt>. Adding <tt>N</tt> to the negative
index of an element yields the positive index. Unless a function does
otherwise, an index greater than <tt>N-1</tt> or less then -N causes an
out-of-bounds error in lists and arrays.</p>
<br/>
<a name="implicit_indexing"></a>
<h3>Implicit indexing for <tt>nth</tt></h3>
<p>Implicit indexing can be used instead of <a href="#nth">nth</a> to
retrieve the elements of a list or array or the characters of a string:</p>
<pre>
(set 'lst '(a b c (d e) (f g)))
(lst 0) <span class='arw'>→</span> a ; same as (nth 0 lst)
(lst 3) <span class='arw'>→</span> (d e)
(lst 3 1) <span class='arw'>→</span> e ; same as (nth '(3 1) lst)
(lst -1) <span class='arw'>→</span> (f g)
(set 'myarray (array 3 2 (sequence 1 6)))
(myarray 1) <span class='arw'>→</span> (3 4)
(myarray 1 0) <span class='arw'>→</span> 3
(myarray 0 -1) <span class='arw'>→</span> 2
; indexing ASCII strings
("newLISP" 3) <span class='arw'>→</span> "L"
; indexing strings in UTF8 enabled versions
("我能吞下玻璃而不伤身体。" 3) <span class='arw'>→</span> "下"
</pre>
<p>Indices may also be supplied from a list. In this way, implicit
indexing works together with functions that take or produce index
vectors, such as <a href="#push">push</a>, <a href="#pop">pop</a>,
<a href="#ref">ref</a> and <a href="#ref-all">ref-all</a>.</p>
<pre>
(lst '(3 1)) <span class='arw'>→</span> e
(set 'vec (ref 'e lst)) <span class='arw'>→</span> (3 1)
(lst vec) <span class='arw'>→</span> e
; an empty index vector yields the original list or array
(lst '()) <span class='arw'>→</span> (set 'lst '(a b c (d e) (f g)))
</pre>
<p>Note that implicit indexing is not breaking newLISP
syntax rules but is merely an expansion of existing rules to
other data types in the functor position of an s-expression.
In original Lisp, the first element in an s-expression list
is applied as a function to the rest elements as arguments. In newLISP, a list
in the functor position of an s-expression assumes self-indexing functionality
using the index arguments following it.</p>
<p>Implicit indexing is faster than the explicit forms, but the explicit forms
may be more readable depending on context.</p>
<p>Note that in the UTF-8–enabled version of newLISP, implicit indexing
of strings or using the <a href="#nth">nth</a> function work on character rather
than single-byte boundaries.</p>
<br/>
<a name="implicit_default"></a>
<h3>Implicit indexing and the default functor</h3>
<p>The <em>default functor</em> is a functor inside a context with the same
name as the context itself. See <a href="#default_function">The context
default function</a> chapter. A default functor can be used together with
implicit indexing to serve as a mechanism for referencing lists:</p>
<pre>
(set 'MyList:MyList '(a b c d e f g))
(MyList 0) <span class='arw'>→</span> a
(MyList 3) <span class='arw'>→</span> d
(MyList -1) <span class='arw'>→</span> g
(3 2 MyList) <span class='arw'>→</span> (d e)
(-3 MyList) <span class='arw'>→</span> (e f g)
(set 'aList MyList)
(aList 3) <span class='arw'>→</span> d
</pre>
<p>In this example, <tt>aList</tt> references <tt>MyList:MyList</tt>,
not a copy of it. For more information about contexts, see
<a href="#context_vars">Variables holding contexts</a>.</p>
<p>The indexed default functor can also be used with <a href="#setf">setf</a> as shown
in the following example:</p>
<pre>
(set 'MyList:MyList '(a b c d e f g))
(setf (MyList 3) 999) <span class='arw'>→</span> 999
(MyList 3) <span class='arw'>→</span> 999
MyList:MyList <span class='arw'>→</span> (a b c 999 e f g)
</pre>
<br/>
<a name="implicit_rest_slice"></a>
<h3>Implicit indexing for <tt>rest</tt> and <tt>slice</tt> </h3>
<p> Implicit forms of <a href="#rest">rest</a> and <a href="#slice">slice</a>
can be created by prepending a list with one or two numbers for offset and length.
If the length is negative it counts from the end of the list or string:</p>
<pre>
(set 'lst '(a b c d e f g))
; or as array
(set 'lst (array 7 '(a b c d e f g)))
(1 lst) <span class='arw'>→</span> (b c d e f g)
(2 lst) <span class='arw'>→</span> (c d e f g)
(2 3 lst) <span class='arw'>→</span> (c d e)
(-3 2 lst) <span class='arw'>→</span> (e f)
(2 -2 lst) <span class='arw'>→</span> (c d e)
; resting and slicing is always on 8-bit char borders
; even on UTF8 enabled versions
(set 'str "abcdefg")
(1 str) <span class='arw'>→</span> "bcdefg"
(2 str) <span class='arw'>→</span> "cdefg"
(2 3 str) <span class='arw'>→</span> "cde"
(-3 2 str) <span class='arw'>→</span> "ef"
(2 -2 str) <span class='arw'>→</span> "cde"
</pre>
<p>The functions <a href="#rest">rest</a>, <a href="#first">first</a>
and <a href="#last">last</a> work on multi-byte character boundaries
in UTF-8 enabled versions of newLISP. But the implicit indexing forms for
slicing and resting will always work on single-byte boundaries and can be used for
binary content. Offset and length results from the regular expression functions
<a href="#find">find</a> and <a href="#regex">regex</a> are also in single-byte
counts and can be further processed with <a href="#slice">slice</a> or it's
implicit form.</p>
<br/>
<a name="implicit_modify"></a>
<h3>Modify references in lists, arrays and strings</h3>
<p>Parts in lists, arrays and strings referenced by indices can be modified using
<a href="#setf">setf</a>:</p>
<pre>
; lists
(set 'lst '(a b c d (e f g)))
(lst 1) <span class='arw'>→</span> b
(setf (lst 1) 'z) <span class='arw'>→</span> z
lst <span class='arw'>→</span> (a z c d (e f g))
(setf (lst -1) '(E F G)) <span class='arw'>→</span> (E F G)
lst <span class='arw'>→</span> (a z c d (E F G))
; arrays
(set 'myarray (array 2 3 (sequence 1 6))) <span class='arw'>→</span> ((1 2 3) (4 5 6))
(setf (myarray 1 2) 66) <span class='arw'>→</span> 66
myarray <span class='arw'>→</span> ((1 2 3) (4 5 66))
; strings
(set 's "NewLISP")
(setf (s 0) "n") <span class='arw'>→</span> "n"
s <span class='arw'>→</span> "newLISP"
</pre>
<p>Note that only full elements or nested lists or arrays can be changed this way.
Slices or rest parts of lists or arrays as used in implicit resting or slicing cannot
be substituted at once using <a href="#setf">setf</a>, but would have to be substituted
element by element. In strings only one character can be replaced at a time, but
that character can be replaced by a multi-character string.</p>
<br/>
<center>
<span class="divider">( <font color="#7ba9d4">§</font> )</span>
</center>
<br/>
<a name="destructive"></a>
<h2>13. Destructive versus nondestructive functions</h2>
<p>Most of the primitives in newLISP are nondestructive (no <em>side effects</em>)
and leave existing objects untouched, although they may create new ones. There
are a few destructive functions, however, that <em>do</em> change the contents of a
variable, list, array, or string:</p>
<table width="98%" summary="destructive functions">
<tr align="left"><th>function</th><th>description</th></tr>
<tr>
<td><a href="#inci">++</a></td>
<td>increments numbers in integer mode</td>
</tr>
<tr>
<td><a href="#deci">--</a></td>
<td>decrements numbers in integer mode</td>
</tr>
<tr>
<td><a href="#bind">bind</a></td>
<td>binds variable associations in a list</td>
</tr>
<tr>
<td><a href="#constant">constant</a></td>
<td>sets the contents of a variable and protects it</td>
</tr>
<tr>
<td><a href="#extend">extend</a></td>
<td>extends a list or string</td>
</tr>
<tr>
<td><a href="#dec">dec</a></td>
<td>decrements a number referenced by a variable, list or array</td>
</tr>
<tr>
<td><a href="#define">define</a></td>
<td>sets the contents of a variable</td>
</tr>
<tr>
<td><a href="#define-macro">define-macro</a></td>
<td>sets the contents of a variable</td>
</tr>
<tr>
<td><a href="#inc">inc</a></td>
<td>increments a number referenced by a variable, list or array</td>
</tr>
<tr>
<td><a href="#let">let</a></td>
<td>declares and initializes local variables</td>
</tr>
<tr>
<td><a href="#letn">letn</a></td>
<td>initializes local variables incrementally, like nested lets</td>
</tr>
<tr>
<td><a href="#letex">letex</a></td>
<td>expands local variables into an expression, then evaluates</td>
</tr>
<tr>
<td><a href="#net-receive">net-receive</a></td>
<td>reads into a buffer variable</td>
</tr>
<tr>
<td><a href="#pop">pop</a></td>
<td>pops an element from a list or string</td>
</tr>
<tr>
<td><a href="#pop-assoc">pop-assoc</a></td>
<td>removes an association from an association list</td>
</tr>
<tr>
<td><a href="#push">push</a></td>
<td>pushes a new element onto a list or string</td>
</tr>
<tr>
<td><a href="#read">read</a></td>
<td>reads into a buffer variable</td>
</tr>
<tr>
<td><a href="#receive">receive</a></td>
<td>receives a message from a parent or child process</td>
</tr>
<tr>
<td><a href="#replace">replace</a></td>
<td>replaces elements in a list or string</td>
</tr>
<tr>
<td><a href="#reverse">reverse</a></td>
<td>reverses a list or string</td>
</tr>
<tr>
<td><a href="#rotate">rotate</a></td>
<td>rotates the elements of a list or characters of a string</td>
</tr>
<tr>
<td><a href="#set">set</a></td>
<td>sets the contents of a variable</td>
</tr>
<tr>
<td><a href="#setf">setf setq</a></td>
<td>sets the contents of a variable, list, array or string</td>
</tr>
<tr>
<td><a href="#set-ref">set-ref</a></td>
<td>searches for an element in a nested list and replaces it</td>
</tr>
<tr>
<td><a href="#set-ref-all">set-ref-all</a></td>
<td>searches for an element in a nested list and replaces all instances</td>
</tr>
<tr>
<td><a href="#sort">sort</a></td>
<td>sorts the elements of a list or array</td>
</tr>
<tr>
<td><a href="#swap">swap</a></td>
<td>swaps two elements inside a list or string</td>
</tr>
<tr>
<td><a href="#write">write</a></td>
<td>write a string to a file or string buffer</td>
</tr>
</table><br/>
<br/>
<a name="make_nondestructive"></a>
<h3>Make a destructive function non-destructive</h3>
<p>Some destructive functions can be made non-destructive by wrapping the target
object into the <a href="#copy">copy</a> function.</p>
<pre>
(set 'aList '(a b c d e f))
(replace 'c (copy aList)) <span class='arw'>→</span> (a b d e f)
aList <span class='arw'>→</span> (a b c d e f)
</pre>
<p>The list in <tt>aList</tt> is left unchanged.</p>
<br/>
<center>
<span class="divider">( <font color="#7ba9d4">§</font> )</span>
</center>
<br/>
<a name="return"></a>
<h2>14. Early return from functions, loops, and blocks</h2>
<p>What follows are methods of interrupting the control flow inside both
loops and the <a href="#begin">begin</a> expression.</p>
<p>The looping functions <a href="#dolist">dolist</a> and <a href="#dotimes">
dotimes</a> can take optional conditional expressions to leave the loop
early. <a href="#catch">catch</a> and <a href="#throw">throw</a> are a more
general form to break out of a loop body and are also applicable to other
forms or statement blocks.</p>
<br/>
<a name="flow_catch_throw"></a>
<h3>Using <tt>catch</tt> and <tt>throw</tt></h3>
<p>Because newLISP is a functional language, it uses no <tt>break</tt> or
<tt>return</tt> statements to exit functions or iterations. Instead, a
block or function can be exited at any point using the functions
<a href="#catch">catch</a> and <a href="#throw">throw</a>:</p>
<pre>
(define (foo x)
...
(if condition (throw 123))
...
456
)
;; if condition is true
(catch (foo p)) <span class='arw'>→</span> 123
;; if condition is not true
(catch (foo p)) <span class='arw'>→</span> 456
</pre>
<p>Breaking out of loops works in a similar way:</p>
<pre>
(catch
(dotimes (i N)
(if (= (foo i) 100) (throw i))))
<span class='arw'>→</span> value of i when foo(i) equals 100
</pre>
<p>The example shows how an iteration can be exited before executing <tt>N</tt> times.</p>
<p>Multiple points of return can be coded using <a href="#throw">throw</a>:</p>
<pre>
(catch (begin
(foo1)
(foo2)
(if condition-A (throw 'x))
(foo3)
(if condition-B (throw 'y))
(foo4)
(foo5)))
</pre>
<p>If <tt>condition-A</tt> is true, <tt>x</tt> will be returned from
the <tt>catch</tt> expression; if <tt>condition-B</tt> is true, the
value returned is <tt>y</tt>. Otherwise, the result from <tt>foo5</tt>
will be used as the return value.</p>
<p>As an alternative to <a href="#catch">catch</a>, the <a href="#error-event">error-event</a>
function can be used to catch errors caused by faulty code or user-initiated exceptions.</p>
<p>The <a href="#throw-error">throw-error</a> function may be used
to throw user-defined errors.</p>
<br/>
<a name="flow_and_or"></a>
<h3>Using <tt>and</tt> and <tt>or</tt></h3>
<p>Using the logical functions <a href="#and">and</a> and
<a href="#or">or</a>, blocks of statements can be built
that are exited depending on the Boolean result of the enclosed functions:</p>
<pre>
(and
(func-a)
(func-b)
(func-c)
(func-d))
</pre>
<p>The <a href="#and">and</a> expression will return as soon as one of the
block's functions returns <tt>nil</tt> or an <tt>()</tt> (empty list).
If none of the preceding functions causes an exit from the block, the
result of the last function is returned.</p>
<p><a href="#or">or</a> can be used in a similar fashion:</p>
<pre>
(or
(func-a)
(func-b)
(func-c)
(func-d))
</pre>
<p>
The result of the <a href="#or">or</a> expression will be the first function
that returns a value which is <em>not</em> <tt>nil</tt> or <tt>()</tt>.
</p>
<br/>
<center>
<span class="divider">( <font color="#7ba9d4">§</font> )</span>
</center>
<br/>
<a name="scoping"></a>
<h2>15. Dynamic and lexical scoping</h2>
<p>newLISP uses dynamic scoping <em>inside</em> contexts. A context is a lexically
closed namespace. In this way, parts of a newLISP program can live in different
namespaces taking advantage of <em>lexical scoping</em>.</p>
<p>
When the parameter symbols of a lambda expression are bound to its arguments,
the old bindings are pushed onto a stack. newLISP automatically restores the
original variable bindings when leaving the lambda function. </p>
<p>
The following example illustrates the <em>dynamic scoping</em> mechanism.
The text in bold is the output from newLISP:</p>
<pre>
> (set 'x 1)
<b>1</b>
> (define (f) x)
<b>(lambda () x)</b>
> (f)
<b>1</b>
> (define (g x) (f))
<b>(lambda (x) (f))</b>
> (g 0)
<b>0</b>
> (f)
<b>1</b>
> _
</pre>
<p>The variable <tt>x</tt> is first set to <tt>1</tt>. But when <tt>(g 0)</tt>
is called, <tt>x</tt> is bound to <tt>0</tt> and <tt>x</tt> is reported
by <tt>(f)</tt> as <tt>0</tt> during execution of <tt>(g 0)</tt>. After
execution of <tt>(g 0)</tt>, the call to <tt>(f)</tt> will report <tt>x</tt> as <tt>1</tt> again.</p>
<p>This is different from the <em>lexical scoping</em> mechanisms found in
languages like C or Java, where the binding of local parameters occurs inside
the function only. In lexically scoped languages like C, <tt>(f)</tt> would
always print the global bindings of the symbol <tt>x</tt> with <tt>1</tt>.
</p>
<p>Be aware that passing quoted symbols to a user-defined function causes a
name clash if the same variable name is used as a function parameter:</p>
<pre>
(define (inc-symbol x y) (inc (eval x) y))
(set 'y 200)
(inc-symbol 'y 123) <span class='arw'>→</span> 246
y <span class='arw'>→</span> 200 ; y is still 200
</pre>
<p>
Because the global <tt>y</tt> shares the same symbol as the function's second parameter,
<tt>inc-symbol</tt> returns 246 (123 + 123), leaving the global <tt>y</tt> unaffected.
Dynamic scoping's <em>variable capture</em> can be a disadvantage when passing symbol
references to user-defined functions. newLISP offers several methods to avoid variable
capture.</p>
<ul>
<li>The function <a href="#args">args</a> can be used when passing symbols.</li>
<li>One or more user-defined functions can be placed in their own namespace called
a <a href="#contexts">context</a>. A symbol name clash cannot occur when accessing
symbols and calling functions from <em>outside</em> of the defining context.</li>
</ul>
<p>
Contexts should be used to group related functions when creating interfaces
or function libraries. This surrounds the functions with a lexical "fence",
thus avoiding variable name clashes with the calling functions.
</p>
<p>
newLISP uses contexts for different forms of lexical scoping. See the
chapters <a href="#contexts">Contexts</a> and
<a href="#default_function">default functors</a> for more information.</p>
<br/>
<center>
<span class="divider">( <font color="#7ba9d4">§</font> )</span>
</center>
<br/>
<a name="contexts"></a>
<h2>16. Contexts</h2>
<p>In newLISP, symbols can be separated into namespaces called <em>contexts</em>.
Each context has a private symbol table separate from all other contexts. Symbols
known in one context are unknown in others, so the same name may be used
in different contexts without conflict.</p>
<p>Contexts are used to build modules of isolated variable and function definitions.
They also can be used to build dictionaries fo key values pairs. Contexts can be
copied and dynamically assigned to variables or passed as arguments by reference.
Because contexts in newLISP have lexically separated namespaces, they allow programming
with <em>lexical scoping</em> and software object styles of programming.</p>
<p>Contexts are identified by symbols that are part of the root or <tt>MAIN</tt>
context. Although context symbols are uppercased in this chapter, lowercase symbols
may also be used.</p>
<p>In addition to context names, <tt>MAIN</tt> contains the symbols for built-in
functions and special symbols such as <tt>true</tt> and <tt>nil</tt>. The <tt>MAIN</tt>
context is created automatically each time newLISP is run. To see all the symbols
in MAIN, enter the following expression after starting newLISP:</p>
<pre>
(symbols)
</pre>
<p>To see all symbols in <tt>MAIN</tt> pointing to contexts:</p>
<pre>
(filter context? (map eval (symbols)))
</pre>
<p>To seel all context symbols in <tt>MAIN</tt> when <tt>MAIN</tt> is not the
current context:</p>
<pre>
(filter context? (map eval (symbols MAIN)))
</pre>
<br/>
<a name="context_rules"></a>
<h3>Symbol creation in contexts</h3>
<p>The following rules should simplify the process of understanding contexts by
identifying to which context the created symbols are being assigned.</p>
<ol>
<li>
<p>newLISP first parses and translates each expression starting at the top
level. All symbols are created during this phase. After the expression is
translated, it gets evaluated.</p>
</li>
<li>
<p>A symbol is created when newLISP first <em>sees</em> it, while calling
the <a href="#load">load</a>, <a href="#sym">sym</a>,
or <a href="#eval-string">eval-string</a> functions. When newLISP reads
a source file, symbols are created <em>before</em> evaluation occurs. The
<a href="#reader-event">reader-event</a> function can be used to inspect
the expression after reading and translating but before evaluation. The
<a href="#read-expr">read-expr</a> function can be used to read and translate
newLISP source without evaluation.</p>
</li>
<li>
<p>When an unknown symbol is encountered during code translation,
a search for its definition begins inside the current context.
Failing that, the search continues inside <tt>MAIN</tt> for a
built-in function, context, or global symbol. If no definition
is found, the symbol is created locally inside the current context.</p>
</li>
<li>
<p>Once a symbol is created and assigned to a specific context,
it will belong to that context permanently or until it is deleted
using the <a href="#delete">delete</a> function.</p>
</li>
<li>
<p>When a user-defined function is evaluated, the context is switched
to the name-space which owns that symbol.</p>
</li>
<li><p>A context switch only influences symbol creation during
<a href="#load">load</a>, <a href="#sym">sym</a>,
or <a href="#eval-string">eval-string</a>.
<a href="#load">load</a> by default loads into MAIN except
when context switches occur on the top level of the file loaded.
For better style, the context should always be specified when the functions
<a href="#sym">sym</a> and <a href="#eval-string">eval-string</a>
are used. A context switch should normally only be made on the top level of
a program, never inside a function.</p>
</li>
</ol>
<br/>
<a name="creating_contexts"></a>
<h3>Creating contexts</h3>
<p>Contexts can be created either by using the <a href="#context">context</a>
function or via implicit creation. The first method is used when writing larger
portions of code belonging to the same context:</p>
<pre>
(context 'FOO)
(set 'var 123)
(define (func x y z)
... )
(context MAIN)
</pre>
<p>If the context does not exist yet, the context symbol must be quoted.
If the symbol is not quoted, newLISP assumes the symbol is a variable
holding the symbol of the context to create. Because a context evaluates
to itself, already existing contexts like MAIN do not require quoting.</p>
<p>When newLISP reads the above code, it will read, then evaluate the first
statement: <tt>(context 'FOO)</tt>. This causes newLISP to switch the namespace
to FOO and the following symbols <tt>var</tt>, <tt>x</tt>, <tt>y</tt> and <tt>z</tt>
will all be created in the FOO context when reading and evaluating the remaining
expressions.</p>
<p>A context symbol is protected against change. Once a symbol refers to a
context, it cannot be used for any other purpose, except when using
<a href="#delete">delete</a>.</p>
<p>To refer to <tt>var</tt> or <tt>func</tt> from anywhere else outside the
FOO namespace, they need to be prefixed with the context name:</p>
<pre>
FOO:var <span class='arw'>→</span> 123
(FOO:func p q r)
</pre>
<p>Note, that in the above example only <tt>func</tt> belongs to the <tt>FOO</tt>
name space the symbols <tt>p q r</tt> all are part of the current context
from which the <tt>FOO:func</tt> call is made.</p>
<p>The <a href="#symbols">symbols</a> function is used to show all symbols
belonging to a context:</p>
<pre>
(symbols FOO) <span class='arw'>→</span> (FOO:func FOO:var FOO:x FOO:y FOO:z)
; or from inside the context symbols are shown without context prefix
(context FOO) <span class='arw'>→</span> (func x y z)
(sumbols)
</pre>
<br/>
<b>Implicitly creating contexts</b>
<p>A context is implicitly created when referring to one that does not yet exist.
Unlike the <tt>context</tt> function, the context is not switched. The following
statements are all executed inside the <tt>MAIN</tt> context:</p>
<pre>
> (set 'ACTX:var "hello")
<b>"hello"</b>
> ACTX:var
<b>"hello"</b>
> _
</pre>
<p>Note that only the symbols prefixed with their context name will be part
of the context:</p>
<pre>
(define (ACTX:foo x y)
(+ x y))
</pre>
<p>When above code is loaded in MAIN only <tt>foo</tt> will be part of
<tt>ACTX</tt>. The symbols <tt>x</tt> and <tt>y</tt> will still be part
of <tt>MAIN</tt>. To make all locals of <tt>ACTX:foo</tt> members of
the <tt>ACTX</tt> context, they would either have to be prefixed with
<tt>ACTX</tt>, or the whole funtion must be preceded by a context
switch satement at the top level:</p>
<pre>
(context 'ACTX)
(define (foo x y)
(+ x y)
(context MAIN
;; above same as
(define (ACTX:foo ACTX:x ACTX:y)
(+ ACTX:x ACTX:y))
</pre>
<br/>
<b>Loading module files</b>
<br/>
<p>When loading source files on the command-line with <a href="#load">load</a>,
or when executing the functions <a href="#eval-string">eval-string</a> or
<a href="#sym">sym</a>, the <tt>context</tt> function tells the newLISP source
code reader in which namespace to put all of the symbols and definitions:</p>
<pre>
;;; file MY_PROG.LSP
;;
;; everything from here on goes into GRAPH
(context 'GRAPH)
(define (draw-triangle x y z)
(…))
(define (draw-circle)
(…))
;; show the runtime context, which is GRAPH
(define (foo)
(context))
;; switch back to MAIN
(context 'MAIN)
;; end of file
</pre>
<p>The <tt>draw-triangle</tt> and <tt>draw-circle</tt> functions — along
with their <tt>x</tt>, <tt>y</tt>, and <tt>z</tt> parameters — are now
part of the <tt>GRAPH</tt> context. These symbols are known only to <tt>GRAPH</tt>.
To call these functions from another context, prefix them with <tt>GRAPH:</tt></p>
<pre>
(GRAPH:draw-triangle 1 2 3)
(GRAPH:foo) <span class='arw'>→</span> GRAPH
</pre>
<p>The last statement shows how the runtime context has changed to
<tt>GRAPH</tt> (function <tt>foo</tt>'s context).</p>
<p>A symbol's name and context are used when comparing symbols from different
contexts. The <a href="#term">term</a> function can be used to extract the term
part from a fully qualified symbol.</p>
<pre>
;; same symbol name, but in different context
(= 'A:val 'B:val) <span class='arw'>→</span> nil
(= (term 'A:val) (term 'B:val)) <span class='arw'>→</span> true
(= (prefix 'A:val) (prefix 'B:val)) <span class='arw'>→</span> nil
</pre>
<p>Note: The symbols in above example are quoted with a <tt>'</tt> (single quote)
because we are interested in the symbol itself, not in the contents of the symbol.</p>
<br/>
<a name="scope_global"></a>
<h3>Global scope</h3>
<p>By default, only built-in functions and symbols like <tt>nil</tt> and
<tt>true</tt> are visible inside contexts other than <tt>MAIN</tt>. To make a symbol
visible to every context, use the <a href="#global">global</a> function:</p>
<pre>
(set 'aVar 123) <span class='arw'>→</span> 123
(global 'aVar) <span class='arw'>→</span> aVar
(context 'FOO) <span class='arw'>→</span> FOO
aVar <span class='arw'>→</span> 123
</pre>
<p>Without the <tt>global</tt> statement, the second <tt>aVar</tt> would have
returned <tt>nil</tt> instead of <tt>123</tt>. If <tt>FOO</tt> had a previously
defined symbol (<tt>aVar</tt> in this example) <em>that</em> symbol's value
— and not the global's — would be returned instead. Note that only
symbols from the <tt>MAIN</tt> context can be made global.</p>
<p>Once it is made visible to contexts through the <a href="#global">global</a> function,
a symbol cannot be hidden from them again.</p>
<br/>
<a name="protection"></a>
<h3>Symbol protection</h3>
<p>By using the <a href="#constant">constant</a> function, symbols can be both set
and protected from change at the same time:</p>
<pre>
> (constant 'aVar 123) <span class='arw'>→</span> 123
> (set 'aVar 999)
<span class='err'>ERR: symbol is protected in function set : aVar</span>
>_
</pre> <p>
A symbol needing to be both a constant and a global can be defined simultaneously:
</p>
<pre>
(constant (global 'aVar) 123)
</pre>
<p>In the current context, symbols protected by <tt>constant</tt> can be overwritten
by using the <tt>constant</tt> function again. This protects the symbols from
being overwritten by code in other contexts.</p>
<br/>
<a name="overwrite"></a>
<h3>Overwriting global symbols and built-ins</h3>
<p>Global and built-in function symbols can be overwritten inside a
context by prefixing them with their <em>own</em> context symbol:</p>
<pre>
(context 'Account)
(define (Account:new …)
(…))
(context 'MAIN)
</pre>
<p>In this example, the built-in function <a href="#new">new</a> is overwritten by
<tt>Account:new</tt>, a different function that is private to the <tt>Account</tt> context.
</p>
<br/>
<a name="context_vars"></a>
<h3>Variables containing contexts</h3>
<p>Variables can be used to refer to contexts:</p>
<pre>
(set 'FOO:x 123)
(set 'ctx FOO) <span class='arw'>→</span> FOO
ctx:x <span class='arw'>→</span> 123
(set 'ctx:x 999) <span class='arw'>→</span> 999
FOO:x <span class='arw'>→</span> 999
</pre>
<p>
Context variables are useful when writing functions, which need to refer to
different contexts during runtime or use contexts which do not exist during
definition:</p>
<pre>
(define (update ctx val)
(set 'ctx:sum val)
(ctx:func 999)
)
(context 'FOO)
(define (func x)
(println "=>" x))
(context MAIN)
</pre>
<p>The following shows a terminal session using above definitions. The program
output is shown in bold-face:</p>
<pre>
<b>></b> (update FOO 123)
<b>=> 999</b>
<b>></b> FOO:sum
<b>123</b>
<b>></b>
</pre>
<p>The same one function <tt>update</tt> can display different behavior depending
on the context passed as first parameter. </p>
<br/>
<a name="sequence_creating"></a>
<h3>Sequence of creating or loading contexts</h3>
<p>The sequence in which contexts are created or loaded can lead to unexpected
results. Enter the following code into a file called <tt>demo</tt>:</p>
<pre>
;; demo - file for loading contexts
(context 'FOO)
(set 'ABC 123)
(context MAIN)
(context 'ABC)
(set 'FOO 456)
(context 'MAIN)
</pre>
<p>Now load the file into the newlisp shell:</p>
<pre>
> (load "demo")
<span class='err'>ERR: symbol is protected in function set : FOO</span>
> _
</pre>
<p>Loading the file causes an error message for <tt>FOO</tt>, but not
for <tt>ABC</tt>. When the first context <tt>FOO</tt> is loaded, the
context <tt>ABC</tt> does not exist yet, so a local variable <tt>FOO:ABC</tt>
gets created. When <tt>ABC</tt> loads, <tt>FOO</tt> already exists as a global
protected symbol and will be correctly flagged as protected.</p>
<p><tt>FOO</tt> could still be used as a local variable in the <tt>ABC</tt>
context by explicitly prefixing it, as in <tt>ABC:FOO</tt>.</p>
<br/>
<a name="context_modules"></a>
<h3>Contexts as programming modules</h3>
<p>Contexts in newLISP are mainly used for partitioning source into
modules. Because each module lives in a different namespace, modules
are lexically separated and the names of symbols cannot clash with
identical names in other modules.</p>
<p>The <a href="http://newlisp.org/code/modules/">modules</a>, which are
part of the newLISP distribution, are a good example of how to put related
functions into a module file, and how to document modules using
the <a href="http://newlisp.org/newLISPdoc.html">newLISPdoc</a> utility.</p>
<p>For best programming practice, a file should only contain one module and
the filename should be similar if not identical to the context name used:</p>
<pre>
;; file db.lsp, commonly used database functions
(context 'db)
;; Variables used throughout this namespace
(define db:handle)
(define db:host "http://localhost")
;; Constants
(constant 'Max_N 1000000)
(constant 'Path "/usr/data/")
;; Functions
(define (db:open ... )
... )
(define (db:close ... )
... )
(define (db:update ... )
... )
</pre>
<p>The example shows a good practice of predefining variables, which are global
inside the namespace, and defining as constants the variables that will not change.</p>
<p>If a file must contain more than one context, then the end of the context
should be marked with a switch back to <tt>MAIN</tt>:</p>
<pre>
;; Multi context file multi.lsp
(context 'A-ctx)
...
(context MAIN)
(context 'B-ctx)
...
(context MAIN)
(context 'C-ctx)
...
(context MAIN)
</pre>
<p>In any case <a href="#load">load</a> will always switch back to the context
from where it was called.</p>
<br/>
<a name="context_data"></a>
<h3>Contexts as data containers</h3>
<p>Contexts are frequently uses as data containers, e.g. for configuration data:</p>
<pre>
;; Config.lsp - configuration setup
(context 'Config)
(set 'user-name "admin")
(set 'password "secret")
(set 'db-name "/usr/data/db.lsp")
...
;; eof
</pre>
<p>Loading the <tt>Config</tt> namespace will now load a whole variable set into
memory at once:</p>
<pre>
(load "Config.lsp")
(set 'file (open Config:db-name "read"))
...
...
</pre>
<p>In a similar fashion a whole data set can be saved:</p>
<pre>
(save "Config.lsp" 'Config)
</pre>
<p>Read more about this in the section <a href="#serializing">Serializing contexts</a>.</p>
<br/>
<a name="loading_contexts"></a>
<h3>Loading and declaring contexts</h3>
<p>Module files are loaded using the <a href="#load">load</a> function.
If a programming project contains numerous modules that refer
to each other, they can be pre-declared to avoid problems due to context forward
references that can occur before the loading of that context.</p>
<pre>
;; pre-declaring contexts, finish with Main to return
(map context '(Utilities Config Acquisition Analysis SysLog MAIN))
;; loading context module files
(load "Utilities.lsp" "Acquisition.lsp")
(load "http://192.168.1.34/Config.lsp") ; load module from remote location
(load "Analysis.lsp" "SysLog.lsp")
(define (run)
... )
(run)
;; end of file </pre>
<p>When pre-declaring and loading modules as shown in the example, the sequence
of declaration or loading can be neglected. All forward references to variables
and definitions in modules not loaded yet will be translated correctly. Wrong
usage of a context symbol will result in an error message before that context
is loaded.</p>
<p>Modules not starting with a context switch are always loaded into <tt>MAIN</tt>
except when the <a href="#load">load</a> statement specifies a target context
as the last parameter. The <a href="#load">load</a> function can take <tt>URL</tt>s
to load modules from remote locations, via <tt>HTTP</tt>.</p>
<p>The current context after the <a href="#load">load</a> statement will always be
the same as before the <a href="#load">load</a>.</p>
<br/>
<a name="serializing"></a>
<h3>Serializing contexts</h3>
<p>Serialization makes a software object <em>persistent</em>
by converting it into a character stream,
which is then saved to a file or string in memory.
In newLISP, anything referenced by a symbol can be serialized to a file
by using the <a href="#save">save</a> function.
Like other symbols, contexts are saved just by using their names:
</p>
<pre>
(save "mycontext.lsp" 'MyCtx) ; save MyCtx to mycontext.lsp
(load "mycontext.lsp") ; loads MyCtx into memory
(save "mycontexts.lsp" 'Ctx1 'Ctx2 'Ctx3) ; save multiple contexts at once
</pre>
<p>
For details, see the functions <a href="#save">save</a> (mentioned above)
and <a href="#source">source</a> (for serializing to a newLISP string).
</p>
<br/>
<center>
<span class="divider">( <font color="#7ba9d4">§</font> )</span>
</center>
<br/>
<a name="default_function"></a>
<h2>17. The context default functor</h2>
<p>A <em>default functor</em> or <em>default function</em>
is a symbol or user-defined function or macro
with the same name as its namespace. When the context is used
as the name of a function or in the functor position of an s-expression,
newLISP executes the default function.</p>
<pre>
;; the default function
(define (Foo:Foo a b c) (+ a b c))
(Foo 1 2 3) <span class='arw'>→</span> 6
</pre>
<p>If a default function is called from a context other than <tt>MAIN</tt>,
the context must already exist or be declared with a <em>forward declaration</em>,
which creates the context and the function symbol:</p>
<pre>
;; forward declaration of a default function
(define Fubar:Fubar)
(context 'Foo)
(define (Foo:Foo a b c)
…
(Fubar a b) ; forward reference
(…)) ; to default function
(context MAIN)
;; definition of previously declared default function
(context 'Fubar)
(define (Fubar:Fubar x y)
(…))
(context MAIN)
</pre>
<p>Default functions work like global functions,
but they are lexically separate from the context in which they are called.</p>
<p>Like a lambda or lambda-macro function, default functions can be used
with <a href="#map">map</a> or <a href="#apply">apply</a>.
</p>
<br/>
<a name="func_memory"></a>
<h3>Functions with memory</h3>
<p>A default function can update the lexically isolated static variables
contained inside its namespace:</p>
<pre>
;; a function with memory
(define (Gen:Gen x)
(if Gen:acc
(inc Gen:acc x)
(setq Gen:acc x)))
(Gen 1) <span class='arw'>→</span> 1
(Gen 1) <span class='arw'>→</span> 2
(Gen 2) <span class='arw'>→</span> 4
(Gen 3) <span class='arw'>→</span> 7
gen:acc <span class='arw'>→</span> 7
</pre>
<p>The first time the <tt>Gen</tt> function is called,
its accumulator is set to the value of the argument.
Each successive call increments <tt>Gen</tt>'s accumulator
by the argument's value.</p>
<p>The definition of <tt>Gen:Gen</tt> shows, how a function is put in its own namespace
without using the surrounding <tt>(context 'Gen)</tt> and <tt>(context MAIN)</tt>
statements. In that case only symbols qualified by the namespace prefix will
end up in the <tt>Gen</tt> context. In the above example the variable
<tt>x</tt> is still part of <tt>MAIN</tt>.</p>
<br/>
<a name="hash"></a>
<h3>Hash functions and dictionaries</h3>
<p>There are several functions that can be used to place symbols into namespace contexts.
When using dictionaries as simple hash-like collections of variable → value pairs, use the
uninitialized <a href="#default_function">default functor</a>:</p>
<pre>
(define Myhash:Myhash) ; create namespace and default functor
; or as a safer alternative
(new Tree 'Myhash) ; create from built-in template
</pre>
<p>Either method can be used to make the <tt>MyHash</tt> dictionary space and default
functor. The second method is safer, as it will protect the default functor
<tt>MyHash:MyHash</tt> from change. The <em>default functor</em> in a namespace must
contain <tt>nil</tt> to be used as a dictionary. The string used for the symbol name
is limited to 1022 characters and internally an underscore is prepended to the symbol
name used in the context. Creating key-value pairs and retrieving
a value is easy:</p>
<pre>
(Myhash "var" 123) ; create and set variable/value pair
(Myhash "var") <span class='arw'>→</span> 123 ; retrieve value
; keys can be integers and will be converted to strings internally
(Myhash 456 "hello")
(Myhash 456) <span class='arw'>→</span> "hello"
; internally an underscore is prepended to the symbol name
(symbols Myhash) <span class='arw'>→</span> (Myhash:Myhash Myhash:_456 Myhash:_var)
</pre>
<p>Symbol variables created this way can contain spaces or other characters
normally not allowed in newLISP symbol names:</p>
<pre>
(define Foo:Foo)
; or to protect the default functor from change
; (new Tree 'Foo)
(Foo "John Doe" 123) <span class='arw'>→</span> 123
(Foo "#1234" "hello world") <span class='arw'>→</span> "hello world"
(Foo "var" '(a b c d)) <span class='arw'>→</span> (a b c d)
(Foo "John Doe") <span class='arw'>→</span> 123
(Foo "#1234") <span class='arw'>→</span> "hello world"
(Foo "var") <span class='arw'>→</span> (a b c d)
</pre>
<p>An entry which doesn't exist will return <tt>nil</tt>:</p>
<pre>
(Foo "bar") <span class='arw'>→</span> nil
</pre>
<p>Setting an entry to <tt>nil</tt> will effectively delete it from
the namespace.</p>
<p>An association list can be generated from the contents of the namespace:</p>
<pre>
(Foo) <span class='arw'>→</span> (("#1234" "hello world") ("John Doe" 123) ("var" (a b c d)))
</pre>
<p>Entries in the dictionary can also be created from a list:</p>
<pre>
(Foo '(("#1234" "hello world") ("John Doe" 123) ("var" (a b c d))) <span class='arw'>→</span> Foo
</pre>
<p>The list can also be used to iterate through the sorted key -> value pairs:</p>
<pre>
(dolist (item (Foo)) (println (item 0) " -> " (item 1)))
<b>#1234 -> hello world
John Doe -> 123
var -> (a b c d)</b>
</pre>
<p>Like many built-in functions hash expressions return a reference to their content which
can be modified directly:</p>
<pre>
(pop (Foo "var")) <span class='arw'>→</span> a
(Foo "var") <span class='arw'>→</span> (b c d)
(push 'z (Foo "var")) <span class='arw'>→</span> (z b c d)
(Foo "var") <span class='arw'>→</span> (z b c d)
</pre>
<p>When setting hash values the anaphoric system variable <tt>$it</tt>
can be used to refer to the old value when setting the new:</p>
<pre>
(Foo "bar" "hello world")
(Foo "bar" (upper-case $it))
(Foo "bar") <span class='arw'>→</span> "HELLO WORLD"
</pre>
<p>Hash values also can be modified using <a href="#setf">setf</a>:</p>
<pre>
(Foo "bar" 123) <span class='arw'>→</span> 123
(setf (Foo "bar") 456) <span class='arw'>→</span> 456
(Foo "bar") <span class='arw'>→</span> 456
</pre>
<p>But supplying the value as a second parameter to the hash functions
is shorter to write and faster.</p>
<p>Dictionaries can easily be saved to a file and reloaded later:</p>
<pre>
; save dictionary
(save "Foo.lsp" 'Foo)
; load dictionary
(load "Foo.lsp")
</pre>
<p>Internally the key strings are created and stored as symbols in the
hash context. All key strings are prepended with an <tt>_</tt>
underscore character. This protects against overwriting the default symbol and
symbols like <tt>set</tt> and <tt>sym</tt>, which are needed when loading
a hash namespace from disk or over <tt>HTTP</tt>. Note the following
difference:</p>
<pre>
(Foo) <span class='arw'>→</span> (("#1234" "hello world") ("John Doe" 123) ("var" (a b c d)))
(symbols Foo) <span class='arw'>→</span> (Foo:Foo Foo:_#1234 Foo:_John Doe Foo:_var)
</pre>
<p>In the first line hash symbols are shown as strings without the preceding
underscore characters. The second line shows the internal form of the symbols with
prepended underscore characters.</p>
<p>For a more detailed introduction to <em>namespaces</em>, see the chapter on
<a href="#contexts">Contexts</a>.
</p>
<br/>
<a name="pass_big"></a>
<h3>Passing data by reference</h3>
<p>A <a href="#default_function">default functor</a> can also be used to hold data.
If this data contains a list or string, the context name can be used as a reference to
the data:</p>
<pre>
;; the default functor for holding data
(define Mylist:Mylist '(a b c d e f g))
(Mylist 3) <span class='arw'>→</span> d
(setf (Mylist 3) 'D) <span class='arw'>→</span> D
Mylist:Mylist <span class='arw'>→</span> (a b c D e f g)
;; access list or string data from a default functor
(first Mylist) <span class='arw'>→</span> a
(reverse Mylist) <span class='arw'>→</span> (g f e D c b a)
(set 'Str:Str "acdefghijklmnop")
(upper-case Str) <span class='arw'>→</span> "ACDEFGHIJKLMNOP"
</pre>
<p>Most of the time, newLISP passes parameters by <em>value copy</em>.
This poses a potential problem when passing large lists or strings
to user-defined functions or macros. Strings and lists, which are packed
in a namespace using default functors, are passed automatically by reference:
</p>
<pre>
;; use a default functor to hold a list
(set 'Mydb:Mydb (sequence 1 100000))
(define (change-db obj idx value)
(setf (obj idx) value))
; pass by context reference
(change-db Mydb 1234 "abcdefg")
(Mydb 1234) <span class='arw'>→</span> "abcdefg"
</pre>
<p> Any argument of a built-in function calling for either a list or a string
— but no other data type — can receive data passed by reference.
Any user-defined function can take either normal variables, or can take a context
name for passing a reference to the default functor containing a list or string.</p>
<p>Note that on lists with less than about 100 elements or strings of less than
about 50000 characters, the speed difference between reference and value passing is
negligible. But on bigger data objects, differences in both speed and memory usage
between reference and value passing can be significant.</p>
<p>Built-in and user-defined functions are suitable for <u>both</u> types of arguments,
but when passing context names, data will be passed by reference.</p>
<p>Quoted symbols can also be used to pass data by reference, but this method
has disadvantages:</p>
<pre>
(define (change-list aList) (push 999 (eval aList)))
(set 'data '(1 2 3 4 5))
; note the quote ' in front of data
(change-list 'data) <span class='arw'>→</span> (999 1 2 3 4 5)
data <span class='arw'>→</span> (999 1 2 3 4 5)
</pre>
<p>Although this method is simple to understand and use, it poses the potential
problem of <em>variable capture</em> when passing the same symbol as used
as a function parameter:</p>
<pre>
;; pass data by symbol reference
> (set 'aList '(a b c d))
(a b c d)
> (change-list 'aList)
<span class='err'>ERR: list or string expected : (eval aList)
called from user defined function change-list</span>
>
</pre>
<p>At the beginning of the chapter it was shown how to package data
in a name-space using a default functor. Not only the default
functor but any symbol in context can be used to hold data. The
disadvantage is that the calling function must have knowledge about
the symbol being used:</p>
<pre>
;; pass data by context reference
(set 'Mydb:data (sequence 1 100000))
(define (change-db obj idx value)
(setf (obj:data idx) value))
(change-db Mydb 1234 "abcdefg")
(nth 1234 Mydb:data) <span class='arw'>→</span> "abcdefg"
; or
(Mydb:data 1234) <span class='arw'>→</span> "abcdefg"
</pre>
<p>
The function receives the namespace in the variable <tt>obj</tt>,
but it must have the knowledge that the list to access is contained
in the <tt>data</tt> symbol of that namespace (context).</p>
<br/>
<center>
<span class="divider">( <font color="#7ba9d4">§</font> )</span>
</center>
<br/>
<a name="foop"></a>
<h2>18. Functional object-oriented programming</h2>
<p>Functional-object oriented programming (FOOP) is based on the following
five principles:</p>
<ul>
<li><p>Class attributes and methods are stored in the namespace of the object class.</p></li>
<li><p>The namespace default functor holds the object constructor method.</p></li>
<li><p>An object is constructed using a list, the first element of which is the
context symbol describing the class of the object.</p></li>
<li><p>Polymorphism is implemented using the <a href="#colon"><tt>:</tt> (colon)</a>
operator, which selects the appropriate class from the object.</p></li>
<li><p>A target object inside a class-method function is accessed via the <a href="#self">self</a>
function.</p></li>
</ul>
<p>The following paragraphs are a short introduction to FOOP as designed by
<em>Michael Michaels</em> from <a href="http://neglook.com">neglook.com</a>.</p>
<br/>
<a name="newlisp_classes"></a>
<h3>FOOP classes and constructors</h3>
<p>Class attributes and methods are stored in the namespace of the object class.
No object instance data is stored in this namespace/context. Data variables in
the class namespace only describe the class of objects as a whole but don't contain
any object specific information. A generic FOOP object constructor can be used
as a template for specific object constructors when creating new object classes
with <tt>new</tt>:</p>
<pre>
; built-in generic FOOP object constructor
(define (Class:Class)
(cons (context) (args)))
; create some new classes
(new Class 'Rectangle) <span class='arw'>→</span> Rectangle
(new Class 'Circle) <span class='arw'>→</span> Circle
; create some objects using the default constructor
(set 'rect (Rectangle 10 20)) <span class='arw'>→</span> (Rectangle 10 20)
(set 'circ (Circle 10 10 20)) <span class='arw'>→</span> (Circle 10 10 20)
; create a list of objects
; building the list using the list function instead of assigning
; a quoted list ensures that the object constructors are executed
(set 'shapes (list (Circle 5 8 12) (Rectangle 4 8) (Circle 7 7 15)))
<span class='arw'>→</span> ((Circle 5 8 12) (Rectangle 4 8) (Circle 7 7 15))
</pre>
<p>The generic FOOP constructor is already pre-defined, and FOOP
code can start with <tt>(new Class ...)</tt> statements right away.</p>
<p>As a matter of style, new classes should only be created in the MAIN context.
If creating a new class while in a different namespace, the new class name
must be prefixed with MAIN and the statement should be on the top-level:</p>
<pre>
(context 'Geometry)
(new Class 'MAIN:Rectangle)
(new Class 'MAIN:Circle)
...
</pre>
<p>Creating the namespace classes using <a href="#new">new</a> reserves the class
name as a context in newLISP and facilitates forward references. At the same time,
a simple constructor is defined for the new class for instantiating new objects.
As a convention, it is recommended to start class names in upper-case to signal that
the name stands for a namespace.</p>
<p>In some cases, it may be useful to overwrite the simple constructor, that was
created during class creation, with <tt>new</tt>:</p>
<pre>
; overwrite simple constructor
(define (Circle:Circle x y radius)
(list Circle x y radius))
</pre>
<p>A constructor can also specify defaults:</p>
<pre>
; constructor with defaults
(define (Circle:Circle (x 10) (y 10) (radius 3))
(list Circle x y radius))
(Circle) <span class='arw'>→</span> (Circle 10 10 3)
</pre>
<p>In many cases the constructor as created when using <tt>new</tt> is sufficient and overwriting
it is not necessary.</p>
<br/>
<a name="newlisp_objects"></a>
<h3>Objects and associations</h3>
<p>FOOP represents objects as lists. The first element of the list indicates the
object's kind or class, while the remaining elements contain the data. The following
statements define two <em>objects</em> using any of the constructors defined previously:</p>
<pre>
(set 'myrect (Rectangle 5 5 10 20)) <span class='arw'>→</span> (Rectangle 5 5 10 20)
(set 'mycircle (Circle 1 2 10)) <span class='arw'>→</span> (Circle 1 2 10)
</pre>
<p>An object created is identical to the function necessary to create it (hence FOOP).
Nested objects can be created in a similar manner:</p>
<pre>
; create classes
(new Class 'Person)
(new Class 'Address)
(new Class 'City)
(new Class 'Street)
; create an object containing other objects
(set 'JohnDoe (Person (Address (City "Boston") (Street 123 "Main Street"))))
<span class='arw'>→</span> (Person (Address (City "Boston") (Street 123 "Main Street")))
</pre>
<p>Objects in FOOP not only resemble functions they also resemble associations. The
<a href="#assoc">assoc</a> function can be used to access object data by name:</p>
<pre>
(assoc Address JohnDoe) <span class='arw'>→</span> (Address (City "Boston") (Street 123 "Main Street"))
(assoc (list Address Street) JohnDoe) <span class='arw'>→</span> (Street 123 "Main Street")
</pre>
<p>In a similar manner <a href="#setf">setf</a> together with <a href="#assoc">assoc</a>
can be used to modify object data:</p>
<pre>
(setf (assoc (list Address Street) JohnDoe) '(Street 456 "Main Street"))
<span class='arw'>→</span> (Street 456 "Main Street")
</pre>
<p>The street number has been changed from <tt>123</tt> to <tt>456</tt>.</p>
<p>Note that in none of the <tt>assoc</tt> statements <tt>Address</tt> and <tt>Street</tt>
need to carry quotes. The same is true in the set statement:
<tt>(set 'JohnDoe (Person ...))</tt> for the data part assigned. In both cases we do not
deal with symbols or lists of symbols but rather with contexts and FOOP objects which
evaluate to themselves. Quoting would not make a difference.</p>
<br/>
<a name="colon_operator"></a>
<h3>The colon <tt>:</tt> operator and polymorphism</h3>
<p>In newLISP, the colon character <tt>:</tt> is primarily used to
connect the context symbol with the symbol it is qualifying.
Secondly, the colon function is used in FOOP to resolve a function's
application <em>polymorphously</em>.</p>
<p>The following code defines two functions called <tt>area</tt>,
each belonging to a different namespace / class. Both functions could
have been defined in different modules for better separation, but in
this case they are defined in the same file and without bracketing
<a href="#context">context</a> statements. Here, only
the symbols <tt>rectangle:area</tt> and <tt>circle:area</tt> belong
to different namespaces. The local parameters <tt>p</tt>, <tt>c</tt>,
<tt>dx</tt>, and <tt>dy</tt> are all part of <tt>MAIN</tt>,
but this is of no concern.</p>
<pre>
;; class methods for rectangles
(define (Rectangle:area)
(mul (self 3) (self 4)))
(define (Rectangle:move dx dy)
(inc (self 1) dx)
(inc (self 2) dy))
;; class methods for circles
(define (Circle:area)
(mul (pow (self 3) 2) (acos 0) 2))
(define (Circle:move dx dy)
(inc (self 1) dx)
(inc (self 2) dy))
</pre>
<p>By prefixing the <tt>area</tt> or <tt>move</tt> symbol with the
<a href="#colon"><tt>:</tt> (colon)</a>,
we can call these functions for each class of object. Although there is no space
between the colon and the symbol following it, newLISP parses them as distinct entities.
The colon works as a function that processes parameters:</p>
<pre>
(:area myrect) <span class='arw'>→</span> 200 ; same as (: area myrect)
(:area mycircle) <span class='arw'>→</span> 314.1592654 ; same as (: area mycircle)
;; map class methods uses curry to enclose the colon operator and class function
(map (curry :area) (list myrect mycircle)) <span class='arw'>→</span> (200 314.1592654)
(map (curry :area) '((Rectangle 5 5 10 20) (Circle 1 2 10))) <span class='arw'>→</span> (200 314.1592654)
;; objects are mutable (since v10.1.8)
(:move myrect 2 3)
(:move mycircle 4 5)
myrect <span class='arw'>→</span> (Rectangle 7 8 10 20)
mycircle <span class='arw'>→</span> (Circle 5 7 10)
</pre>
<p>In this example, the correct qualified symbol (<tt>rectangle:area</tt> or
<tt>circle:area</tt>) is constructed and applied to the object data based on
the symbol following the colon and the context name (the first element of the object list).</p>
<p>Note, that although the caller specifies the called target object of the call,
the method definition does not include the object as a parameter. When writing
functions to modify FOOP objects, instead the function <a href="#self">self</a>
is used to access and index the object.</p>
<br/>
<a name="structure_foop"></a>
<h3>Structuring a larger FOOP program</h3>
<p>In all the previous examples, class function methods where directly
written into the MAIN context namespace. This works and is adequate
for smaller programs written by just one programmer. When writing larger
systems, all the methods for one class should be surrounded by
<a href="#context">context</a> statements to provide better isolation
of parameter variables used and to create an isolated location for potential
class variables.</p>
<p>Class variables could be used in this example as a container for
lists of objects, counters or other information specific to a class
but not to a specific object. The following code segment rewrites the
example from above in this fashion.</p>
<p>Each context / namespace could go into an extra file with the same
name as the class contained. Class creation, startup code and the main
control code is in a file <tt>MAIN.lsp</tt>:</p>
<pre>
; file MAIN.lsp - declare all classes used in MAIN
(new Class 'Rectangle)
(new Class 'Circle)
; start up code
(load "Rectangle.lsp")
(load "Circle.lsp")
; main control code
; end of file
</pre>
<p>Each class is in a separate file:</p>
<pre>
; file Rectangle.lsp - class methods for rectangles
(context Rectangle)
(define (Rectangle:area)
(mul (self 3) (self 4)))
(define (Rectangle:move dx dy)
(inc (self 1) dx)
(inc (self 2) dy))
; end of file
</pre>
<p>And the <tt>Circle</tt> class file follows:</p>
<pre>
; file Circle.lsp - class methods for circles
(context Circle)
(define (Circle:area)
(mul (pow (self 3) 2) (acos 0) 2))
(define (Circle:move dx dy)
(inc (self 1) dx)
(inc (self 2) dy))
; end of file
</pre>
<p>All sets of class functions are now lexically separated
from each other.</p>
<br/>
<center>
<span class="divider">( <font color="#7ba9d4">§</font> )</span>
</center>
<br/>
<a name="multi_processing"></a>
<h2>19. Concurrent processing and distributed computing</h2>
<p>newLISP has high-level APIs to control multiple processes on the same
CPU or distributed onto different computer nodes on a TCP/IP network.</p>
<br/>
<a name="cilk"></a>
<h3>Cilk API</h3>
<p>newLISP implements a <a href="http://supertech.csail.mit.edu/cilk/">Cilk</a>-
like API to launch and control concurrent processes. The API can take advantage of
multi-core computer architectures. Only three functions, <a href="#spawn">spawn</a>,
<a href="#sync">sync</a> and <a href="#abort">abort</a>, are necessary to start
multiple processes and collect the results in a synchronized fashion. The underlying
operating system distributes processes onto different cores inside the CPU or
executes them on the same core in parallel if there are not enough cores present.
Note that newLISP only implements the API; optimized scheduling
of spawned procedures is not performed as in Cilk. Functions are started in the order
they appear in <tt>spawn</tt> statements and are distributed and scheduled onto
different cores in the CPU by the operating system.</p>
<p>When multiple cores are present, this can increase overall processing speed
by evaluating functions in parallel. But even when running on single core CPUs,
the Cilk API makes concurrent processing much easier for the programmer and
may speed up processing if subtasks include waiting for I/O or sleeping.</p>
<p>Since version 10.1 <a href="#send">send</a> and <a href="#receive">receive</a>
message functions are available for communications between parent and child
processes. The functions can be used in blocking and non blocking communications
and can transfer any kind of newLISP data or expressions. Transmitted expressions
can be evaluated in the recipients environment.</p>
<p>Internally, newLISP uses the lower level <a href="#fork">fork</a>,
<a href="#wait-pid">wait-pid</a>, <a href="#destroy">destroy</a>, and
<a href="#share">share</a> functionalities to control processes and synchronize
the passing of computed results via a shared memory interface.</p>
<p>Only on macOS and other Unixes will the Cilk API parallelize tasks.
On MS Windows, the API is not available.</p>
<br/>
<a name="distributed"></a>
<h3>Distributed network computing</h3>
<p>With only one function, <a href="#net-eval">net-eval</a>, newLISP implements
distributed computing. Using <tt>net-eval</tt>, different tasks can be mapped
and evaluated on different nodes running on a TCP/IP network or local domain Unix sockets
network when running on the same computer. <tt>net-eval</tt> does all the housekeeping
required to connect to remote nodes, transfer functions to execute, and
collect the results. <tt>net-eval</tt> can also use a call-back function to
further structure consolidation of incoming results from remote nodes.</p>
<p>The functions <a href="#read-file">read-file</a>, <a href="#write-file">write-file</a>,
<a href="#append-file">append-file</a> and <a href="#delete-file">delete-file</a> all can
take URLs instead of path-file names. Server side newLISP running in demon mode or an other
HTTP server like Apache, receive standard HTTP requests and translate them into the
corresponding actions on files.</p>
<br/>
<center>
<span class="divider">( <font color="#7ba9d4">§</font> )</span>
</center>
<br/>
<a name="JSON_XML"></a>
<h2>20. JSON, XML, S-XML, and XML-RPC</h2>
<b>JSON support</b>
<p>JSON-encoded data can be parsed into S-expressions using the
<a href="#json-parse">json-parse</a> function. Error information for
failed JSON translations can be retrieved using <a href="#json-error">json-error</a>.</p>
<p>For a description of the JSON format (<u>J</u>ava<u>S</u>cript <u>O</u>bject <u>N</u>otation)
consult <a href="http://json.org">json.org</a>.
Examples for correct formatted JSON text can be seen at
<a href="http://json.org/examples.html">json.org/examples.html</a>.</p>
<p>To retrieve data in nested lists resulting from JSON translation, use the
<a href="#assoc">assoc</a>, <a href="#lookup">lookup</a> and <a href="#ref">ref</a>
functions.</p>
<p>See the description of <a href="#json-parse">json-parse</a> for a complete example
of parsing and processing JSON data.</p>
<b>XML support</b>
<p>newLISP's built-in support for XML-encoded data or documents
comprises three functions:
<a href="#xml-parse">xml-parse</a>,
<a href="#xml-type-tags">xml-type-tags</a>, and <a href="#xml-error">xml-error</a>.
</p>
<p>
Use the <a href="#xml-parse">xml-parse</a> function
to parse XML-encoded strings.
When <tt>xml-parse</tt> encounters an error,
<tt>nil</tt> is returned.
To diagnose syntax errors caused by incorrectly formatted XML,
use the function <a href="#xml-error">xml-error</a>.
The <a href="#xml-type-tags">xml-type-tags</a> function can be used
to control or suppress the appearance of XML type tags.
These tags classify XML into one of four categories:
text, raw string data, comments, and element data.</p>
<b>XML source:</b>
<pre>
<?xml version="1.0"?>
<DATABASE name="example.xml">
<!--This is a database of fruits-->
<FRUIT>
<NAME>apple</NAME>
<COLOR>red</COLOR>
<PRICE>0.80</PRICE>
</FRUIT>
</DATABASE>
</pre> <br/>
<b>Parsing without options:</b>
<pre>
(xml-parse (read-file "example.xml"))
<span class='arw'>→</span> (("ELEMENT" "DATABASE" (("name" "example.xml")) (("TEXT" "\r\n")
("COMMENT" "This is a database of fruits")
("TEXT" "\r\n ")
("ELEMENT" "FRUIT" () (
("TEXT" "\r\n\t ")
("ELEMENT" "NAME" () (("TEXT" "apple")))
("TEXT" "\r\n\t\t")
("ELEMENT" "COLOR" () (("TEXT" "red")))
("TEXT" "\r\n\t\t")
("ELEMENT" "PRICE" () (("TEXT" "0.80")))
("TEXT" "\r\n\t")))
("TEXT" "\r\n"))))
</pre> <p>
S-XML can be generated directly from XML
using <a href="#xml-type-tags">xml-type-tags</a>
and the special option parameters
of the <a href="#xml-parse">xml-parse</a> function:
</p>
<br/>
<b>S-XML generation using all options:</b>
<pre>
(xml-type-tags nil nil nil nil)
(xml-parse (read-file "example.xml") (+ 1 2 4 8 16))
<span class='arw'>→</span> ((DATABASE (@ (name "example.xml"))
(FRUIT (NAME "apple")
(COLOR "red")
(PRICE "0.80"))))
</pre>
<p>S-XML is XML reformatted as newLISP <em>S-expressions</em>.
The <tt>@</tt> (at symbol) denotes an XML attribute specification.</p>
<p>To retrieve data in nested lists resulting from S-XML translation, use the
<a href="#assoc">assoc</a>, <a href="#lookup">lookup</a> and <a href="#ref">ref</a>
functions.</p>
<p>See <a href="#xml-parse">xml-parse</a> in the reference section of the manual
for details on parsing and option numbers, as well as for a longer example.</p>
<br/>
<b>XML-RPC</b>
<br/>
<p>
The remote procedure calling protocol XML-RPC uses
HTTP post requests as a transport and
XML for the encoding of method names, parameters, and parameter types.
XML-RPC client libraries and servers have been implemented
for most popular compiled and scripting languages.
</p>
<p>
For more information about XML,
visit <a href="http://www.xmlrpc.com/">www.xmlrpc.com</a>.
</p>
<p>
XML-RPC clients and servers are easy to write
using newLISP's built-in network and XML support.
A stateless XML-RPC server implemented as a CGI service
can be found in the file <tt>examples/xmlrpc.cgi</tt>. This
script can be used together with a web server, like Apache.
This XML-RPC service script implements
the following methods:
</p>
<table width="98%" summary="XMPRPC methods for newLISP server">
<tr align="left"><th>method</th><th>description</th></tr>
<tr>
<td><tt>system.listMethods</tt></td>
<td>Returns a list of all method names</td>
</tr>
<tr>
<td><tt>system.methodHelp</tt></td>
<td>Returns help for a specific method</td>
</tr>
<tr>
<td><tt>system.methodSignature</tt></td>
<td>Returns a list of return/calling signatures for a specific method </td>
</tr>
<tr>
<td><tt>newLISP.evalString</tt></td>
<td>Evaluates a Base64 newLISP expression string</td></tr>
</table><br/>
<p>
The first three methods are <em>discovery</em> methods implemented by most XML-RPC servers.
The last one is specific to the newLISP XML-RPC server script and
implements remote evaluation of a Base64-encoded string of newLISP source code.
newLISP's <a href="#base64-enc">base64-enc</a> and <a href="#base64-dec">base64-dec</a> functions
can be used to encode and decode Base64-encoded information.
</p>
<p>
In the <tt>modules</tt> directory of the source distribution,
the file <tt>xmlrpc-client.lsp</tt> implements a specific client interface for
all of the above methods.</p>
<pre>
(load "xmlrpc-client.lsp") ; load XML-RPC client routines
(XMLRPC:newLISP.evalString
"http://localhost:8080/xmlrpc.cgi"
"(+ 3 4)") <span class='arw'>→</span> "7"
</pre> <p>
In a similar fashion,
standard <tt>system.xxx</tt> calls can be issued.
</p>
<p>
All functions return either a result if successful, or <tt>nil</tt> if a request fails.
In case of failure, the expression <tt>(XMLRPC:error)</tt> can be evaluated
to return an error message.</p>
<p>
For more information, please consult the header of the file <tt>modules/xmlrpc-client.lsp</tt>.
</p>
<br/>
<center>
<span class="divider">( <font color="#7ba9d4">§</font> )</span>
</center>
<br/>
<a name="internationalization"></a>
<h2>21. Customization, localization, and UTF-8</h2>
<a name="naming"></a>
<h3>Customizing function names</h3>
<p>All built-in primitives in newLISP can be easily renamed:</p>
<pre>
(constant 'plus +)
</pre> <p>
Now, <tt>plus</tt> is functionally equivalent to <tt>+</tt>
and runs at the same speed.
</p>
<p>
The <a href="#constant">constant</a> function,
rather than the <tt>set</tt> function,
must be used to rename built-in primitive symbols.
By default, all built-in function symbols
are protected against accidental overwriting.
</p>
<p>
It is possible to redefine all integer arithmetic operators to their floating
point equivalents:
</p>
<pre>
(constant '+ add)
(constant '- sub)
(constant '* mul)
(constant '/ div)
</pre>
<p>All operations using <tt>+</tt>, <tt>-</tt>, <tt>*</tt>, and <tt>/</tt>
are now performed as floating point operations.</p>
<p>Using the same mechanism, the names of built-in functions
can be translated into languages other than English:</p>
<pre>
(constant 'wurzel sqrt) ; German for 'square-root'
; make the new symbol global at the same time
(constant (global 'imprime) print) ; Spanish for 'print'
…
</pre>
<p>The new symbol can be made global at the same time using <a href="#global">global</a>.</p>
<br/>
<a name="switching"></a>
<h3>Switching the locale</h3>
<p>newLISP can switch locales based on the platform and operating system.
On startup, non-UTF-8 enabled newLISP attempts to set the ISO C standard
default POSIX locale, available for most platforms and locales. On UTF-8
enabled newLISP the default locale for the platform is set. The
<a href="#set-locale">set-locale</a> function can also be used to switch
to the default locale:</p>
<pre>
(set-locale "")
</pre>
<p>
This switches to the default locale used on your platform/operating system
and ensures character handling (e.g., <a href="#upper-case">upper-case</a>)
works correctly.</p>
<p>Many Unix systems have
a variety of locales available. To find out which ones are available on
a particular Linux/Unix/BSD system, execute the following command
in a system shell:</p>
<pre>
locale -a
</pre>
<p>
This command prints a list of all the locales available on your system.
Any of these may be used as arguments to <a href="#set-locale">set-locale</a>:</p>
<pre>
(set-locale "es_US")
</pre> <p>
This would switch to a U.S. Spanish locale.
Accents or other characters
used in a U.S. Spanish environment
would be correctly converted.
</p>
<p>
See the manual description for more details
on the usage of <a href="#set-locale">set-locale</a>.
</p>
<br/>
<a name="decimal_point"></a>
<h3>Decimal point and decimal comma</h3>
<p>Many countries use a comma instead of a period
as a decimal separator in numbers.
newLISP correctly parses numbers
depending on the locale set:</p>
<pre>
; switch to German locale on a Linux or OSX system
(set-locale "de_DE") <span class='arw'>→</span> ("de_DE" ",")
; newLISP source and output use a decimal comma
(div 1,2 3) <span class='arw'>→</span> 0,4
</pre>
<p>The default POSIX C locale, which is set when newLISP starts up,
uses a period as a decimal separator.</p>
<p>The following countries use a <b>period as a decimal separator</b>:</p>
<blockquote>Australia, Botswana, Canada (English-speaking), China, Costa Rica,
Dominican Republic, El Salvador, Guatemala, Honduras, Hong Kong, India, Ireland,
Israel, Japan, Korea (both North and South), Malaysia, Mexico, Nicaragua,
New Zealand, Panama, Philippines, Puerto Rico, Saudi Arabia, Singapore, Switzerland,
Thailand, United Kingdom, and United States.</blockquote>
<p>The following countries use a <b>comma as a decimal separator</b>:</p>
<blockquote>Albania, Andorra, Argentina, Austria, Belarus, Belgium, Bolivia,
Brazil, Bulgaria, Canada (French-speaking), Croatia, Cuba, Chile, Colombia,
Czech Republic, Denmark, Ecuador, Estonia, Faroes, Finland, France, Germany,
Greece, Greenland, Hungary, Indonesia, Iceland, Italy, Latvia, Lithuania,
Luxembourg, Macedonia, Moldova, Netherlands, Norway, Paraguay, Peru, Poland,
Portugal, Romania, Russia, Serbia, Slovakia, Slovenia, Spain, South Africa,
Sweden, Ukraine, Uruguay, Venezuela, and Zimbabwe.</blockquote>
<br/>
<a name="unicode_utf8"></a>
<h3>Unicode and UTF-8 encoding</h3>
<p>Note that for many European languages,
the <a href="#set-locale">set-locale</a> mechanism
is sufficient to display non-ASCII character sets,
as long as each character is presented as <em>one</em> byte internally.
UTF-8 encoding is only necessary for multi-byte character sets as described
in this chapter.</p>
<p>
newLISP can be compiled
as a UTF-8–enabled application.
UTF-8 is a multi-byte encoding
of the international Unicode character set.
A UTF-8–enabled newLISP
running on an operating system with UTF-8 enabled
can handle any character of the installed locale.
</p>
<p>
The following steps
make UTF-8 work with newLISP
on a specific operating system and platform:
</p>
<p>
<tt>(1)</tt> Use one of the makefiles
ending in <tt>utf8</tt>
to compile newLISP as
a UTF-8 application.
If no UTF-8 makefile
is available for your platform,
the normal makefile
for your operating system
contains instructions
on how to change it
for UTF-8.
</p>
<p>
The macOS binary installer contains
a UTF-8–enabled version by default.
</p>
<p>
<tt>(2)</tt> Enable the UTF-8 locale
on your operating system.
Check and set a UTF-8 locale
on Unix and Unix-like OSes
by using the <tt>locale</tt> command
or the <tt>set-locale</tt> function within newLISP.
On Linux, the locale can be changed by setting
the appropriate environment variable.
The following example uses <tt>bash</tt>
to set the U.S. locale:
</p>
<pre>
export LC_CTYPE=en_US.UTF-8
</pre>
<p><tt>(3)</tt> The UTF-8–enabled newLISP automatically switches to the locale found
on the operating system. Make sure the command shell
is UTF-8–enabled. The U.S. version of WinXP's <tt>notepad.exe</tt>
can display Unicode UTF-8–encoded characters, but the command shell cannot.
On Linux and other Unixes, the Xterm shell can be used
when started as follows:</p>
<pre>
LC_CTYPE=en_US.UTF-8 xterm
</pre> <p>
The following procedure can now be used
to check for UTF-8 support.
After starting newLISP, type:
</p>
<pre>
(println (char 937)) ; displays Greek uppercase omega
(println (lower-case (char 937))) ; displays lowercase omega
</pre> <p>
While the uppercase omega (Ω) looks
like a big O on two tiny legs,
the lowercase omega (ω) has
a shape similar to a small <tt>w</tt>
in the Latin alphabet.
</p>
<p>
Note: Only the output of <tt>println</tt>
will be displayed as a character;
<tt>println</tt>'s return value
will appear on the console
as a multi-byte ASCII character.
</p>
<p>
When UTF-8–enabled newLISP
is used on a non-UTF-8–enabled display,
both the output and the return value
will be two characters.
These are the two bytes necessary
to encode the omega character.
</p>
<br/>
<a name="utf8_capable"></a>
<h3>Functions working on UTF-8 characters</h3>
<p>When UTF-8–enabled newLISP is used, the following string functions work
on one- or multi-byte characters rather than one 8-bit byte boundaries:</p>
<table width="98%" summary="functions working on character boundaries in UTF-8">
<tr align="left"><th>function</th><th>description</th></tr>
<tr>
<td><a href="#char">char</a></td>
<td>translates between characters and ASCII/Unicode</td>
</tr>
<tr>
<td><a href="#chop">chop</a></td>
<td>chops characters from the end of a string</td>
</tr>
<tr>
<td><a href="#date">date</a></td>
<td>converts date number to string (when used with the third argument)</td>
</tr>
<tr>
<td><a href="#dostring">dostring</a></td>
<td>evaluates once for each character in a string</td>
</tr>
<tr>
<td><a href="#explode">explode</a></td>
<td>transforms a string into a list of characters</td>
</tr>
<tr>
<td><a href="#first">first</a></td>
<td>gets first element in a list (car, head) or string</td>
</tr>
<tr>
<td><a href="#last">last</a></td>
<td>returns the last element of a list or string</td>
</tr>
<tr>
<td><a href="#lower-case">lower-case</a></td>
<td>converts a string to lowercase characters</td>
</tr>
<tr>
<td><a href="#nth">nth</a></td>
<td>gets the <em>nth</em> element of a list or string</td>
</tr>
<tr>
<td><a href="#pop">pop</a></td>
<td>deletes an element from a list or string</td>
</tr>
<tr>
<td><a href="#push">push</a></td>
<td>inserts a new element in a list or string</td>
</tr>
<tr>
<td><a href="#rest">rest</a></td>
<td>gets all but the first element of a list (cdr, tail) or string</td>
</tr>
<tr>
<td><a href="#select">select</a></td>
<td>selects and permutes elements from a list or string</td>
</tr>
<tr>
<td><a href="#title-case">title-case</a></td>
<td>converts the first character of a string to uppercase</td>
</tr>
<tr>
<td><a href="#trim">trim</a></td>
<td>trims a string from both sides</td>
</tr>
<tr>
<td><a href="#upper-case">upper-case</a></td>
<td>converts a string to uppercase characters</td>
</tr>
</table><br/>
<p>All other string functions work on 8-bit bytes. When positions are returned,
as in <a href="#find">find</a> or <a href="#regex">regex</a>,
they are single 8-bit byte positions rather than character positions which
may be multi-byte.
The <a href="#get-char">get-char</a> and <a href="#slice">slice</a> functions
do not take multi-byte character offsets, but single-byte offsets, even
in UTF-8 enabled versions of newLISP.
The <a href="#reverse">reverse</a> function reverses
a byte vector, not a character vector. The last three functions can still
be used to manipulate binary non-textual data in the UTF-8–enabled
version of newLISP. To make <a href="#slice">slice</a> and <a href="#reverse">reverse</a>
work with UTF-8 strings, combine them with <a href="#explode">explode</a> and
<a href="#join">join</a>.</p>
<p>To enable UTF-8 in Perl Compatible Regular Expressions (PCRE)
— used by <a href="#directory">directory</a>, <a href="#find">find</a>,
<a href="#member">member</a>, <a href="#parse">parse</a>, <a href="#regex">regex</a>,
<a href="#regex-comp">regex-comp</a> and <a href="#replace">replace</a> —
set the option number accordingly (2048). Note that offset and lengths in
<a href="#regex">regex</a> results are always in single byte counts.
See the <a href="#regex">regex</a> documentation for details.</p>
<p>Use <a href="#explode">explode</a> to obtain an array
of UTF-8 characters and to manipulate characters rather than bytes
when a UTF-8–enabled function is unavailable:</p>
<pre>
(join (reverse (explode str))) ; reverse UTF-8 characters
</pre>
<p>The above string functions (often used to manipulate non-textual binary data)
now work on character, rather than byte, boundaries,
so care must be exercised when using the UTF-8–enabled version.
The size of the first 127 ASCII characters —
along with the characters in popular code pages such as ISO 8859 —
is one byte long. When working exclusively within these code pages,
UTF-8–enabled newLISP is not required.
The <a href="#set-locale">set-locale</a> function alone
is sufficient for localized behavior.</p>
<br/>
<a name="utf8_version"></a>
<h3>Functions only available on UTF-8 enabled versions</h3>
<table width="98%" summary="functions only available on UTF-8 version">
<tr align="left"><th>function</th><th>description</th></tr>
<tr>
<td><a href="#unicode">unicode</a></td>
<td>converts UTF-8 or ASCII strings into USC-4 Unicode</td>
</tr>
<tr>
<td><a href="#utf8">utf8</a></td>
<td>converts UCS-4 Unicode strings to UTF-8</td>
</tr>
<tr>
<td><a href="#utf8len">utf8len</a></td>
<td>returns the number of UTF-8 characters in a string</td>
</tr>
</table><br/>
<p>The first two functions are rarely used in practice,
as most Unicode text files are already UTF-8–encoded
(rather than UCS-4, which uses four-byte integer characters).
Unicode can be displayed directly when using the
<tt>"%ls"</tt> <a href="#format">format</a> specifier.</p>
<p>For further details on UTF-8 and Unicode,
consult <a href="http://www.cl.cam.ac.uk/~mgk25/unicode.html"><em>UTF-8 and Unicode FAQ
for Unix/Linux</em></a> by <em>Markus Kuhn</em>.</p>
<br/>
<center>
<span class="divider">( <font color="#7ba9d4">§</font> )</span>
</center>
<br/>
<a name="commas"></a>
<h2>22. Commas in parameter lists</h2>
<p>
Some of the example programs contain functions
that use a comma to separate the parameters into two groups.
This is not a special syntax of newLISP,
but rather a visual trick.
The comma is a symbol just like any other symbol.
The parameters after the comma are not required
when calling the function;
they simply declare local variables in a convenient way.
This is possible in newLISP because parameter variables in lambda expressions
are local and arguments are optional:
</p>
<pre>
(define (my-func a b c , x y z)
(set 'x …)
(…))
</pre>
<p>
When calling this function, only <tt>a, b</tt>, and <tt>c</tt> are used as parameters.
The others (the comma symbol, <tt>x</tt>, <tt> y</tt>, and <tt>z</tt>) are initialized
to <tt>nil</tt> and are local to the function. After execution, the function's contents
are forgotten and the environment's symbols are restored to their previous values.
</p>
<p>
For other ways of declaring and initializing local variables,
see <a href="#let">let</a>, <a href="#letex">letex</a> and
<a href="#letn">letn</a>.
</p>
<br/>
<center>
<span class="divider">( <font color="#7ba9d4">§</font> )</span>
</center>
<br/>
<br/><br/><br/>
<center style="font-size: 150%">
<span class="divider">( <font color="#7ba9d4">∂</font> )</span>
</center>
<a name="function_ref"></a>
<center><h1>newLISP Function Reference</h1></center>
<br/><br/>
<a name="symbol_names"></a>
<h2>1. Syntax of symbol variables and numbers</h2>
<p>Source code in newLISP is parsed according to the rules outlined here.
When in doubt, verify the behavior of newLISP's internal parser
by calling <a href="#parse">parse</a> without optional arguments.</p>
<br/>
<h3>Symbols for variable names</h3>
<p>
The following rules apply to the naming of symbols
used as variables or functions:
</p>
<ol>
<li>Variable symbols should not start with any of the following characters:<br/>
<tt># ; " ' ( ) { } . , 0 1 2 3 4 5 6 7 8 9</tt><br/><br/></li>
<li>Variable symbols starting with a <tt>+</tt> or <tt>-</tt> cannot have a
number as the second character.<br/><br/></li>
<li>Any character is allowed inside a variable name, except for:<br/>
<tt>" ' ( ) : ,</tt> and the space character. These mark the end of a variable symbol.<br/><br/></li>
<li>A symbol name starting with <tt>[</tt> (left square bracket) and ending with
<tt>]</tt> (right square bracket) may contain any character except the right square
bracket.<br/><br/></li>
<li>A symbol name starting with <tt>$</tt> (dollar sign) is global. There are several of these
symbols already <a href="#system_symbols">built into newLISP</a> and set and changed
internally. This type of global symbol can also be created by the user.
</li>
</ol>
<p>
All of the following symbols are legal variable names in newLISP:
</p>
<!-- example -->
<pre>
myvar
A-name
X34-zz
[* 7 5 ()};]
*111*
</pre>
<p>
Sometimes it is useful to create hash-like <a href="#hash">lookup dictionaries</a>
with keys containing characters that are illegal in newLISP variables.
The functions <a href="#sym">sym</a> and <a href="#context">context</a>
can be used to create symbols containing these characters:
</p>
<pre>
(set (sym "(#:L*") 456) <span class='arw'>→</span> 456 ; the symbol '(#:L*'
(eval (sym "(#:L*")) <span class='arw'>→</span> 456
(set (sym 1) 123) <span class='arw'>→</span> 123
(eval (sym 1)) <span class='arw'>→</span> 123
1 <span class='arw'>→</span> 1
(+ 1 2) <span class='arw'>→</span> 3
</pre>
<p>
The last example creates the symbol <tt>1</tt>
containing the value <tt>123</tt>.
Also note that creating such a symbol does not alter newLISP's normal operations,
since <tt>1</tt> is still parsed as the number one.
</p>
<br/>
<h3>Numbers</h3>
<p>When parsing binary, hex, decimal, float and integer numbers, up to
1000 digits are parsed when present. The rest will be read as new token(s).
Note that IEEE 754 64-bit doubles distinguish only up to 16 significant
digits. If more than 308 digits are present before the decimal point, the
number will convert to <tt>inf</tt> (infinity). For big integers the 1000
limitation exists only when parsing source. There is no limit when a result
of big integers math exceeds 1000 digits.</p>
<p>
newLISP recognizes the following number formats:
</p>
<p>
<b>Integers</b> are one or more digits long,
optionally preceded by a <tt>+</tt> or <tt>-</tt> sign.
Any other character marks the end of the integer
or may be part of the sequence
if parsed as a float (see float syntax below).
</p>
<!-- example -->
<pre>
123
+4567
-999
</pre>
<p>
<b>Big integers</b> can be of unlimited precision and are processed
differently from normal 64-bi integers internally.</p>
<!-- example -->
<pre>
123456789012345678901234567890 ; will automatically be converted to big int
-123L ; appended L forces conversion
0L
</pre>
<p>when parsing the command line or programming source, newLISP will
recognise, integers bigger than 64-bit and convert the to big integers.
Smaller numbers can be forced to big integer format by appending the
letter L.</p>
<p>
<b>Hexadecimals</b> start with a <tt>0x</tt> (or <tt>0X</tt>),
followed by any combination of the hexadecimal digits:
<tt>0123456789abcdefABCDEF</tt>.
Any other character ends the hexadecimal number. Only up to 16 hexadecimal digits
are valid and any more digits are ignored.
</p>
<!-- example -->
<pre>
0xFF <span class='arw'>→</span> 255
0x10ab <span class='arw'>→</span> 4267
0X10CC <span class='arw'>→</span> 4300
</pre>
<p>
<b>Binaries</b> start with a <tt>0b</tt> (or <tt>0B</tt>),
followed by up to 64 bits coded with 1's or 0s. Any other character ends the binary number.
Only up to 64 bits are valid and any more bits are ignored.
</p>
<!-- example -->
<pre>
0b101010 <span class='arw'>→</span> 42
</pre>
<p>
<b>Octals</b> start with an optional <tt>+</tt> (plus) or <tt>-</tt> (minus) sign and a <tt>0</tt> (zero),
followed by any combination of the octal digits: <tt>01234567</tt>.
Any other character ends the octal number. Only up to 21 octal digits are valid
and any more digits are ignored.
</p>
<!-- example -->
<pre>
012 <span class='arw'>→</span> 10
010 <span class='arw'>→</span> 8
077 <span class='arw'>→</span> 63
-077 <span class='arw'>→</span> -63
</pre>
<p>
<b>Floating point</b> numbers can start
with an optional <tt>+</tt> (plus) or <tt>-</tt> (minus) sign,
but they cannot be followed by a <tt>0</tt> (zero);
this would make them octal numbers instead of floating points.
A single <tt>.</tt> (decimal point) can appear anywhere within
a floating point number, including at the beginning.
</p>
<p>Only 16 digits are siginificant and any more digits are ignored.</p>
<!-- example -->
<pre>
1.23 <span class='arw'>→</span> 1.23
-1.23 <span class='arw'>→</span> -1.23
+2.3456 <span class='arw'>→</span> 2.3456
.506 <span class='arw'>→</span> 0.506
</pre>
<p>
As described below, <b>scientific notation</b>
starts with a floating point number
called the <em>significand</em> (or <em>mantissa</em>),
followed by the letter <tt>e</tt> or <tt>E</tt>
and an integer <em>exponent</em>.
</p>
<!-- example -->
<pre>
1.23e3 <span class='arw'>→</span> 1230
-1.23E3 <span class='arw'>→</span> -1230
+2.34e-2 <span class='arw'>→</span> 0.0234
.506E3 <span class='arw'>→</span> 506
</pre>
<br/>
<center>
<span class="divider">( <font color="#7ba9d4">§</font> )</span>
</center>
<br/>
<a name="type_ids"></a>
<h2>2. Data types and names in the reference</h2>
<p>To describe the types and names of a function's parameters,
the following naming convention is used throughout the reference section:</p>
<b>syntax: (format <em>str-format</em> <em>exp-data-1</em> [<em>exp-data-i</em> ... ])</b>
<p>Arguments are represented by symbols formed by the argument's type and name,
separated by a <tt>-</tt> (hyphen). Here, <em>str-format</em> (a string) and
<em>exp-data-1</em> (an expression) are named "format" and "data-1", respectively.</p>
<p>Arguments enclosed in brackets <tt>[</tt> and <tt>]</tt> are optional. When
arguments are separated by a vertical <tt>|</tt> then one of them must be chosen.</p>
<h3>array</h3>
<p>An array (constructed with the <a href="#array">array</a> function).</p>
<h3>body</h3>
<p>One or more expressions for evaluation. The expressions are evaluated sequentially
if there is more than one.</p>
<pre>
1 7.8
nil
(+ 3 4)
"Hi" (+ a b)(print result)
(do-this)(do-that) 123
</pre>
<h3>bool</h3>
<p><tt>true</tt>, <tt>nil</tt>, or an expression evaluating to one of these two.
</p>
<pre>
true, nil, (<= X 10)
</pre>
<h3>context</h3>
<p>An expression evaluating to a context (namespace) or a variable symbol
holding a context.</p>
<pre>
MyContext, aCtx, TheCTX
</pre>
<h3>exp</h3>
<p>Any data type described in this chapter.</p>
<h3>func</h3>
<p>
A symbol or an expression evaluating to
an operator symbol or lambda expression.
</p>
<pre>
+, add, (first '(add sub)), (lambda (x) (+ x x))
</pre>
<h3>int</h3>
<p>
An integer or an expression evaluating to an integer.
Generally, if a floating point number is used
when an int is expected,
the value is truncated to an integer.
</p>
<pre>
123, 5, (* X 5)
</pre>
<h3>list</h3>
<p>
A list of elements (any type)
or an expression evaluating to a list.
</p>
<pre>
(a b c "hello" (+ 3 4))
</pre>
<h3>num</h3>
<p>
An integer, a floating point number,
or an expression evaluating to one of these two.
If an integer is passed,
it is converted to a floating point number.
</p>
<pre>
1.234, (div 10 3), (sin 1)
</pre>
<h3>matrix</h3>
<p>A list in which each row element is itself a list
or an array in which each row element is itself an array.
All element lists or arrays (rows) are of the same length.
Any data type can be element of a matrix, but when
using specific matrix operations like <a href="#det">det</a>,
<A href="#multiply">multiply</A>, or <A href="#invert">invert</A>,
all numbers must be floats or integers.
</p>
<p>
The dimensions of a matrix are defined
by indicating the number of rows
and the number of column elements per row.
Functions working on matrices
ignore superfluous columns in a row.
For missing row elements,
<tt>0.0</tt> is assumed by the functions
<a href="#det">det</a>, <a href="#multiply">multiply</a>,
and <a href="#invert">invert</a>,
while <a href="#transpose">transpose</a> assumes <tt>nil</tt>.
Special rules apply for <a href="#transpose">transpose</a>
when a whole row is not a list or an array,
but some other data type.
</p>
<pre>
((1 2 3 4)
(5 6 7 8)
(9 10 11 12)) ; 3 rows 4 columns
((1 2) (3 4) (5 6)) ; 3 rows 2 columns
</pre>
<h3>place</h3>
<p>A place referenced by a symbol or a place defined in a list, array
or string by indexing with <a href="#nth">nth</a> or <a href="#indexing">implicit indexing</a>
or a place referenced by functions like <a href="#first">first</a>, <a href="#last">last</a>,
<a href="#assoc">assoc</a> or <a href="#lookup">lookup</a>.</p>
<h3>str</h3>
<p>A string or an expression that evaluates to a string.</p>
<p>Depending on the length and processing of special characters, strings are delimited
by either quotes <tt>""</tt>, braces <tt>{}</tt> or <tt>[text][/text]</tt> tags.</p>
<p>Strings limited by either quotes <tt>""</tt> or braces <tt>{}</tt> must not exceed
2047 characters. Longer strings should be limited by <tt>[text][/text]</tt> tags for
unlimited text length.</p>
<pre>
"Hello", (append first-name " Miller")
</pre>
<p>
Special characters can be included in quoted strings
by placing a <tt>\</tt> (backslash) before the character or
digits to escape them:</p>
<table width="98%" summary="escaping special characters in strings">
<tr align="left" valign="bottom"><th>character</th><th>description</th></tr>
<tr><td><tt>\"</tt></td><td>for a double quote inside a quoted string</td></tr>
<tr><td><tt>\n</tt></td> <td>the line-feed character (ASCII 10)</td></tr>
<tr> <td><tt>\r</tt></td> <td>the carriage return character (ASCII 13)</td> </tr>
<tr><td><tt>\b</tt></td><td>for a backspace BS character (ASCII 8)</td></tr>
<tr><td><tt>\t</tt></td><td>for a TAB character (ASCII 9)</td></tr>
<tr><td><tt>\f</tt></td><td>for a formfeed FF character (ASCII 12)</td></tr>
<tr><td><tt>\nnn</tt></td> <td>a decimal ASCII code where nnn is between 000 and 255</td></tr>
<tr><td><tt>\xnn</tt></td> <td>a hexadecimal code where nn is between 00 and FF</td></tr>
<tr><td><tt>\unnnn</tt></td><td>a unicode character encoded in the four <tt>nnnn</tt> hexadecimal
digits. When reading a quoted string, newLISP will translate
this to a UTF8 character in the UTF8 enabled versions of newLISP.</td></tr>
<tr><td><tt>\\</tt></td> <td>the backslash character itself</td></tr>
</table><br/>
<p>Decimals start with a digit. Hexadecimals start with <tt>x</tt>:</p>
<pre>
"\065\066\067" <span class='arw'>→</span> "ABC"
"\x41\x42\x43" <span class='arw'>→</span> "ABC"
</pre>
<p>Instead of a <tt>"</tt> (double quote), a <tt>{</tt> (left curly bracket)
and <tt>}</tt> (right curly bracket) can be used to delimit strings.
This is useful when quotation marks need to occur inside strings.
Quoting with the curly brackets suppresses the backslash escape effect
for special characters. Balanced nested curly brackets may be used within
a string. This aids in writing regular expressions or short sections of
HTML.</p>
<pre>
(print "<A href=\"http://mysite.com\">" ) ; the cryptic way
(print {<A href="http://mysite.com">} ) ; the readable way
; path names on MS Windows
(set 'path "C:\\MyDir\\example.lsp")
; no escaping when using braces
(set 'path {C:\MyDir\example.lsp})
; on MS Windows the forward slash can be used in path names
(set 'path "C:/MyDir/example.lsp")
; inner braces are balanced
(regex {abc{1,2}} line)
(print [text]
this could be
a very long (> 2048 characters) text,
i.e. HTML.
[/text])
</pre>
<p>
The tags <tt>[text]</tt> and <tt>[/text]</tt>
can be used to delimit long strings
and suppress escape character translation.
This is useful for delimiting long HTML passages
in CGI files written in newLISP
or for situations where character translation
should be completely suppressed.
Always use the <tt>[text]</tt> tags
for strings longer than 2048 characters.
</p>
<h3>sym</h3>
<p>
A symbol or expression evaluating to a symbol.
</p>
<pre>
'xyz, (first '(+ - /)), '*, '- , someSymbol,
</pre>
<p>Most of the context symbols in this manual start with an uppercase letter
to distinguish them from other symbols.</p>
<h3>sym-context</h3>
<p>
A symbol, an existing context, or an expression evaluating to a symbol
from which a context will be created. If a context does not already exist,
many functions implicitly create them
(e.g., <a href="#bayes-train">bayes-train</a>, <a Href="#context">context</a>,
<a href="#eval-string">eval-string</a>,
<a href="#load">load</a>, <a href="#sym">sym</a>, and <a href="#xml-parse">xml-parse</a>).
The context must be specified when these functions are used
on an existing context. Even if a context already exists,
some functions may continue to take quoted symbols (e.g., <a href="#context">context</a>).
For other functions, such as <a href="#contextp">context?</a>, the distinction is critical.
</p>
<br/>
<br/>
<center>
<span class="divider">( <font color="#7ba9d4">§</font> )</span>
</center>
<br/>
<a name="functions"></a>
<h2>3. Functions in groups</h2>
<p>Some functions appear in more than one group.</p>
<a name="list_processing"></a>
<h3>List processing, flow control, and integer arithmetic</h3>
<table border="0" cellpadding="1" width="95%" align="center" summary="List processing, flow control and integer
arithmetic">
<tr>
<td WIDTH="16%"><a href="#arithmetic">+, -, *, /, %</a></td>
<td WIDTH="80%">integer arithmetic</td>
</tr>
<tr>
<td><a href="#inci">++</a></td>
<td>increment integer numbers</td>
</tr>
<tr>
<td><a href="#deci">--</a></td>
<td>decrement integer numbers</td>
</tr>
<tr>
<td><a href="#logical"><, >, =</a></td>
<td>compares any data type: less, greater, equal</td>
</tr>
<tr>
<td><a href="#logical"><=, >=, !=</a></td>
<td>compares any data type: less-equal, greater-equal, not-equal</td>
</tr>
<tr>
<td><a href="#colon">:</a></td>
<td>constructs a context symbol and applies it to an object</td>
</tr>
<tr>
<td><a href="#and">and</a></td>
<td>logical <tt>and</tt></td>
</tr>
<tr>
<td><a href="#append">append</a></td>
<td>appends lists ,arrays or strings to form a new list, array or string</td>
</tr>
<tr>
<td><a href="#apply">apply</a></td>
<td>applies a function or primitive to a list of arguments</td>
</tr>
<tr>
<td><a href="#args">args</a></td>
<td>retrieves the argument list of a function or macro expression</td>
</tr>
<tr>
<td><a href="#assoc">assoc</a></td>
<td>searches for keyword associations in a list</td>
</tr>
<tr>
<td><a href="#begin">begin</a></td>
<td>begins a block of functions</td>
</tr>
<tr>
<td><a href="#bigint">bigint</a></td>
<td>convert a number to big integer format</td>
</tr>
<tr>
<td><a href="#bind">bind</a></td>
<td>binds variable associations in a list</td>
</tr>
<tr>
<td><a href="#case">case</a></td>
<td>branches depending on contents of control variable</td>
</tr>
<tr>
<td><a href="#catch">catch</a></td>
<td>evaluates an expression, possibly catching errors</td>
</tr>
<tr>
<td><a href="#chop">chop</a></td>
<td>chops elements from the end of a list</td>
</tr>
<tr>
<td><a href="#clean">clean</a></td>
<td>cleans elements from a list</td>
</tr>
<tr>
<td><a href="#collect">collect</a></td>
<td>repeat evaluating an expression and collect results in a list</td>
</tr>
<tr>
<td><a href="#cond">cond</a></td>
<td>branches conditionally to expressions</td>
</tr>
<tr>
<td><a href="#cons">cons</a></td>
<td>prepends an element to a list, making a new list</td>
</tr>
<tr>
<td><a href="#constant">constant</a></td>
<td>defines a constant symbol</td>
</tr>
<tr>
<td><a href="#count">count</a></td>
<td>counts elements of one list that occur in another list</td>
</tr>
<tr>
<td><a href="#curry">curry</a></td>
<td>transforms a function f(x, y) into a function fx(y)</td>
</tr>
<tr>
<td><a href="#define">define</a></td>
<td>defines a new function or lambda expression</td>
</tr>
<tr>
<td><a href="#define-macro">define-macro</a></td>
<td>defines a macro or lambda-macro expression</td>
</tr>
<tr>
<td><a href="#def-new">def-new</a></td>
<td>copies a symbol to a different context (namespace)</td>
</tr>
<tr>
<td><a href="#difference">difference</a></td>
<td>returns the difference between two lists</td>
</tr>
<tr>
<td><a href="#doargs">doargs</a></td>
<td>iterates through the arguments of a function</td>
</tr>
<tr>
<td><a href="#dolist">dolist</a></td>
<td>evaluates once for each element in a list</td>
</tr>
<tr>
<td><a href="#dostring">dostring</a></td>
<td>evaluates once for each character in a string</td>
</tr>
<tr>
<td><a href="#dotimes">dotimes</a></td>
<td>evaluates once for each number in a range</td>
</tr>
<tr>
<td><a href="#dotree">dotree</a></td>
<td>iterates through the symbols of a context</td>
</tr>
<tr>
<td><a href="#do-until">do-until</a></td>
<td>repeats evaluation of an expression until the condition is met</td>
</tr>
<tr>
<td><a href="#do-while">do-while</a></td>
<td>repeats evaluation of an expression while the condition is true</td>
</tr>
<tr>
<td><a href="#dup">dup</a></td>
<td>duplicates a list or string a specified number of times</td>
</tr>
<tr>
<td><a href="#ends-with">ends-with</a></td>
<td>checks the end of a string or list against a key of the same type</td>
</tr>
<tr>
<td><a href="#eval">eval</a></td>
<td>evaluates an expression</td>
</tr>
<tr>
<td><a href="#exists">exists</a></td>
<td>checks for the existence of a condition in a list</td>
</tr>
<tr>
<td><a href="#expand">expand</a></td>
<td>replaces a symbol in a nested list</td>
</tr>
<tr>
<td><a href="#explode">explode</a></td>
<td>explodes a list or string</td>
</tr>
<tr>
<td><a href="#extend">extend</a></td>
<td>extends a list or string</td>
</tr>
<tr>
<td><a href="#first">first</a></td>
<td>gets the first element of a list or string</td>
</tr>
<tr>
<td><a href="#filter">filter</a></td>
<td>filters a list</td>
</tr>
<tr>
<td><a href="#find">find</a></td>
<td>searches for an element in a list or string</td>
</tr>
<tr>
<td><a href="#flat">flat</a></td>
<td>returns the flattened list</td>
</tr>
<tr>
<td><a href="#define">fn</a></td>
<td>defines a new function or lambda expression</td>
</tr>
<tr>
<td><a href="#for">for</a></td>
<td>evaluates once for each number in a range</td>
</tr>
<tr>
<td><a href="#for-all">for-all</a></td>
<td>checks if all elements in a list meet a condition</td>
</tr>
<tr>
<td><a href="#if">if</a></td>
<td>evaluates an expression conditionally</td>
</tr>
<tr>
<td><a href="#index">index</a></td>
<td>filters elements from a list and returns their indices</td>
</tr>
<tr>
<td><a href="#intersect">intersect</a></td>
<td>returns the intersection of two lists</td>
</tr>
<tr>
<td><a href="#define">lambda</a></td>
<td>defines a new function or lambda expression</td>
</tr>
<tr>
<td><a href="#last">last</a></td>
<td>returns the last element of a list or string</td>
</tr>
<tr>
<td><a href="#length">length</a></td>
<td>calculates the length of a list or string</td>
</tr>
<tr>
<td><a href="#let">let</a></td>
<td>declares and initializes local variables</td>
</tr>
<tr>
<td><a href="#letex">letex</a></td>
<td>expands local variables into an expression, then evaluates</td>
</tr>
<tr>
<td><a href="#letn">letn</a></td>
<td>initializes local variables incrementally, like nested lets</td>
</tr>
<tr>
<td><a href="#list">list</a></td>
<td>makes a list</td>
</tr>
<tr>
<td><a href="#local">local</a></td>
<td>declares local variables</td>
</tr>
<tr>
<td><a href="#lookup">lookup</a></td>
<td>looks up members in an association list</td>
</tr>
<tr>
<td><a href="#map">map</a></td>
<td>maps a function over members of a list, collecting the results</td>
</tr>
<tr>
<td><a href="#match">match</a></td>
<td>matches patterns against lists; for matching against strings, see
<a href="#find">find</a> and <a href="#regex">regex</a></td>
</tr>
<tr>
<td><a href="#member">member</a></td>
<td>finds a member of a list or string</td>
</tr>
<tr>
<td><a href="#not">not</a></td>
<td>logical <tt>not</tt></td>
</tr>
<tr>
<td><a href="#nth">nth</a></td>
<td>gets the <em>nth</em> element of a list or string</td>
</tr>
<tr>
<td><a href="#or">or</a></td>
<td>logical <tt>or</tt></td>
</tr>
<tr>
<td><a href="#pop">pop</a></td>
<td>deletes and returns an element from a list or string</td>
</tr>
<tr>
<td><a href="#pop-assoc">pop-assoc</a></td>
<td>removes an association from an association list</td>
</tr>
<tr>
<td><a href="#push">push</a></td>
<td>inserts a new element into a list or string</td>
</tr>
<tr>
<td><a href="#quote">quote</a></td>
<td>quotes an expression</td>
</tr>
<tr>
<td><a href="#ref">ref</a></td>
<td>returns the position of an element inside a nested list</td>
</tr>
<tr>
<td><a href="#ref-all">ref-all</a></td>
<td>returns a list of index vectors of elements inside a nested list</td>
</tr>
<tr>
<td><a href="#rest">rest</a></td>
<td>returns all but the first element of a list or string</td>
</tr>
<tr>
<td><a href="#replace">replace</a></td>
<td>replaces elements inside a list or string</td>
</tr>
<tr>
<td><a href="#reverse">reverse</a></td>
<td>reverses a list or string</td>
</tr>
<tr>
<td><a href="#rotate">rotate</a></td>
<td>rotates a list or string</td>
</tr>
<tr>
<td><a href="#select">select</a></td>
<td>selects and permutes elements from a list or string</td>
</tr>
<tr>
<td><a href="#self">self</a></td>
<td>Accesses the target object inside a FOOP method</td>
</tr>
<tr>
<td><a href="#set">set</a></td>
<td>sets the binding or contents of a symbol</td>
</tr>
<tr>
<td><a href="#setf">setf setq</a></td>
<td>sets contents of a symbol or list, array or string reference</td>
</tr>
<tr>
<td><a href="#set-ref">set-ref</a></td>
<td>searches for an element in a nested list and replaces it</td>
</tr>
<tr>
<td><a href="#set-ref-all">set-ref-all</a></td>
<td>searches for an element in a nested list and replaces all instances</td>
</tr>
<tr>
<td><a href="#silent">silent</a></td>
<td>works like <a href="#begin">begin</a> but suppresses console output of the return value</td>
</tr>
<tr>
<td><a href="#slice">slice</a></td>
<td>extracts a sublist or substring</td>
</tr>
<tr>
<td><a href="#sort">sort</a></td>
<td>sorts the members of a list</td>
</tr>
<tr>
<td><a href="#starts-with">starts-with</a></td>
<td>checks the beginning of a string or list against a key of the same type</td>
</tr>
<tr>
<td><a href="#swap">swap</a></td>
<td>swaps two elements inside a list or string</td>
</tr>
<tr>
<td><a href="#unify">unify</a></td>
<td>unifies two expressions</td>
</tr>
<tr>
<td><a href="#unique">unique</a></td>
<td>returns a list without duplicates</td>
</tr>
<tr>
<td><a href="#union">union</a></td>
<td>returns a unique list of elements found in two or more lists.</td>
</tr>
<tr>
<td><a href="#unless">unless</a></td>
<td>evaluates an expression conditionally</td>
</tr>
<tr>
<td><a href="#until">until</a></td>
<td>repeats evaluation of an expression until the condition is met</td>
</tr>
<tr>
<td><a href="#when">when</a></td>
<td>evaluates a block of statements conditionally</td>
</tr>
<tr>
<td><a href="#while">while</a></td>
<td>repeats evaluation of an expression while the condition is true</td>
</tr>
</table><br/>
<a name="string_operators"></a>
<h3>String and conversion functions</h3>
<table border="0" cellpadding="1" width="95%" align="center" summary="String and conversion functions">
<tr>
<td WIDTH="16%"><a href="#address">address</a></td>
<td WIDTH="84%">gets the memory address of a number or string</td>
</tr>
<tr>
<td><a href="#bigint">bigint</a></td>
<td>convert a number to big integer format</td>
</tr>
<tr>
<td><a href="#bits">bits</a></td>
<td>translates a number into binary representation</td>
</tr>
<tr>
<td><a href="#char">char</a></td>
<td>translates between characters and ASCII codes</td>
</tr>
<tr>
<td><a href="#chop">chop</a></td>
<td>chops off characters from the end of a string</td>
</tr>
<tr>
<td><a href="#dostring">dostring</a></td>
<td>evaluates once for each character in a string</td>
</tr>
<tr>
<td><a href="#dup">dup</a></td>
<td>duplicates a list or string a specified number of times</td>
</tr>
<tr>
<td><a href="#ends-with">ends-with</a></td>
<td>checks the end of a string or list against a key of the same type</td>
</tr>
<tr>
<td><a href="#encrypt">encrypt</a></td>
<td>does a one-time–pad encryption and decryption of a string</td>
</tr>
<tr>
<td><a href="#eval-string">eval-string</a></td>
<td>compiles, then evaluates a string</td>
</tr>
<tr>
<td><a href="#explode">explode</a></td>
<td>transforms a string into a list of characters</td>
</tr>
<tr>
<td><a href="#extend">extend</a></td>
<td>extends a list or string</td>
</tr>
<tr>
<td><a href="#find">find</a></td>
<td>searches for an element in a list or string</td>
</tr>
<tr>
<td><a href="#find-all">find-all</a></td>
<td>returns a list of all pattern matches found in string</td>
</tr>
<tr>
<td><a href="#first">first</a></td>
<td>gets the first element in a list or string</td>
</tr>
<tr>
<td><a href="#float">float</a></td>
<td>translates a string or integer into a floating point number</td>
</tr>
<tr>
<td><a href="#format">format</a></td>
<td>formats numbers and strings as in the C language</td>
</tr>
<tr>
<td><a href="#get-char">get-char</a></td>
<td>gets a character from a memory address</td>
</tr>
<tr>
<td><a href="#get-float">get-float</a></td>
<td>gets a double float from a memory address</td>
</tr>
<tr>
<td><a href="#get-int">get-int</a> </td>
<td>gets a 32-bit integer from a memory address</td>
</tr>
<tr>
<td><a href="#get-long">get-long</a> </td>
<td>gets a long 64-bit integer from a memory address</td>
</tr>
<tr>
<td><a href="#get-string">get-string</a></td>
<td>gets a string from a memory address</td>
</tr>
<tr>
<td><a href="#int">int</a></td>
<td>translates a string or float into an integer</td>
</tr>
<tr>
<td><a href="#join">join</a></td>
<td>joins a list of strings</td>
</tr>
<tr>
<td><a href="#last">last</a></td>
<td>returns the last element of a list or string</td>
</tr>
<tr>
<td><a href="#lower-case">lower-case</a></td>
<td>converts a string to lowercase characters</td>
</tr>
<tr>
<td><a href="#member">member</a></td>
<td>finds a list or string member</td>
</tr>
<tr>
<td><a href="#name">name</a></td>
<td>returns the name of a symbol or its context as a string</td>
</tr>
<tr>
<td><a href="#nth">nth</a></td>
<td>gets the <em>nth</em> element in a list or string</td>
</tr>
<tr>
<td><a href="#pack">pack</a></td>
<td>packs newLISP expressions into a binary structure</td>
</tr>
<tr>
<td><a href="#parse">parse</a></td>
<td>breaks a string into tokens</td>
</tr>
<tr>
<td><a href="#pop">pop</a></td>
<td>pops from a string</td>
</tr>
<tr>
<td><a href="#push">push</a></td>
<td>pushes onto a string</td>
</tr>
<tr>
<td><a href="#regex">regex</a></td>
<td>performs a Perl-compatible regular expression search</td>
</tr>
<tr>
<td><a href="#regex-comp">regex-comp</a></td>
<td>pre-compiles a regular expression pattern</td>
</tr>
<tr>
<td><a href="#replace">replace</a></td>
<td>replaces elements in a list or string</td>
</tr>
<tr>
<td><a href="#rest">rest</a></td>
<td>gets all but the first element of a list or string</td>
</tr>
<tr>
<td><a href="#reverse">reverse</a></td>
<td>reverses a list or string</td>
</tr>
<tr>
<td><a href="#rotate">rotate</a></td>
<td>rotates a list or string</td>
</tr>
<tr>
<td><a href="#select">select</a></td>
<td>selects and permutes elements from a list or string</td>
</tr>
<tr>
<td><a href="#setf">setf setq</a></td>
<td>sets contents of a string reference</td>
</tr>
<tr>
<td><a href="#slice">slice</a></td>
<td>extracts a substring or sublist</td>
</tr>
<tr>
<td><a href="#source">source</a></td>
<td>returns the source required to bind a symbol as a string</td>
</tr>
<tr>
<td><a href="#starts-with">starts-with</a></td>
<td>checks the start of the string or list against a key string or list</td>
</tr>
<tr>
<td><a href="#string">string</a></td>
<td>transforms anything into a string</td>
</tr>
<tr>
<td><a href="#sym">sym</a></td>
<td>translates a string into a symbol</td>
</tr>
<tr>
<td><a href="#title-case">title-case</a></td>
<td>converts the first character of a string to uppercase</td>
</tr>
<tr>
<td><a href="#trim">trim</a></td>
<td>trims a string on one or both sides</td>
</tr>
<tr>
<td><a href="#unicode">unicode</a></td>
<td>converts ASCII or UTF-8 to UCS-4 Unicode</td>
</tr>
<tr>
<td><a href="#utf8">utf8</a></td>
<td>converts UCS-4 Unicode to UTF-8</td>
</tr>
<tr>
<td><a href="#utf8len">utf8len</a></td>
<td>returns length of an UTF-8 string in UTF-8 characters</td>
</tr>
<tr>
<td><a href="#unpack">unpack</a></td>
<td>unpacks a binary structure into newLISP expressions</td>
</tr>
<tr>
<td><a href="#upper-case">upper-case</a></td>
<td>converts a string to uppercase characters</td>
</tr>
</table><br/>
<a name="floating_point"></a>
<h3>Floating point math and special functions</h3>
<table border="0" cellpadding="1" width="95%" align="center" summary="Floating point math and special functions">
<tr>
<td WIDTH="16%"><a href="#abs">abs</a></td>
<td WIDTH="84%">returns the absolute value of a number</td>
</tr>
<tr>
<td><a href="#acos">acos</a></td>
<td>calculates the arc-cosine of a number</td>
</tr>
<tr>
<td><a href="#acosh">acosh</a></td>
<td>calculates the inverse hyperbolic cosine of a number</td>
</tr>
<tr>
<td><a href="#add">add</a></td>
<td>adds floating point or integer numbers and returns a floating point number</td>
</tr>
<tr>
<td><a href="#array">array</a></td>
<td>creates an array</td>
</tr>
<tr>
<td><a href="#array-list">array-list</a></td>
<td>returns a list conversion from an array</td>
</tr>
<tr>
<td><a href="#asin">asin</a></td>
<td>calculates the arcsine of a number</td>
</tr>
<tr>
<td><a href="#asinh">asinh</a></td>
<td>calculates the inverse hyperbolic sine of a number</td>
</tr>
<tr>
<td><a href="#atan">atan</a></td>
<td>calculates the arctangent of a number</td>
</tr>
<tr>
<td><a href="#atanh">atanh</a></td>
<td>calculates the inverse hyperbolic tangent of a number</td>
</tr>
<tr>
<td><a href="#atan2">atan2</a></td>
<td>computes the principal value of the arctangent of Y / X in radians</td>
</tr>
<tr>
<td><a href="#beta">beta</a></td>
<td>calculates the beta function</td>
</tr>
<tr>
<td><a href="#betai">betai</a></td>
<td>calculates the incomplete beta function</td>
</tr>
<tr>
<td><a href="#binomial">binomial</a></td>
<td>calculates the binomial function</td>
</tr>
<tr>
<td><a href="#ceil">ceil</a></td>
<td>rounds up to the next integer</td>
</tr>
<tr>
<td><a href="#cos">cos</a></td>
<td>calculates the cosine of a number</td>
</tr>
<tr>
<td><a href="#cosh">cosh</a></td>
<td>calculates the hyperbolic cosine of a number</td>
</tr>
<tr>
<td><a href="#crc32">crc32</a></td>
<td>calculates a 32-bit CRC for a data buffer</td>
</tr>
<tr>
<td><a href="#dec">dec</a></td>
<td>decrements a number in a variable, list or array</td>
</tr>
<tr>
<td><a href="#div">div</a></td>
<td>divides floating point or integer numbers</td>
</tr>
<tr>
<td><a href="#erf">erf</a></td>
<td>calculates the error function of a number</td>
</tr>
<tr>
<td><a href="#exp">exp</a></td>
<td>calculates the exponential <em>e</em> of a number</td>
</tr>
<tr>
<td><a href="#factor">factor</a></td>
<td>factors a number into primes</td>
</tr>
<tr>
<td><a href="#fft">fft</a></td>
<td>performs a fast Fourier transform (FFT)</td>
</tr>
<tr>
<td><a href="#floor">floor</a></td>
<td>rounds down to the next integer</td>
</tr>
<tr>
<td><a href="#flt">flt</a></td>
<td>converts a number to a 32-bit integer representing a float</td>
</tr>
<tr>
<td><a href="#gammai">gammai</a></td>
<td>calculates the incomplete Gamma function</td>
</tr>
<tr>
<td><a href="#gammaln">gammaln</a></td>
<td>calculates the log Gamma function</td>
</tr>
<tr>
<td><a href="#gcd">gcd</a></td>
<td>calculates the greatest common divisor of a group of integers</td>
</tr>
<tr>
<td><a href="#ifft">ifft</a></td>
<td>performs an inverse fast Fourier transform (IFFT)</td>
</tr>
<tr>
<td><a href="#inc">inc</a></td>
<td>increments a number in a variable, list or array</td>
</tr>
<tr>
<td><a href="#infp">inf?</a></td>
<td>checks if a floating point value is infinite</td>
</tr>
<tr>
<td><a href="#log">log</a></td>
<td>calculates the natural or other logarithm of a number</td>
</tr>
<tr>
<td><a href="#min">min</a></td>
<td>finds the smallest value in a series of values</td>
</tr>
<tr>
<td><a href="#max">max</a></td>
<td>finds the largest value in a series of values</td>
</tr>
<tr>
<td><a href="#mod">mod</a></td>
<td>calculates the modulo of two numbers</td>
</tr>
<tr>
<td><a href="#mul">mul</a></td>
<td>multiplies floating point or integer numbers</td>
</tr>
<tr>
<td><a href="#NaNp">NaN?</a></td>
<td>checks if a float is NaN (not a number)</td>
</tr>
<tr>
<td><a href="#round">round</a></td>
<td>rounds a number</td>
</tr>
<tr>
<td><a href="#pow">pow</a></td>
<td>calculates <em>x</em> to the power of <em>y</em></td>
</tr>
<tr>
<td><a href="#sequence">sequence</a></td>
<td>generates a list sequence of numbers</td>
</tr>
<tr>
<td><a href="#series">series</a></td>
<td>creates a geometric sequence of numbers</td>
</tr>
<tr>
<td><a href="#sgn">sgn</a></td>
<td>calculates the signum function of a number</td>
</tr>
<tr>
<td><a href="#sin">sin</a></td>
<td>calculates the sine of a number</td>
</tr>
<tr>
<td><a href="#sinh">sinh</a></td>
<td>calculates the hyperbolic sine of a number</td>
</tr>
<tr>
<td><a href="#sqrt">sqrt</a></td>
<td>calculates the square root of a number</td>
</tr>
<tr>
<td><a href="#ssq">ssq</a></td>
<td>calculates the sum of squares of a vector</td>
</tr>
<tr>
<td><a href="#sub">sub</a></td>
<td>subtracts floating point or integer numbers</td>
</tr>
<tr>
<td><a href="#tan">tan</a></td>
<td>calculates the tangent of a number</td>
</tr>
<tr>
<td><a href="#tanh">tanh</a></td>
<td>calculates the hyperbolic tangent of a number</td>
</tr>
<tr>
<td><a href="#uuid">uuid</a> </td>
<td>returns a UUID (Universal Unique IDentifier)</td>
</tr>
</table><br/>
<a name="matrices"></a>
<h3>Matrix functions</h3>
<table border="0" cellpadding="1" width="95%" align="center" summary="Matrix functions">
<tr>
<td WIDTH="16%"><a href="#det">det</a></td>
<td WIDTH="84%">returns the determinant of a matrix</td>
</tr>
<tr>
<td><a href="#invert">invert</a></td>
<td>returns the inversion of a matrix</td>
</tr>
<tr>
<td><a href="#mat">mat</a></td>
<td>performs scalar operations on matrices</td>
</tr>
<tr>
<td><a href="#multiply">multiply</a></td>
<td>multiplies two matrices</td>
</tr>
<tr>
<td><a href="#transpose">transpose</a> </td>
<td>returns the transposition of a matrix</td>
</tr>
</table><br/>
<a name="array-funcs"></a>
<h3>Array functions</h3>
<table border="0" cellpadding="1" width="95%" align="center" summary="Array functions">
<tr>
<td width="16%" ><a href="#append">append</a></td>
<td width="84%">appends arrays</td>
</tr>
<tr>
<td><a href="#array">array</a></td>
<td>creates and initializes an array with up to 16 dimensions</td>
</tr>
<tr>
<td><a href="#array-list">array-list</a></td>
<td>converts an array into a list</td>
</tr>
<tr>
<td><a href="#arrayp">array?</a></td>
<td>checks if expression is an array</td>
</tr>
<tr>
<td ><a href="#det">det</a></td>
<td>returns the determinant of a matrix</td>
</tr>
<tr>
<td ><a href="#first">first</a></td>
<td>returns the first row of an array</td>
</tr>
<tr>
<td ><a href="#invert">invert</a></td>
<td>returns the inversion of a matrix</td>
</tr>
<tr>
<td ><a href="#last">last</a></td>
<td>returns the last row of an array</td>
</tr>
<tr>
<td><a href="#mat">mat</a></td>
<td>performs scalar operations on matrices</td>
</tr>
<tr>
<td ><a href="#multiply">multiply</a></td>
<td>multiplies two matrices</td>
</tr>
<tr>
<td ><a href="#nth">nth</a></td>
<td>returns an element of an array</td>
</tr>
<tr>
<td ><a href="#rest">rest</a></td>
<td>returns all but the first row of an array</td>
</tr>
<tr>
<td><a href="#setf">setf</a></td>
<td>sets contents of an array reference</td>
</tr>
<tr>
<td ><a href="#slice">slice</a></td>
<td>returns a slice of an array</td>
</tr>
<tr>
<td ><a href="#transpose">transpose</a></td>
<td>transposes a matrix</td>
</tr>
</table><br/>
<a name="bit_operators"></a>
<h3>Bit operators</h3>
<table border="0" cellpadding="1" width="95%" align="center" summary="bit operators">
<tr>
<td WIDTH="16%"><a href="#bit_shift"><<, >></a> </td>
<td WIDTH="84%">bit shift left, bit shift right</td>
</tr>
<tr>
<td><a href="#bit_and">&</a></td>
<td>bitwise and</td>
</tr>
<tr>
<td><a href="#bit_inclusive">|</a></td>
<td>bitwise inclusive or</td>
</tr>
<tr>
<td><a href="#bit_exclusive">^</a></td>
<td>bitwise exclusive or</td>
</tr>
<tr>
<td><a href="#bit_not">~</a></td>
<td>bitwise not</td>
</tr>
</table><br/>
<a name="predicates"></a>
<h3>Predicates</h3>
<table border="0" cellpadding="1" width="95%" align="center" summary="Predicates">
<tr>
<td width="16%"><a href="#atomp">atom?</a></td>
<td width="84%">checks if an expression is an atom</td>
</tr>
<tr>
<td><a href="#arrayp">array?</a></td>
<td>checks if an expression is an array</td>
</tr>
<tr>
<td><a href="#bigintp">bigint?</a></td>
<td>checks if a number is a big integer</td>
</tr>
<tr>
<td><a href="#contextp">context?</a></td>
<td>checks if an expression is a context</td>
</tr>
<tr>
<td><a href="#directoryp">directory?</a></td>
<td>checks if a disk node is a directory</td>
</tr>
<tr>
<td><a href="#emptyp">empty?</a></td>
<td>checks if a list or string is empty</td>
</tr>
<tr>
<td><a href="#evenp">even?</a></td>
<td>checks the parity of an integer number</td>
</tr>
<tr>
<td><a href="#filep">file?</a></td>
<td>checks if a file exists</td>
</tr>
<tr>
<td><a href="#floatp">float?</a></td>
<td>checks if an expression is a float</td>
</tr>
<tr>
<td><a href="#globalp">global?</a></td>
<td>checks if a symbol is global</td>
</tr>
<tr>
<td><a href="#infp">inf?</a></td>
<td>checks if a floating point value is infinite</td>
</tr>
<tr>
<td><a href="#integerp">integer?</a></td>
<td>checks if an expression is an integer</td>
</tr>
<tr>
<td><a href="#lambdap">lambda?</a></td>
<td>checks if an expression is a lambda expression</td>
</tr>
<tr>
<td><a href="#legalp">legal?</a></td>
<td>checks if a string contains a legal symbol</td>
</tr>
<tr>
<td><a href="#listp">list?</a></td>
<td>checks if an expression is a list</td>
</tr>
<tr>
<td><a href="#macrop">macro?</a></td>
<td>checks if an expression is a lambda-macro expression</td>
</tr>
<tr>
<td><a href="#NaNp">NaN?</a></td>
<td>checks if a float is NaN (not a number)</td>
</tr>
<tr>
<td><a href="#nilp">nil?</a></td>
<td>checks if an expression is <tt>nil</tt></td>
</tr>
<tr>
<td><a href="#nullp">null?</a></td>
<td>checks if an expression is <tt>nil</tt>, <tt>""</tt>, <tt>()</tt>, <tt>0</tt> or <tt>0.0</tt></td>
</tr>
<tr>
<td><a href="#numberp">number?</a></td>
<td>checks if an expression is a float or an integer</td>
</tr>
<tr>
<td><a href="#oddp">odd?</a></td>
<td>checks the parity of an integer number</td>
</tr>
<tr>
<td><a href="#protectedp">protected?</a></td>
<td>checks if a symbol is protected</td>
</tr>
<tr>
<td><a href="#primitivep">primitive?</a></td>
<td>checks if an expression is a primitive</td>
</tr>
<tr>
<td><a href="#quotep">quote?</a></td>
<td>checks if an expression is quoted</td>
</tr>
<tr>
<td><a href="#stringp">string?</a></td>
<td>checks if an expression is a string</td>
</tr>
<tr>
<td><a href="#symbolp">symbol?</a></td>
<td>checks if an expression is a symbol</td>
</tr>
<tr>
<td><a href="#truep">true?</a></td>
<td>checks if an expression is not <tt>nil</tt></td>
</tr>
<tr>
<td><a href="#zerop">zero?</a></td>
<td>checks if an expression is <tt>0</tt> or <tt>0.0</tt></td>
</tr>
</table><br/>
<a name="timedate"></a>
<h3>Date and time functions</h3>
<table border="0" cellpadding="1" width="95%" align="center" summary="Time and date functions">
<tr>
<td WIDTH="16%"><a href="#date">date</a></td>
<td WIDTH="84%">converts a date-time value to a string</td>
</tr>
<tr>
<td><a href="#date-list">date-list</a></td>
<td>returns a list of year, month, day, hours, minutes, seconds from a time value in seconds</td>
</tr>
<tr>
<td><a href="#date-parse">date-parse</a></td>
<td>parses a date string and returns the number of seconds passed since January 1, 1970, (formerly <tt>parse-date</tt>)</td>
</tr>
<tr>
<td><a href="#date-value">date-value</a></td>
<td>calculates the time in seconds since January 1, 1970 for a date and time</td>
</tr>
<tr>
<td><a href="#now">now</a></td>
<td>returns a list of current date-time information</td>
</tr>
<tr>
<td><a href="#time">time</a></td>
<td>calculates the time it takes to evaluate an expression in milliseconds</td>
</tr>
<tr>
<td><a href="#time-of-day">time-of-day</a></td>
<td>calculates the number of milliseconds elapsed since the day started</td>
</tr>
</table><br/>
<a name="montecarlo"></a>
<h3>Statistics, simulation and modeling functions</h3>
<table border="0" cellpadding="1" width="95%" align="center" summary="Statistics, simulation and modelling math functions">
<tr>
<td width="16%"><a href="#amb">amb</a></td>
<td width="84%">randomly selects an argument and evaluates it</td>
</tr>
<tr>
<td width="16%"><a href="#bayes-query">bayes-query</a></td>
<td width="84%">calculates Bayesian probabilities for a data set</td>
</tr>
<tr>
<td width="16%"><a href="#bayes-train">bayes-train</a></td>
<td width="84%">counts items in lists for Bayesian or frequency analysis</td>
</tr>
<tr>
<td><a href="#corr">corr</a></td>
<td>calculates the <em>product-moment correlation</em> coefficient</td>
</tr>
<tr>
<td><a href="#crit-chi2">crit-chi2</a></td>
<td>calculates the <em>Chi²</em> statistic for a given probability</td>
</tr>
<tr>
<td><a href="#crit-f">crit-f</a></td>
<td>calculates the <em>F</em> statistic for a given probability</td>
</tr>
<tr>
<td><a href="#crit-t">crit-t</a></td>
<td>calculates the <em>Student's t</em> statistic for a given probability</td>
</tr>
<tr>
<td><a href="#crit-z">crit-z</a></td>
<td>calculates the normal distributed <em>Z</em> for a given probability</td>
</tr>
<tr>
<td><a href="#kmeans-query">kmeans-query</a></td>
<td>calculates distances to cluster centroids or other data points</td>
</tr>
<tr>
<td><a href="#kmeans-train">kmeans-train</a></td>
<td>partitions a data set into clusters</td>
</tr>
<tr>
<td><a href="#normal">normal</a></td>
<td>makes a list of normal distributed floating point numbers</td>
</tr>
<tr>
<td><a href="#prob-chi2">prob-chi2</a></td>
<td>calculates the tail probability of a <em>Chi²</em> distribution value</td>
</tr>
<tr>
<td><a href="#prob-f">prob-f</a></td>
<td>calculates the tail probability of a <em>F</em> distribution value</td>
</tr>
<tr>
<td><a href="#prob-t">prob-t</a></td>
<td>calculates the tail probability of a <em>Student's t</em> distribution value</td>
</tr>
<tr>
<td><a href="#prob-z">prob-z</a></td>
<td>calculates the cumulated probability of a <em>Z</em> distribution value</td>
</tr>
<tr>
<td><a href="#rand">rand</a></td>
<td>generates random numbers in a range</td>
</tr>
<tr>
<td><a href="#random">random</a></td>
<td>generates a list of evenly distributed floats</td>
</tr>
<tr>
<td><a href="#randomize">randomize</a></td>
<td>shuffles all of the elements in a list</td>
</tr>
<tr>
<td><a href="#seed">seed</a></td>
<td>seeds the internal random number generator</td>
</tr>
<tr>
<td><a href="#stats">stats</a></td>
<td>calculates some basic statistics for a data vector</td>
</tr>
<tr>
<td><a href="#t-test">t-test</a></td>
<td>compares means of data samples using the <em>Student's t</em> statistic</td>
</tr>
</table><br/>
<a name="pattern"></a>
<h3>Pattern matching</h3>
<table border="0" cellpadding="1" width="95%" align="center" summary="Time and date functions">
<tr>
<td><a href="#ends-with">ends-with</a></td>
<td>tests if a list or string ends with a pattern</td>
</tr>
<tr>
<td WIDTH="16%"><a href="#find">find</a></td>
<td WIDTH="84%">searches for a pattern in a list or string</td>
</tr>
<tr>
<td><a href="#find-all">find-all</a></td>
<td>finds all occurrences of a pattern in a string</td>
</tr>
<tr>
<td><a href="#match">match</a></td>
<td>matches list patterns</td>
</tr>
<tr>
<td><a href="#parse">parse</a></td>
<td>breaks a string along around patterns</td>
</tr>
<tr>
<td><a href="#ref">ref</a></td>
<td>returns the position of an element inside a nested list</td>
</tr>
<tr>
<td><a href="#ref-all">ref-all</a></td>
<td>returns a list of index vectors of elements inside a nested list</td>
</tr>
<tr>
<td><a href="#regex">regex</a></td>
<td>finds patterns in a string</td>
</tr>
<tr>
<td><a href="#replace">replace</a></td>
<td>replaces patterns in a string</td>
</tr>
<tr>
<td><a href="#search">search</a></td>
<td>searches for a pattern in a file</td>
</tr>
<tr>
<td><a href="#starts-with">starts-with</a></td>
<td>tests if a list or string starts with a pattern</td>
</tr>
<tr>
<td><a href="#unify">unify</a></td>
<td>performs a logical unification of patterns</td>
</tr>
</table><br/>
<a name="financial"></a>
<h3>Financial math functions</h3>
<table border="0" cellpadding="1" width="95%" align="center" summary="Financial math functions">
<tr>
<td WIDTH="16%"><a href="#fv">fv</a></td>
<td WIDTH="84%">returns the future value of an investment</td>
</tr>
<tr>
<td><a href="#irr">irr</a></td>
<td>calculates the internal rate of return</td>
</tr>
<tr>
<td><a href="#nper">nper</a></td>
<td>calculates the number of periods for an investment</td>
</tr>
<tr>
<td><a href="#npv">npv</a></td>
<td>calculates the net present value of an investment</td>
</tr>
<tr>
<td><a href="#pv">pv</a></td>
<td>calculates the present value of an investment</td>
</tr>
<tr>
<td><a href="#pmt">pmt</a></td>
<td>calculates the payment for a loan</td>
</tr>
</table><br/>
<a name="input_output"></a>
<h3>Input/output and file operations</h3>
<table border="0" cellpadding="1" width="95%" align="center" summary="Input/output and file operations">
<tr>
<td WIDTH="16%"><a href="#append-file">append-file</a></td>
<td WIDTH="84%">appends data to a file</td>
</tr>
<tr>
<td><a href="#close">close</a></td>
<td>closes a file</td>
</tr>
<tr>
<td><a href="#current-line">current-line</a></td>
<td>retrieves contents of last read-line buffer</td>
</tr>
<tr>
<td><a href="#device">device</a></td>
<td>sets or inquires about current print device</td>
</tr>
<tr>
<td><a href="#exec">exec</a></td>
<td>launches another program, then reads from or writes to it</td>
</tr>
<tr>
<td><a href="#load">load</a></td>
<td>loads and evaluates a file of newLISP code</td>
</tr>
<tr>
<td><a href="#open">open</a></td>
<td>opens a file for reading or writing</td>
</tr>
<tr>
<td><a href="#peek">peek</a></td>
<td>checks file descriptor for number of bytes ready for reading</td>
</tr>
<tr>
<td><a href="#print">print</a></td>
<td>prints to the console or a device</td>
</tr>
<tr>
<td><a href="#println">println</a></td>
<td>prints to the console or a device with a line-feed</td>
</tr>
<tr>
<td><a href="#read">read</a></td>
<td>reads binary data from a file</td>
</tr>
<tr>
<td><a href="#read-char">read-char</a></td>
<td>reads an 8-bit character from a file</td>
</tr>
<tr>
<td><a href="#read-file">read-file</a></td>
<td>reads a whole file in one operation</td>
</tr>
<tr>
<td><a href="#read-key">read-key</a></td>
<td>reads a keyboard key</td>
</tr>
<tr>
<td><a href="#read-line">read-line</a></td>
<td>reads a line from the console or file</td>
</tr>
<tr>
<td><a href="#read-utf8">read-utf8</a></td>
<td>reads UTF-8 character from a file</td>
</tr>
<tr>
<td><a href="#save">save</a></td>
<td>saves a workspace, context, or symbol to a file</td>
</tr>
<tr>
<td><a href="#search">search</a></td>
<td>searches a file for a string</td>
</tr>
<tr>
<td><a href="#seek">seek</a></td>
<td>sets or reads a file position</td>
</tr>
<tr>
<td><a href="#write">write</a></td>
<td>writes binary data to a file or string</td>
</tr>
<tr>
<td><a href="#write-char">write-char</a></td>
<td>writes a character to a file</td>
</tr>
<tr>
<td><a href="#write-file">write-file</a></td>
<td>writes a file in one operation</td>
</tr>
<tr>
<td><a href="#write-line">write-line</a></td>
<td>writes a line to the console or a file</td>
</tr>
</table><br/>
<a name="processes"></a>
<h3>Processes and the Cilk API</h3>
<table border="0" cellpadding="1" width="95%" align="center" summary="Processes and the Cilk API">
<tr>
<td WIDTH="16%"><a href="#shell">!</a></td>
<td WIDTH="84%">shells out to the operating system</td>
</tr>
<tr>
<td><a href="#abort">abort</a></td>
<td>aborts a child process started with <tt>spawn</tt></td>
</tr>
<tr>
<td><a href="#destroy">destroy</a></td>
<td>destroys a process created with <tt>fork</tt> or <tt>process</tt></td>
</tr>
<tr>
<td><a href="#exec">exec</a></td>
<td>runs a process, then reads from or writes to it</td>
</tr>
<tr>
<td><a href="#fork">fork</a></td>
<td>launches a newLISP child process</td>
</tr>
<tr>
<td><a href="#pipe">pipe</a></td>
<td>creates a pipe for interprocess communication</td>
</tr>
<tr>
<td><a href="#process">process</a></td>
<td>launches a child process, remapping standard I/O and standard error</td>
</tr>
<tr>
<td><a href="#receive">receive</a></td>
<td>receive a message from another process</td>
</tr>
<tr>
<td><a href="#semaphore">semaphore</a></td>
<td>creates and controls semaphores</td>
</tr>
<tr>
<td><a href="#send">send</a></td>
<td>send a message to another process</td>
</tr>
<tr>
<td><a href="#share">share</a></td>
<td>shares memory with other processes</td>
</tr>
<tr>
<td><a href="#spawn">spawn</a></td>
<td>launches a child process for Cilk process management</td>
</tr>
<tr>
<td><a href="#sync">sync</a></td>
<td>waits for child processes launched with <tt>spawn</tt> and collects results</td>
</tr>
<tr>
<td><a href="#wait-pid">wait-pid</a></td>
<td>waits for a child process to end</td>
</tr>
</table><br/>
<a name="directory_management"></a>
<h3>File and directory management</h3>
<table border="0" cellpadding="1" width="95%" align="center" summary="File and directory management">
<tr>
<td WIDTH="16%"><a href="#change-dir">change-dir</a> </td>
<td WIDTH="84%">changes to a different drive and directory</td>
</tr>
<tr>
<td><a href="#copy-file">copy-file</a></td>
<td>copies a file</td>
</tr>
<tr>
<td><a href="#delete-file">delete-file</a></td>
<td>deletes a file</td>
</tr>
<tr>
<td><a href="#directory">directory</a></td>
<td>returns a list of directory entries</td>
</tr>
<tr>
<td><a href="#file-info">file-info</a></td>
<td>gets file size, date, time, and attributes</td>
</tr>
<tr>
<td><a href="#make-dir">make-dir</a></td>
<td>makes a new directory</td>
</tr>
<tr>
<td><a href="#real-path">real-path</a></td>
<td>returns the full path of the relative file path</td>
</tr>
<tr>
<td><a href="#remove-dir">remove-dir</a></td>
<td>removes an empty directory</td>
</tr>
<tr>
<td><a href="#rename-file">rename-file</a></td>
<td>renames a file or directory</td>
</tr>
</table><br/>
<a name="http_api"></a>
<h3>HTTP networking API</h3>
<table border="0" cellpadding="1" width="95%" align="center" summary="HTTP networking API">
<tr>
<td width="16%"><a href="#base64-enc">base64-enc</a></td>
<td width="84%">encodes a string into BASE64 format</td>
</tr>
<tr>
<td><a href="#base64-dec">base64-dec</a></td>
<td>decodes a string from BASE64 format</td>
</tr>
<tr>
<td><a href="#delete-url">delete-url</a></td>
<td>deletes a file or page from the web</td>
</tr>
<tr>
<td><a href="#get-url">get-url</a></td>
<td>reads a file or page from the web</td>
</tr>
<tr>
<td><a href="#json-error">json-error</a></td>
<td>returns error information from a failed JSON translation.</td>
</tr>
<tr>
<td><a href="#json-parse">json-parse</a></td>
<td>parses JSON formatted data</td>
</tr>
<tr>
<td><a href="#post-url">post-url</a></td>
<td>posts info to a URL address</td>
</tr>
<tr>
<td><a href="#put-url">put-url</a></td>
<td>uploads a page to a URL address</td>
</tr>
<tr>
<td><a href="#xfer-event">xfer-event</a></td>
<td>registers an event handler for HTTP byte transfers</td>
</tr>
<tr>
<td><a href="#xml-error">xml-error</a></td>
<td>returns last XML parse error</td>
</tr>
<tr>
<td><a href="#xml-parse">xml-parse</a></td>
<td>parses an XML document</td>
</tr>
<tr>
<td><a href="#xml-type-tags">xml-type-tags</a> </td>
<td>shows or modifies XML type tags</td>
</tr>
</table><br/>
<a name="socket_tcpip"></a>
<h3>Socket TCP/IP, UDP and ICMP network API</h3>
<table border="0" cellpadding="1" width="95%" align="center" summary="Socket TCP/IP and UDP network API">
<tr>
<td WIDTH="16%"><a href="#net-accept">net-accept</a></td>
<td WIDTH="84%">accepts a new incoming connection</td>
</tr>
<tr>
<td><a href="#net-close">net-close</a></td>
<td>closes a socket connection</td>
</tr>
<tr>
<td><a href="#net-connect">net-connect</a></td>
<td>connects to a remote host</td>
</tr>
<tr>
<td><a href="#net-error">net-error</a></td>
<td>returns the last error</td>
</tr>
<tr>
<td><a href="#net-eval">net-eval</a></td>
<td>evaluates expressions on multiple remote newLISP servers</td>
</tr>
<tr>
<td><a href="#net-interface">net-interface</a></td>
<td>Sets the default interface IP address on multihomed computers.</td>
</tr>
<tr>
<td><a href="#net-ipv">net-ipv</a></td>
<td>Switches between IPv4 and IPv6 internet protocol versions.</td>
</tr>
<tr>
<td><a href="#net-listen">net-listen</a></td>
<td>listens for connections to a local socket</td>
</tr>
<tr>
<td><a href="#net-local">net-local</a></td>
<td>returns the local IP and port number for a connection</td>
</tr>
<tr>
<td><a href="#net-lookup">net-lookup</a></td>
<td>returns the name for an IP number</td>
</tr>
<tr>
<td><a href="#net-packet">net-packet</a></td>
<td>send a custom configured IP packet over raw sockets</td>
</tr>
<tr>
<td><a href="#net-peek">net-peek</a></td>
<td>returns the number of characters ready to be read from a network socket</td>
</tr>
<tr>
<td><a href="#net-peer">net-peer</a></td>
<td>returns the remote IP and port for a net connect</td>
</tr>
<tr>
<td><a href="#net-ping">net-ping</a></td>
<td>sends a ping packet (ICMP echo request) to one or more addresses</td>
</tr>
<tr>
<td><a href="#net-receive">net-receive</a></td>
<td>reads data on a socket connection</td>
</tr>
<tr>
<td><a href="#net-receive-from">net-receive-from</a> </td>
<td>reads a UDP on an open connection</td>
</tr>
<tr>
<td><a href="#net-receive-udp">net-receive-udp</a></td>
<td>reads a UDP and closes the connection</td>
</tr>
<tr>
<td><a href="#net-select">net-select</a></td>
<td>checks a socket or list of sockets for status</td>
</tr>
<tr>
<td><a href="#net-send">net-send</a></td>
<td>sends data on a socket connection</td>
</tr>
<tr>
<td><a href="#net-send-to">net-send-to</a></td>
<td>sends a UDP on an open connection</td>
</tr>
<tr>
<td><a href="#net-send-udp">net-send-udp</a></td>
<td>sends a UDP and closes the connection</td>
</tr>
<tr>
<td><a href="#net-service">net-service</a></td>
<td>translates a service name into a port number</td>
</tr>
<tr>
<td><a href="#net-sessions">net-sessions</a></td>
<td>returns a list of currently open connections </td>
</tr>
</table><br/>
<a name="JS"></a>
<h3>API for newLISP in a web browser</h3>
<table border="0" cellpadding="1" width="95%" align="center" summary="API for newLISP in a web browser">
<tr>
<td width="16%"><a href="#display-html">display-html</a></td>
<td width="84%">display an HTML page in a web browser</td>
</tr>
<tr>
<td><a href="#eval-string-js">eval-string-js</a></td>
<td>evaluate JavaScript in the current web browser page</td>
</tr>
</table><br/>
<a name="reflection"></a>
<h3>Reflection and customization</h3>
<table border="0" cellpadding="1" width="95%" align="center" summary="Reflection and customization">
<tr>
<td width="16%"><a href="#command-event">command-event</a></td>
<td width="84%">pre-processes the command-line and HTTP requests</td>
</tr>
<tr>
<td><a href="#error-event">error-event</a></td>
<td>defines an error handler</td>
</tr>
<tr>
<td><a href="#history">history</a></td>
<td>returns the call history of a function</td>
</tr>
<tr>
<td><a href="#last-error">last-error</a></td>
<td>report the last error number and text</td>
</tr>
<tr>
<td><a href="#macro">macro</a></td>
<td>create a reader expansion macro</td>
</tr>
<tr>
<td><a href="#ostype">ostype</a></td>
<td>contains a string describing the OS platform</td>
</tr>
<tr>
<td><a href="#prefix">prefix</a></td>
<td>Returns the context prefix of a symbol</td>
</tr>
<tr>
<td><a href="#prompt-event">prompt-event</a></td>
<td>customizes the interactive newLISP shell prompt</td>
</tr>
<tr>
<td><a href="#read-expr">read-expr</a></td>
<td>reads and translates s-expressions from source</td>
</tr>
<tr>
<td><a href="#reader-event">reader-event</a></td>
<td>preprocess expressions before evaluation event-driven</td>
</tr>
<tr>
<td><a href="#set-locale">set-locale</a></td>
<td>switches to a different locale</td>
</tr>
<tr>
<td><a href="#source">source</a></td>
<td>returns the source required to bind a symbol to a string</td>
</tr>
<tr>
<td><a href="#sys-error">sys-error</a></td>
<td>reports OS system error numbers</td>
</tr>
<tr>
<td><a href="#sys-info">sys-info</a></td>
<td>gives information about system resources</td>
</tr>
<tr>
<td><a href="#term">term</a></td>
<td>returns the term part of a symbol or its context as a string</td>
</tr>
</table><br/>
<a name="system_functions"></a>
<h3>System functions</h3>
<table border="0" cellpadding="1" width="95%" align="center" summary="System functions">
<tr>
<td width="16%"><a href="#systemsymbol">$</a></td>
<td width="84%">accesses system variables $0 -> $15</td>
</tr>
<tr>
<td><a href="#callback">callback</a></td>
<td>registers a callback function for an imported library</td>
</tr>
<tr>
<td><a href="#catch">catch</a></td>
<td>evaluates an expression, catching errors and early returns</td>
</tr>
<tr>
<td><a href="#context">context</a></td>
<td>creates or switches to a different namespace</td>
</tr>
<tr>
<td><a href="#copy">copy</a></td>
<td>copies the result of an evaluation</td>
</tr>
<tr>
<td><a href="#debug">debug</a></td>
<td>debugs a user-defined function</td>
</tr>
<tr>
<td><a href="#delete">delete</a></td>
<td>deletes symbols from the symbol table</td>
</tr>
<tr>
<td><a href="#default">default</a></td>
<td>returns the contents of a default functor from a context</td>
</tr>
<tr>
<td><a href="#env">env</a></td>
<td>gets or sets the operating system's environment</td>
</tr>
<tr>
<td><a href="#exit">exit</a></td>
<td>exits newLISP, setting the exit value</td>
</tr>
<tr>
<td><a href="#global">global</a></td>
<td>makes a symbol accessible outside MAIN</td>
</tr>
<tr>
<td><a href="#import">import</a></td>
<td>imports a function from a shared library</td>
</tr>
<tr>
<td><a href="#main-args">main-args</a></td>
<td>gets command-line arguments</td>
</tr>
<tr>
<td><a href="#new">new</a></td>
<td>creates a copy of a context</td>
</tr>
<tr>
<td><a href="#pretty-print">pretty-print</a></td>
<td>changes the pretty-printing characteristics</td>
</tr>
<tr>
<td><a href="#read-expr">read-expr</a></td>
<td>translates a string to an s-expression without evaluating it</td>
</tr>
<tr>
<td><a href="#reset">reset</a></td>
<td>goes to the top level</td>
</tr>
<tr>
<td><a href="#signal">signal</a></td>
<td>sets a signal handler</td>
</tr>
<tr>
<td><a href="#sleep">sleep</a></td>
<td>suspends processing for specified milliseconds</td>
</tr>
<tr>
<td><a href="#sym">sym</a></td>
<td>creates a symbol from a string</td>
</tr>
<tr>
<td><a href="#symbols">symbols</a></td>
<td>returns a list of all symbols in the system</td>
</tr>
<tr>
<td><a href="#throw">throw</a></td>
<td>causes a previous <a href="#catch">catch</a> to return</td>
</tr>
<tr>
<td><a href="#throw-error">throw-error</a></td>
<td>throws a user-defined error</td>
</tr>
<tr>
<td><a href="#timer">timer</a></td>
<td>starts a one-shot timer, firing an event</td>
</tr>
<tr>
<td><a href="#trace">trace</a></td>
<td>sets or inquires about trace mode</td>
</tr>
<tr>
<td><a href="#trace-highlight">trace-highlight</a></td>
<td>sets highlighting strings in trace mode</td>
</tr>
</table><br/>
<a name="importing_libraries"></a>
<h3>Importing libraries</h3>
<table border="0" cellpadding="1" width="95%" align="center" summary="Importing libraries<">
<tr>
<td WIDTH="16%"><a href="#address">address</a></td>
<td WIDTH="84%">returns the memory address of a number or string</td>
</tr>
<tr>
<td><a href="#callback">callback</a></td>
<td>registers a callback function for an imported library</td>
</tr>
<tr>
<td><a href="#flt">flt</a></td>
<td>converts a number to a 32-bit integer representing a float</td>
</tr>
<tr>
<td><a href="#float">float</a></td>
<td>translates a string or integer into a floating point number</td>
</tr>
<tr>
<td><a href="#get-char">get-char</a></td>
<td>gets a character from a memory address</td>
</tr>
<tr>
<td><a href="#get-float">get-float</a></td>
<td>gets a double float from a memory address</td>
</tr>
<tr>
<td><a href="#get-int">get-int</a> </td>
<td>gets a 32-bit integer from a memory address</td>
</tr>
<tr>
<td><a href="#get-long">get-long</a> </td>
<td>gets a long 64-bit integer from a memory address</td>
</tr>
<tr>
<td><a href="#get-string">get-string</a></td>
<td>gets a string from a memory address</td>
</tr>
<tr>
<td><a href="#import">import</a></td>
<td>imports a function from a shared library</td>
</tr>
<tr>
<td><a href="#int">int</a></td>
<td>translates a string or float into an integer</td>
</tr>
<tr>
<td><a href="#pack">pack</a></td>
<td>packs newLISP expressions into a binary structure</td>
</tr>
<tr>
<td><a href="#struct">struct</a></td>
<td>Defines a data structure with C types</td>
</tr>
<tr>
<td><a href="#unpack">unpack</a></td>
<td>unpacks a binary structure into newLISP expressions</td>
</tr>
</table><br/>
<a name="internals"></a>
<h3>newLISP internals API</h3>
<table border="0" cellpadding="1" width="95%" align="center" summary="newLISP internals API">
<tr>
<td width="16%"><a href="#command-event">command-event</a></td>
<td width="84%">pre-processes the command-line and HTTP requests</td>
</tr>
<tr>
<td><a href="#cpymem">cpymem</a></td>
<td>copies memory between addresses</td>
</tr>
<tr>
<td><a href="#dump">dump</a></td>
<td>shows memory address and contents of newLISP cells</td>
</tr>
<tr>
<td><a href="#prompt-event">prompt-event</a></td>
<td>customizes the interactive newLISP shell prompt</td>
</tr>
<tr>
<td><a href="#read-expr">read-expr</a></td>
<td>reads and translates s-expressions from source</td>
</tr>
<tr>
<td><a href="#reader-event">reader-event</a></td>
<td>preprocess expressions before evaluation event-driven</td>
</tr>
</table><br/>
<br/>
<center>
<span class="divider">( <font color="#7ba9d4">§</font> )</span>
</center>
<br/>
<a name="functions_alphabetical"></a>
<h2>4. Functions in alphabetical order</h2>
<br/>
<a name="shell"></a>
<h2><span class="function">!</span></h2>
<h4>syntax: (! <em>str-shell-command</em> [<em>int-flags</em>])</h4>
<p>Executes the command in <em>str-command</em> by shelling out to the
operating system and executing. This function returns a different value
depending on the host operating system.</p>
<!-- example -->
<pre>
(! "vi")
(! "ls -ltr")
</pre>
<p>Use the <a href="#exec">exec</a> function to execute a shell command
and capture the standard output or to feed standard input.
The <a href="#process">process</a> function may be used to launch a
non-blocking child process and redirect std I/O and std error to pipes.</p>
<p>On Ms Windows the optional <em>int-flags</em> parameter takes process
creation flags as defined for the Windows <tt>CreateProcessA</tt> function
to control various parameters of process creation. The inclusion of this
parameter – which also can be <tt>0</tt> – forces a different
creation of the process without a command shell window. This parameter is
ignored on Unix.</p>
<pre>
; on MS Windows
; close the console of the currently running newLISP process
(apply (import "kernel32" "FreeConsole"))
; start another process and wait for it to finish
(! "notepad.exe" 0)
(exit)
</pre>
<p>Without the additional parameter, the <tt>!</tt> call would create a
new command window replacing the closed one.</p>
<p>Note that <tt>!</tt> (exclamation mark) can be also be used as
a command-line shell operator by omitting the parenthesis and space
after the <tt>!</tt>:</p>
<!-- example -->
<pre>
<b>></b> !ls -ltr ; executed in the newLISP shell window
</pre>
<p>
Used in this way,
the <tt>!</tt> operator
is not a newLISP function at all,
but rather a special feature of
the newLISP command shell.
The <tt>!</tt> must be entered
as the first character
on the command-line.
</p>
<br/><br/>
<a name="systemsymbol"></a>
<h2><span class="function">$</span></h2>
<h4>syntax: ($ <em>int-idx</em>)</h4>
<p>
The functions that use regular expressions (<a href="#directory">directory</a>,
<a href="#ends-with">ends-with</a>, <a href="#find">find</a>, <a href="#find-all">find-all</a>,
<a href="#parse">parse</a>, <a href="#regex">regex</a>, <a href="#search">search</a>,
<a href="#starts-with">starts-with</a> and <a href="#replace">replace</a>)
all bind their results to the predefined system variables <tt>$0</tt>, <tt>$1</tt>,
<tt>$2</tt>–<tt>$15</tt> after or during the function's execution. System variables
can be treated the same as any other symbol. As an alternative, the contents of these
variables may also be accessed by using <tt>($ 0)</tt>, <tt>($ 1)</tt>, <tt>($ 2)</tt>,
etc. This method allows indexed access (i.e., <tt>($ i)</tt>, where <tt>i</tt> is an integer).</p>
<!-- example -->
<pre>
(set 'str "http://newlisp.org:80")
(find "http://(.*):(.*)" str 0) <span class='arw'>→</span> 0
$0 <span class='arw'>→</span> "http://newlisp.org:80"
$1 <span class='arw'>→</span> "newlisp.org"
$2 <span class='arw'>→</span> "80"
($ 0) <span class='arw'>→</span> "http://newlisp.org:80"
($ 1) <span class='arw'>→</span> "newlisp.org"
($ 2) <span class='arw'>→</span> "80"
</pre>
<br/><br/>
<a name="arithmetic"></a>
<h2><span class="function">+, -, *, / ,%</span>
<a href="#big_int"><font size="-1">bigint</font></a></h2>
<h4>syntax: (+ <em>int-1</em> [<em>int-2</em> ... ])</h4>
<p>Returns the sum of all numbers in <em>int-1</em> —.</p>
<h4>syntax: (- <em>int-1</em> [<em>int-2</em> ... ])</h4>
<p>Subtracts <em>int-2</em> from <em>int-1</em>, then the next <em>int-i</em>
from the previous result. If only one argument is given,
its sign is reversed. </p>
<h4>syntax: (* <em>int-1</em> [<em>int-2</em> ... ])</h4>
<p>The product is calculated for <em>int-1</em> to <em>int-i</em>.</p>
<h4>syntax: (/ <em>int-1</em> [<em>int-2</em> ... ])</h4>
<p>Each result is divided successively until the end of the list is reached.
Division by zero causes an error.</p>
<h4>syntax: (% <em>int-1</em> [<em>int-2</em> ... ])</h4>
<p>Each result is divided successively by the next <em>int</em>,
then the rest (modulo operation) is returned. Division by zero causes an error.
For floating point numbers, use the <a href="#mod">mod</a> function.</p>
<!-- example -->
<pre>
(+ 1 2 3 4 5) <span class='arw'>→</span> 15
(+ 1 2 (- 5 2) 8) <span class='arw'>→</span> 14
(- 10 3 2 1) <span class='arw'>→</span> 4
(- (* 3 4) 6 1 2) <span class='arw'>→</span> 3
(- 123) <span class='arw'>→</span> -123
(map - '(10 20 30)) <span class='arw'>→</span> (-10 -20 -30)
(* 1 2 3) <span class='arw'>→</span> 6
(* 10 (- 8 2)) <span class='arw'>→</span> 60
(/ 12 3) <span class='arw'>→</span> 4
(/ 120 3 20 2) <span class='arw'>→</span> 1
(% 10 3) <span class='arw'>→</span> 1
(% -10 3) <span class='arw'>→</span> -1
(+ 1.2 3.9) <span class='arw'>→</span> 4
</pre>
<p>Floating point values in arguments to
<tt>+</tt>, <tt>-</tt>, <tt>*</tt>, <tt>/</tt>, and <tt>%</tt>
are truncated to the integer value closest to <tt>0</tt> (zero).
</p>
<p>
Floating point values larger or smaller than
the maximum (<tt>9,223,372,036,854,775,807</tt>)
or minimum (<tt>-9,223,372,036,854,775,808</tt>) integer values
are truncated to those values. This includes the values for
<tt>+Inf</tt> and <tt>-Inf</tt>.
</p>
<p>
Calculations resulting in values
larger than <tt>9,223,372,036,854,775,807</tt>
or smaller than <tt>-9,223,372,036,854,775,808</tt>
wrap around from positive to negative
or negative to positive.
</p>
<p>
Floating point values that evaluate to <tt>NaN</tt> (Not a Number),
ar treated as <tt>0</tt> (zero).
</p>
<br/><br/>
<a name="inci"></a>
<h2><span class="function">++</span> <a href="#destructive">!</a>
<a href="#big_int"><font size="-1">bigint</font></a></h2>
<h4>syntax: (++ <em>place</em> [<em>num</em> ... ])</h4>
<p>The <tt>++</tt> operator works like <a href="#inc">inc</a>, but performs
integer arithmetic. Without the optional argument in <em>num</em>,
<tt>++</tt> increments the number in <em>place</em> by <tt>1</tt>.</p>
<p>If floating point numbers are passed as arguments, their fractional part
gets truncated first.</p>
<p>Calculations resulting in numbers greater than 9,223,372,036,854,775,807 wrap
around to negative numbers. Results smaller than -9,223,372,036,854,775,808
wrap around to positive numbers.</p>
<p><em>place</em> is either a symbol or a place in a list structure holding a
number, or a number returned by an expression.</p>
<!-- example -->
<pre>
(set 'x 1)
(++ x) <span class='arw'>→</span> 2
(set 'x 3.8)
(++ x) <span class='arw'>→</span> 4
(++ x 1.3) <span class='arw'>→</span> 5
(set 'lst '(1 2 3))
(++ (lst 1) 2)) <span class='arw'>→</span> 4
lst <span class='arw'>→</span> (1 4 3)
</pre>
<p>If the symbol for <em>place</em> contains <tt>nil</tt>, it is treated
as if containing <tt>0</tt>.</p>
<p>See <a href="#deci">--</a> for decrementing numbers in integer mode.
See <a href="#inc">inc</a> for incrementing numbers in floating point mode.</p>
<br/><br/>
<a name="deci"></a>
<h2><span class="function">--</span> <a href="#destructive">!</a>
<a href="#big_int"><font size="-1">bigint</font></a></h2>
<h4>syntax: (-- <em>place</em> [<em>num</em> ... ])</h4>
<p>The <tt>--</tt> operator works like <a href="#inc">dec</a>, but performs
integer arithmetic. Without the optional argument in <em>num-2</em>,
<tt>--</tt> decrements the number in <em>place</em> by <tt>1</tt>.</p>
<p>If floating point numbers are passed as arguments, their fractional part
gets truncated first.</p>
<p>Calculations resulting in numbers greater than 9,223,372,036,854,775,807 wrap
around to negative numbers. Results smaller than -9,223,372,036,854,775,808
wrap around to positive numbers.</p>
<p><em>place</em> is either a symbol or a place in a list structure holding a
number, or a number returned by an expression.</p>
<!-- example -->
<pre>
(set 'x 1)
(-- x) <span class='arw'>→</span> 0
(set 'x 3.8)
(-- x) <span class='arw'>→</span> 2
(-- x 1.3) <span class='arw'>→</span> 1
(set 'lst '(1 2 3))
(-- (lst 1) 2)) <span class='arw'>→</span> 0
lst <span class='arw'>→</span> (1 0 3)
</pre>
<p>If the symbol for <em>place</em> contains <tt>nil</tt>, it is treated
as if containing <tt>0</tt>.</p>
<p>See <a href="#inci">++</a> for incrementing numbers in integer mode.
See <a href="#dec">dec</a> for decrementing numbers in floating point mode.</p>
<br/><br/>
<a name="logical"></a>
<h2><span class="function"><, >, =, <=, >=, !=</span>
<a href="#big_int"><font size="-1">bigint</font></a></h2>
<h4>syntax: (< <em>exp-1</em> [<em>exp-2</em> ... ])<br/>
syntax: (> <em>exp-1</em> [<em>exp-2</em> ... ])<br/>
syntax: (= <em>exp-1</em> [<em>exp-2</em> ... ])<br/>
syntax: (<= <em>exp-1</em> [<em>exp-2</em> ... ])<br/>
syntax: (>= <em>exp-1</em> [<em>exp-2</em> ... ])<br/>
syntax: (!= <em>exp-1</em> [<em>exp-2</em> ... ])</h4>
<p>
Expressions are evaluated and the results are compared successively.
As long as the comparisons conform to the comparison operators,
evaluation and comparison will continue until all arguments are tested
and the result is <tt>true</tt>. As soon as one comparison fails,
<tt>nil</tt> is returned.
</p>
<p>If only one argument is supplied, all comparison operators assume <tt>0</tt> (zero)
as a second argument. This can be used to check if a number is negative, positive, zero
or not zero.</p>
<p>
All types of expressions can be compared:
atoms, numbers, symbols, and strings.
List expressions can also be compared
(list elements are compared recursively).
</p>
<p>
When comparing lists,
elements at the beginning of the list
are considered more significant than the elements following
(similar to characters in a string).
When comparing lists of different lengths but equal elements,
the longer list is considered greater (see examples).
</p>
<p>
In mixed-type expressions,
the types are compared from lowest to highest.
Floats and integers are compared by first
converting them to the needed type,
then comparing them as numbers.
</p>
<blockquote>
<b>Atoms:</b> nil, true, integer or float, string, symbol, primitive<br/>
<b>Lists:</b> quoted list/expression, list/expression, lambda, lambda-macro
</blockquote>
<!-- example -->
<pre>
(< 3 5 8 9) <span class='arw'>→</span> true
(> 4 2 3 6) <span class='arw'>→</span> nil
(< "a" "c" "d") <span class='arw'>→</span> true
(>= duba aba) <span class='arw'>→</span> true
(< '(3 4) '(1 5)) <span class='arw'>→</span> nil
(> '(1 2 3) '(1 2)) <span class='arw'>→</span> true
(= '(5 7 8) '(5 7 8)) <span class='arw'>→</span> true
(!= 1 4 3 7 3) <span class='arw'>→</span> true
(< 1.2 6 "Hello" 'any '(1 2 3)) <span class='arw'>→</span> true
(< nil true) <span class='arw'>→</span> true
(< '(((a b))) '(((b c)))) <span class='arw'>→</span> true
(< '((a (b c)) '(a (b d)) '(a (b (d))))) <span class='arw'>→</span> true
; with single argument compares against 0
(> 1) <span class='arw'>→</span> true ; checks for positive
(> -1) <span class='arw'>→</span> nil ; checks for negative
(= 123) <span class='arw'>→</span> nil ; checks for zero
(map > '(1 3 -4 -3 1 2)) <span class='arw'>→</span> (true true nil nil true true)
</pre>
<br/><br/>
<a name="bit_shift"></a>
<h2><span class="function"><<, >></span></h2>
<h4>syntax: (<< <em>int-1</em> <em>int-2</em> [<em>int-3</em> ... ])<br/>
syntax: (>> <em>int-1</em> <em>int-2</em> [<em>int-3</em> ... ])<br/>
syntax: (<< <em>int-1</em>)<br/>
syntax: (>> <em>int-1</em>)</h4>
<p>
The number <em>int-1</em> is arithmetically shifted
to the left or right by the number of bits given as <em>int-2</em>,
then shifted by <em>int-3</em> and so on.
For example, 64-bit integers may be shifted up to 63 positions.
When shifting right,
the most significant bit is duplicated
(<em>arithmetic shift</em>):
</p>
<pre>
(>> 0x8000000000000000 1) <span class='arw'>→</span> 0xC000000000000000 ; not 0x0400000000000000!
</pre>
<br/>
<!-- example -->
<pre>
(<< 1 3) <span class='arw'>→</span> 8
(<< 1 2 1) <span class='arw'>→</span> 8
(>> 1024 10) <span class='arw'>→</span> 1
(>> 160 2 2) <span class='arw'>→</span> 10
(<< 3) <span class='arw'>→</span> 6
(>> 8) <span class='arw'>→</span> 4
</pre>
<p>When <em>int-1</em> is the only argument <tt><<</tt>
and <tt>>></tt> shift by one bit.
</p>
<br/><br/>
<a name="bit_and"></a>
<h2><span class="function">&</span></h2>
<h4>syntax: (& <em>int-1</em> <em>int-2</em> [<em>int-3</em> ... ])</h4>
<p>
A bitwise <tt>and</tt> operation is performed
on the number in <em>int-1</em> with the number in <em>int-2</em>,
then successively with <em>int-3</em>, etc.
</p>
<!-- example -->
<pre>
(& 0xAABB 0x000F) <span class='arw'>→</span> 11 ; which is 0xB
</pre>
<br/><br/>
<a name="bit_inclusive"></a>
<h2><span class="function">|</span></h2>
<h4>syntax: (| <em>int-1</em> <em>int-2</em> [<em>int-3</em> ... ])</h4>
<p>
A bitwise <tt>or</tt> operation is performed
on the number in <em>int-1</em> with the number in <em>int-2</em>,
then successively with <em>int-3</em>, etc.
</p>
<!-- example -->
<pre>
(| 0x10 0x80 2 1) <span class='arw'>→</span> 147
</pre>
<br/><br/>
<a name="bit_exclusive"></a>
<h2><span class="function">^</span></h2>
<h4>syntax: (^ <em>int-1</em> <em>int-2</em> [<em>int-3</em> ... ])</h4>
<p>
A bitwise <tt>xor</tt> operation is performed
on the number in <em>int-1</em> with the number in <em>int-2</em>,
then successively with <em>int-3</em>, etc.
</p>
<!-- example -->
<pre>
(^ 0xAA 0x55) <span class='arw'>→</span> 255
</pre>
<br/><br/>
<a name="bit_not"></a>
<h2><span class="function">~</span></h2>
<h4>syntax: (~ <em>int</em>)</h4>
<p>
A bitwise <tt>not</tt> operation is performed
on the number in <em>int</em>,
reversing all of the bits.
</p>
<!-- example -->
<pre>
(format "%X" (~ 0xFFFFFFAA)) <span class='arw'>→</span> "55"
(~ 0xFFFFFFFF) <span class='arw'>→</span> 0
</pre>
<br/><br/>
<a name="colon"></a>
<h2><span class="function">:</span></h2>
<h4>syntax: (: <em>sym-function</em> <em>list-object</em> [ ... ])</h4>
<p>The colon is used not only as a syntactic separator between
namespace prefix and the term inside but also as an operator.
When used as an operator, the colon <tt>:</tt> constructs a
context symbol from the context name in the object list and the
symbol following the colon. The object list in <em>list-object</em>
can be followed by other parameters.</p>
<p>The <tt>:</tt> operator implements <em>polymorphism</em> of
object methods, which are part of different object classes
represented by contexts (namespaces). In newLISP, an object is
represented by a list, the first element of which is the
symbol (name) of its class context.
The class context implements the functions applicable to the object.
No space is required between the colon and the symbol following it.</p>
<!-- example -->
<pre>
(define (Rectangle:area)
(mul (self 3) (self 4)))
(define (Circle:area)
(mul (pow (self 3) 2) (acos 0) 2))
(define (Rectangle:move dx dy)
(inc (self 1) dx)
(inc (self 2) dy))
(define (Circle:move p dx dy)
(inc (self 1) dx) (inc (self 2) dy))
(set 'myrect '(Rectangle 5 5 10 20)) ; x y width height
(set 'mycircle '(Circle 1 2 10)) ; x y radius
;; using the : (colon) operator to resolve to a specific context
(:area myrect) <span class='arw'>→</span> 200
(:area mycircle) <span class='arw'>→</span> 314.1592654
;; map class methods uses curry to enclose the colon operator and class function
(map (curry :area) (list myrect mycircle)) <span class='arw'>→</span> (200 314.1592654)
(map (curry :area) '((Rectangle 5 5 10 20) (Circle 1 2 10))) <span class='arw'>→</span> (200 314.1592654)
;; change object attributes using a function and re-assigning
;; to the objects name
(:move myrect 2 3)
myrect <span class='arw'>→</span> (Rectangle 7 8 10 20)
(:move mycircle 4 5)
mycircle <span class='arw'>→</span> (Circle 5 7 10)
</pre>
<p>Inside the FOOP methods the <a href="#self">self</a> function is used to access
the target object of the method.</p>
<br/><br/>
<a name="abort"></a>
<h2><span class="function">abort</span></h2>
<h4>syntax: (abort <em>int-pid</em>)<br/>
syntax: (abort)</h4>
<p>In the first form, <tt>abort</tt> aborts a specific child process of the
current parent process giving the process id in <em>int-pid</em>. The process
must have been started using <a href="#spawn">spawn</a>. For processes
started using <a href="#fork">fork</a>, use <a href="#destroy">destroy</a>
instead.</p>
<p>The function <tt>abort</tt> is not available on Windows.</p>
<!-- example -->
<pre>
(abort 2245) <span class='arw'>→</span> true
</pre>
<p>To abort all child processes spawned from the current process use <tt>abort</tt>
without any parameters:</p>
<pre>
(abort) <span class='arw'>→</span> true ; abort all
</pre>
<p>The function <tt>abort</tt> is part of the Cilk API for synchronizing
child processes and process parallelization. See the reference for the
function <a href="#spawn">spawn</a> for a full discussion of the Cilk API.</p>
<br/><br/>
<a name="abs"></a>
<h2><span class="function">abs</span>
<a href="#big_int"><font size="-1">bigint</font></a></h2>
<h4>syntax: (abs <em>num</em>)</h4>
<p>
Returns the absolute value of the number in <em>num</em>.
</p>
<!-- example -->
<pre>
(abs -3.5) <span class='arw'>→</span> 3.5
</pre>
<br/><br/>
<a name="acos"></a>
<h2><span class="function">acos</span></h2>
<h4>syntax: (acos <em>num-radians</em>)</h4>
<p>
The arc-cosine function is calculated
from the number in <em>num-radians</em>.
</p>
<!-- example -->
<pre>
(acos 1) <span class='arw'>→</span> 0
(cos (acos 1)) <span class='arw'>→</span> 1
</pre>
<br/><br/>
<a name="acosh"></a>
<h2><span class="function">acosh</span></h2>
<h4>syntax: (acosh <em>num-radians</em>)</h4>
<p>Calculates the inverse hyperbolic cosine of <em>num-radians</em>,
the value whose hyperbolic cosine is <em>num-radians</em>.
If <em>num-radians</em> is less than 1,
<tt>acosh</tt> returns <tt>NaN</tt>.</p>
<!-- example -->
<pre>
(acosh 2) <span class='arw'>→</span> 1.316957897
(cosh (acosh 2)) <span class='arw'>→</span> 2
(acosh 0.5) <span class='arw'>→</span> NaN
</pre>
<br/><br/>
<a name="add"></a>
<h2><span class="function">add</span></h2>
<h4>syntax: (add <em>num-1</em> [<em>num-2</em> ... ])</h4>
<p>
All of the numbers in <em>num-1</em>, <em>num-2</em>, and on
are summed.
<tt>add</tt> accepts float or integer operands,
but it always returns a floating point number.
Any floating point calculation with <tt>NaN</tt>
also returns <tt>NaN</tt>.
</p>
<!-- example -->
<pre>
(add 2 3.25 9) <span class='arw'>→</span> 14.25
(add 1 2 3 4 5) <span class='arw'>→</span> 15
</pre>
<br/><br/>
<a name="address"></a>
<h2><span class="function">address</span></h2>
<h4>syntax: (address <em>int</em>)<br/>
syntax: (address <em>float</em>)<br/>
syntax: (address <em>str</em>)</h4>
<p>
Returns the memory address of the integer in <em>int</em>,
the double floating point number in <em>float</em>,
or the string in <em>str</em>.
This function is used for passing parameters to library functions
that have been imported using the <a href="#import">import</a> function.
</p>
<!-- example -->
<pre>
(set 's "\001\002\003\004")
(get-char (+ (address s) 3)) <span class='arw'>→</span> 4
(set 'x 12345) ; x is a 64-bit long int
; on a big-endian CPU, i.e. PPC or SPARC
(get-long (address x)) <span class='arw'>→</span> 12345
; the 32-bit int is in high 32-bit part of the long int
(get-int (+ (address x) 4)) <span class='arw'>→</span> 12345
; on a little-endian CPU, i.e. Intel i386
; the 32-bit int is in the low 32-bit part of the long int
(get-int (address x)) <span class='arw'>→</span> 12345
; on both architectures (integers are 64 bit in newLISP)
(set 'x 1234567890)
(get-long (address x)) <span class='arw'>→</span> 1234567890
</pre>
<p>
When a string is passed to C library function the address of the string is
used automatically, and it is not necessary to use the <tt>address</tt>
function in that case. As the example shows, <tt>address</tt> can be used
to do pointer arithmetic on the string's address.</p>
<p><tt>address</tt> should only be used on persistent addresses from
data objects referred to by a variable symbol, not from volatile intermediate
expression objects.</p>
<p>
See also the <a href="#get-char">get-char</a>, <a href="#get-int">get-int</a>,
<a href="#get-long">get-long</a> and <a href="#get-float">get-float</a> functions.
</p>
<br/><br/>
<a name="amb"></a>
<h2><span class="function">amb</span></h2>
<h4>syntax: (amb <em>exp-1</em> [<em>exp-2</em> ... ])</h4>
<p>
One of the expressions <em>exp-1</em> ... <em>n</em> is selected at random,
and the evaluation result is returned.
</p>
<!-- example -->
<pre>
(amb 'a 'b 'c 'd 'e) <span class='arw'>→</span> one of: a, b, c, d, or e at random
(dotimes (x 10) (print (amb 3 5 7))) <span class='arw'>→</span> 35777535755
</pre>
<p>
Internally, newLISP uses the same function as <a href="#rand">rand</a> to pick a random number.
To generate random floating point numbers,
use <a href="#random">random</a>,
<a href="#randomize">randomize</a>, or <a href="#normal">normal</a>.
To initialize the pseudo random number generating process
at a specific starting point,
use the <a href="#seed">seed</a> function.
</p>
<br/><br/>
<a name="and"></a>
<h2><span class="function">and</span></h2>
<h4>syntax: (and <em>exp-1</em> [<em>exp-2</em> ... ])</h4>
<p>
The expressions <em>exp-1</em>, <em>exp-2</em>, <em>etc.</em> are evaluated in order,
returning the result of the last expression.
If any of the expressions yield <tt>nil</tt> or the empty list <tt>()</tt>,
evaluation is terminated and <tt>nil</tt> or the empty list <tt>()</tt> is returned.
</p>
<!-- example -->
<pre>
(set 'x 10) <span class='arw'>→</span> 10
(and (< x 100) (> x 2)) <span class='arw'>→</span> true
(and (< x 100) (> x 2) "passed") <span class='arw'>→</span> "passed"
(and '()) <span class='arw'>→</span> ()
(and true) <span class='arw'>→</span> true
(and) <span class='arw'>→</span> true
</pre>
<br/><br/>
<a name="append"></a>
<h2><span class="function">append</span></h2>
<h4>syntax: (append <em>list-1</em> [<em>list-2</em> ... ])<br/>
syntax: (append <em>array-1</em> [<em>array-2</em> ... ])<br/>
syntax: (append <em>str-1</em> [<em>str-2</em> ... ])</h4>
<p>In the first form, <tt>append</tt> works with lists,
appending <em>list-1</em> through <em>list-n</em> to form a new list.
The original lists are left unchanged.</p>
<!-- example -->
<pre>
(append '(1 2 3) '(4 5 6) '(a b)) <span class='arw'>→</span> (1 2 3 4 5 6 a b)
(set 'aList '("hello" "world")) <span class='arw'>→</span> ("hello" "world")
(append aList '("here" "I am")) <span class='arw'>→</span> ("hello" "world" "here" "I am")
</pre>
<p>In the second form <tt>append</tt> works on arrays:</p>
<!-- example -->
<pre>
(set 'A (array 3 2 (sequence 1 6)))
<span class='arw'>→</span> ((1 2) (3 4) (5 6))
(set 'B (array 2 2 (sequence 7 10)))
<span class='arw'>→</span> ((7 8) (9 10))
(append A B)
<span class='arw'>→</span> ((1 2) (3 4) (5 6) (7 8) (9 10))
(append B B B)
<span class='arw'>→</span> ((7 8) (9 10) (7 8) (9 10) (7 8) (9 10))
</pre>
<p>
In the third form, <tt>append</tt> works on strings. The strings in
<em>str-n</em> are concatenated into a new string and returned.</p>
<!-- example -->
<pre>
(set 'more " how are you") <span class='arw'>→</span> " how are you"
(append "Hello " "world," more) <span class='arw'>→</span> "Hello world, how are you"
</pre>
<p>
<tt>append</tt> is also suitable for processing binary strings containing zeroes.
The <a href="#string">string</a> function would cut off strings at zero bytes.</p>
<p>
Linkage characters or strings can be specified using the
<a href="#join">join</a> function. Use the <a href="#string">string</a>
function to convert arguments to strings and append in one step.</p>
<p>Use the functions <a href="#extend">extend</a> and <a href="#push">push</a>
to append to an existing list or string modifying the target.</p>
<br/><br/>
<a name="append-file"></a>
<h2><span class="function">append-file</span></h2>
<h4>syntax: (append-file <em>str-filename</em> <em>str-buffer</em>)</h4>
<p>
Works similarly to <a href="#write-file">write-file</a>, but the content
in <em>str-buffer</em> is appended if the file in <em>str-filename</em> exists.
If the file does not exist, it is created (in this case, <tt>append-file</tt>
works identically to <a href="#write-file">write-file</a>). This function
returns the number of bytes written.</p>
<p>On failure the function returns <tt>nil</tt>. For error information,
use <a href="#sys-error">sys-error</a> when used on files. When used
on URLs <a href="#net-error">net-error</a> gives more error
information.</p>
<!-- example -->
<pre>
(write-file "myfile.txt" "ABC")
(append-file "myfile.txt" "DEF")
(read-file "myfile.txt") <span class='arw'>→</span> "ABCDEF"
</pre>
<p><tt>append-file</tt> can take a <tt>http://</tt> or <tt>file://</tt> URL
in <em>str-file-name</em>. In case of the <tt>http://</tt> prefix ,
<tt>append-file</tt> works exactly like <a href="#put-url">put-url</a> with
<tt>"Pragma: append\r\n"</tt> in the header option and can take the same
additional parameters. The <tt>"Pragma: append\r\n"</tt> option is supplied
automatically.</p>
<!-- example -->
<pre>
(append-file "http://asite.com/message.txt" "More message text.")
</pre>
<p>The file <tt>message.txt</tt> is appended at a remote
location <tt>http://asite.com</tt> with the contents of
<em>str-buffer</em>. If the file does not yet exist, it
will be created. In this mode, <tt>append-file</tt> can also be used
to transfer files to remote newLISP server nodes.
</p>
<p>See also <a href="#read-file">read-file</a> and
<a href="#write-file">write-file</a>.
</p>
<br/><br/>
<a name="apply"></a>
<h2><span class="function">apply</span></h2>
<h4>syntax: (apply <em>func</em> <em>list</em> [<em>int-reduce</em>])<br/>
syntax: (apply <em>func</em>)</h4>
<p>Applies the contents of <em>func</em> (primitive, user-defined function, or
lambda expression) to the arguments in <em>list</em>. Only functions and
operators with standard evaluation of their arguments can be applied.</p>
<p>In the second syntax <tt>apply</tt> is used on functions without any
arguments.</p>
<!-- example -->
<pre>
(apply + '(1 2 3 4)) <span class='arw'>→</span> 10
(set 'aList '(3 4 5)) <span class='arw'>→</span> (3 4 5)
(apply * aList) <span class='arw'>→</span> 60
(apply sqrt '(25)) <span class='arw'>→</span> 5
(apply (lambda (x y) (* x y)) '(3 4)) <span class='arw'>→</span> 12
</pre>
<p>
The <em>int-reduce</em> parameter can optionally contain
the number of arguments taken by the function in <em>func</em>.
In this case,
<em>func</em> will be repeatedly applied using the previous result
as the first argument and taking the other arguments required
successively from <em>list</em>
(in left-associative order).
For example, if <tt>op</tt> takes two arguments, then:
</p>
<pre>
(apply op '(1 2 3 4 5) 2)
;; is equivalent to
(op (op (op (op 1 2) 3) 4) 5)
;; find the greatest common divisor
;; of two or more integers
;; note that newLISP already has a gcd function
(define (gcd_ a b)
(let (r (% b a))
(if (= r 0) a (gcd_ r a))))
(define-macro (my-gcd)
(apply gcd_ (map eval (args)) 2))
(my-gcd 12 18 6) <span class='arw'>→</span> 6
(my-gcd 12 18 6 4) <span class='arw'>→</span> 2
</pre>
<p>The last example shows how <tt>apply</tt>'s <em>reduce</em> functionality
can be used to convert a two-argument function into one that takes multiple arguments. Note, that a built-in <a href="#gcd">gcd</a> is available.</p>
<p>
<tt>apply</tt> should only be used on functions and operators that evaluate all
of their arguments, not on <em>special forms</em> like <a href="#dotimes">dotimes</a>
or <a href="#case">case</a>, which evaluate only some of their arguments.
Doing so will cause the function to fail.
</p>
<br/><br/>
<a name="args"></a>
<h2><span class="function">args</span></h2>
<h4>syntax: (args)<br/>
syntax: (args <em>int-idx-1</em> [<em>int-idx-2</em> ... ])</h4>
<p>
Accesses a list of all unbound arguments passed to the currently evaluating
<a href="#define">define</a>, <a href="#define-macro">define-macro</a>
lambda, or lambda-macro expression. Only the arguments of the current function
or macro that remain after local variable binding has occurred are available.
The <tt>args</tt> function is useful for defining functions or macros
with a variable number of parameters.</p>
<p>
<tt>args</tt> can be used to define hygienic macros that avoid the danger of
variable capture. See <a href="#define-macro">define-macro</a>.
</p>
<!-- example -->
<pre>
(define-macro (print-line)
(dolist (x (args))
(print x "\n")))
(print-line "hello" "World")
</pre>
<p>
This example prints a line-feed after each argument.
The macro mimics the effect of the built-in function
<a href="#println">println</a>.
</p>
<p>
In the second syntax,
<tt>args</tt> can take one or more indices (<em>int-idx-n</em>).
</p>
<!-- example -->
<pre>
(define-macro (foo)
(print (args 2) (args 1) (args 0)))
(foo x y z)
<b>zyx</b>
(define (bar)
(args 0 2 -1))
(bar '(1 2 (3 4))) <span class='arw'>→</span> 4
</pre>
<p>
The function <tt>foo</tt>
prints out the arguments in reverse order.
The <tt>bar</tt> function
shows <tt>args</tt> being used
with multiple indices
to access nested lists.
</p>
<p>
Remember that <tt>(args)</tt> only contains the arguments
not already bound to local variables
of the current function or macro:
</p>
<!-- example -->
<pre>
(define (foo a b) (args))
(foo 1 2) <span class='arw'>→</span> ()
(foo 1 2 3 4 5) <span class='arw'>→</span> (3 4 5)
</pre>
<p>
In the first example,
an empty list is returned because
the arguments are bound to the
two local symbols, <tt>a</tt> and <tt>b</tt>.
The second example demonstrates that,
after the first two arguments are bound
(as in the first example), three arguments remain
and are then returned by <tt>args</tt>.
</p>
<p>
<tt>(args)</tt> can be used as an argument
to a built-in or user-defined function call,
but it should not be used as an argument to another macro,
in which case <tt>(args)</tt> would not be evaluated
and would therefore have the wrong
contents in the new macro environment.
</p>
<br/><br/>
<a name="array"></a>
<h2><span class="function">array</span></h2>
<h4>syntax: (array <em>int-n1</em> [<em>int-n2</em> ... ] [<em>list-init</em>])</h4>
<p>Creates an array with <em>int-n1</em> elements,
optionally initializing it with the contents of <em>list-init</em>.
Up to sixteen dimensions may be specified for multidimensional arrays.</p>
<p>Internally, newLISP builds multidimensional arrays by using arrays as the
elements of an array. newLISP arrays should be used whenever random indexing
into a large list becomes too slow. Not all list functions may be used on arrays.
For a more detailed discussion, see the chapter on <a href="#arrays">arrays</a>.</p>
<!-- example -->
<pre>
(array 5) <span class='arw'>→</span> (nil nil nil nil nil)
(array 5 (sequence 1 5)) <span class='arw'>→</span> (1 2 3 4 5)
(array 10 '(1 2)) <span class='arw'>→</span> (1 2 1 2 1 2 1 2 1 2)
</pre>
<p>Arrays can be initialized with objects of any type. If fewer initializers than
elements are provided, the list is repeated until all elements of the array are
initialized.</p>
<pre>
(set 'myarray (array 3 4 (sequence 1 12)))
<span class='arw'>→</span> ((1 2 3 4) (5 6 7 8) (9 10 11 12))
</pre>
<p>Arrays are modified and accessed using most of the same functions used for
modifying lists:</p>
<pre>
(setf (myarray 2 3) 99) <span class='arw'>→</span> 99)
myarray <span class='arw'>→</span> ((1 2 3 4) (5 6 7 8) (9 10 11 99))
(setf (myarray 1 1) "hello") <span class='arw'>→</span> "hello"
myarray <span class='arw'>→</span> ((1 2 3 4) (5 "hello" 7 8) (9 10 11 99))
(setf (myarray 1) '(a b c d)) <span class='arw'>→</span> (a b c d)
myarray <span class='arw'>→</span> ((1 2 3 4) (a b c d) (9 10 11 99))
(nth 1 myarray) <span class='arw'>→</span> (a b c d) ; access a whole row
;; use implicit indexing and slicing on arrays
(myarray 1) <span class='arw'>→</span> (a b c d)
(myarray 0 -1) <span class='arw'>→</span> 4
(2 myarray) <span class='arw'>→</span> ((9 10 11 99))
(-3 2 myarray) <span class='arw'>→</span> ((1 2 3 4) (a b c d))
</pre>
<p>Care must be taken to use an array when replacing a whole row.
</p>
<p>
<a href="#array-list">array-list</a> can be used to convert arrays back into lists:
</p>
<pre>
(array-list myarray) <span class='arw'>→</span> ((1 2 3 4) (a b c d) (1 2 3 99))
</pre>
<p>To convert a list back into an array, apply <a href="#flat">flat</a> to the list:
</p>
<pre>
(set 'aList '((1 2) (3 4))) <span class='arw'>→</span> ((1 2) (3 4))
(set 'aArray (array 2 2 (flat aList))) <span class='arw'>→</span> ((1 2) (3 4))
</pre>
<p>The <a href="#arrayp">array?</a> function
can be used to check if an expression is an array:
</p>
<pre>
(array? myarray) <span class='arw'>→</span> true
(array? (array-list myarray)) <span class='arw'>→</span> nil
</pre>
<p>
When serializing arrays using the function <a href="#source">source</a>
or <a href="#save">save</a>, the generated code includes the <tt>array</tt>
statement necessary to create them. This way, variables containing arrays are
correctly serialized when saving with <a href="#save">save</a> or creating
source strings using <a href="#source">source</a>.</p>
<pre>
(set 'myarray (array 3 4 (sequence 1 12)))
(save "array.lsp" 'myarray)
;; contents of file arraylsp ;;
(set 'myarray (array 3 4 (flat '(
(1 2 3 4)
(5 6 7 8)
(9 10 11 12)))))
</pre>
<br/><br/>
<a name="array-list"></a>
<h2><span class="function">array-list</span></h2>
<h4>syntax: (array-list <em>array</em>)</h4>
<p>
Returns a list conversion from <em>array</em>,
leaving the original array unchanged:
</p>
<!-- example -->
<pre>
(set 'myarray (array 3 4 (sequence 1 12)))
<span class='arw'>→</span> ((1 2 3 4) (5 6 7 8) (9 10 11 12))
(set 'mylist (array-list myarray))
<span class='arw'>→</span> ((1 2 3 4) (5 6 7 8) (9 10 11 12))
(list (array? myarray) (list? mylist))
<span class='arw'>→</span> (true true)
</pre>
<br/><br/>
<a name="arrayp"></a>
<h2><span class="function">array?</span></h2>
<h4>syntax: (array? <em>exp</em>)</h4>
<p>
Checks if <em>exp</em> is an array:
</p>
<!-- example -->
<pre>
(set 'M (array 3 4 (sequence 1 4)))
<span class='arw'>→</span> ((1 2 3 4) (1 2 3 4) (1 2 3 4)))
(array? M) <span class='arw'>→</span> true
(array? (array-list M)) <span class='arw'>→</span> nil
</pre>
<br/><br/>
<a name="asin"></a>
<h2><span class="function">asin</span></h2>
<h4>syntax: (asin <em>num-radians</em>)</h4>
<p>
Calculates the arcsine function from the number in <em>num-radians</em>
and returns the result.
</p>
<!-- example -->
<pre>
(asin 1) <span class='arw'>→</span> 1.570796327
(sin (asin 1)) <span class='arw'>→</span> 1
</pre>
<br/><br/>
<a name="asinh"></a>
<h2><span class="function">asinh</span></h2>
<h4>syntax: (asinh <em>num-radians</em>)</h4>
<p>Calculates the inverse hyperbolic sine of <em>num-radians</em>,
the value whose hyperbolic sine is <em>num-radians</em>.</p>
<!-- example -->
<pre>
(asinh 2) <span class='arw'>→</span> 1.443635475
(sinh (asinh 2)) <span class='arw'>→</span> 2
</pre>
<br/><br/>
<a name="assoc"></a>
<h2><span class="function">assoc</span></h2>
<h4>syntax: (assoc <em>exp-key</em> <em>list-alist</em>)<br/>
syntax: (assoc <em>list-exp-key</em> <em>list-alist</em>)</h4>
<p>
In the first syntax the value of <em>exp-key</em> is used
to search <em>list-alist</em> for a <em>member-list</em>
whose first element matches the key value.
If found, the <em>member-list</em> is returned;
otherwise, the result will be <tt>nil</tt>.
</p>
<!-- example -->
<pre>
(assoc 1 '((3 4) (1 2))) <span class='arw'>→</span> (1 2)
(set 'data '((apples 123) (bananas 123 45) (pears 7)))
(assoc 'bananas data) <span class='arw'>→</span> (bananas 123 45)
(assoc 'oranges data) <span class='arw'>→</span> nil
</pre>
<p>Together with <a href="#setf">setf</a> <tt>assoc</tt> can be used
to change an association.</p>
<pre>
(setf (assoc 'pears data) '(pears 8))
data <span class='arw'>→</span> ((apples 123) (bananas 123 45) (pears 8))
</pre>
<p>In the second syntax more then one key expressions can be specified
to search in nested, multilevel association lists:</p>
<!-- example -->
<pre>
(set 'persons '(
(id001 (name "Anne") (address (country "USA") (city "New York")))
(id002 (name "Jean") (address (country "France") (city "Paris")))
))
(assoc '(id001 address) persons) <span class='arw'>→</span> (address (country "USA") (city "New York"))
(assoc '(id001 address city) persons) <span class='arw'>→</span> (city "New York")
</pre>
<p>The list in <em>list-aList</em> can be a context which will be interpreted
as its <em>default functor</em>. This way very big lists can be passed by reference
for speedier access and less memory usage:</p>
<pre>
(set 'persons:persons '(
(id001 (name "Anne") (address (country "USA") (city "New York")))
(id002 (name "Jean") (address (country "France") (city "Paris")))
))
(define (get-city db id)
(last (assoc (list id 'address 'city) db ))
)
(get-city persons 'id001) <span class='arw'>→</span> "New York"
</pre>
<p>
For making replacements in association lists, use the
<a href="#setf">setf</a> together with the <tt>assoc</tt> function.
The <a href="#lookup">lookup</a> function is used to perform association lookup
and element extraction in one step.</p>
<br/><br/>
<a name="atan"></a>
<h2><span class="function">atan</span></h2>
<h4>syntax: (atan <em>num-radians</em>)</h4>
<p>
The arctangent of <em>num-radians</em>
is calculated and returned.
</p>
<!-- example -->
<pre>
(atan 1) <span class='arw'>→</span> 0.7853981634
(tan (atan 1)) <span class='arw'>→</span> 1
</pre>
<br/><br/>
<a name="atan2"></a>
<h2><span class="function">atan2</span></h2>
<h4>syntax: (atan2 <em>num-Y-radians</em> <em>num-X-radians</em>)</h4>
<p>
The <tt>atan2</tt> function computes
the principal value of
the arctangent of Y / X in radians.
It uses the signs of both arguments
to determine the quadrant of
the return value.
<tt>atan2</tt> is useful for converting
Cartesian coordinates
into polar coordinates.
</p>
<!-- example -->
<pre>
(atan2 1 1) <span class='arw'>→</span> 0.7853981634
(div (acos 0) (atan2 1 1)) <span class='arw'>→</span> 2
(atan2 0 -1) <span class='arw'>→</span> 3.141592654
(= (atan2 1 2) (atan (div 1 2))) <span class='arw'>→</span> true
</pre>
<br/><br/>
<a name="atanh"></a>
<h2><span class="function">atanh</span></h2>
<h4>syntax: (atanh <em>num-radians</em>)</h4>
<p>Calculates the inverse hyperbolic tangent of <em>num-radians</em>,
the value whose hyperbolic tangent is <em>num-radians</em>. If the
absolute value of <em>num-radians</em> is greater than 1,
<tt>atanh</tt> returns <tt>NaN</tt>; if it is equal to 1, <tt>atanh</tt> returns infinity.</p>
<!-- example -->
<pre>
(atanh 0.5) <span class='arw'>→</span> 0.5493061443
(tanh (atanh 0.5)) <span class='arw'>→</span> 0.5
(atanh 1.1) <span class='arw'>→</span> NaN
(atanh 1) <span class='arw'>→</span> inf
</pre>
<br/><br/>
<a name="atomp"></a>
<h2><span class="function">atom?</span></h2>
<h4>syntax: (atom? <em>exp</em>)</h4>
<p>
Returns <tt>true</tt> if the value of <em>exp</em> is an atom,
otherwise <tt>nil</tt>.
An expression is an atom if it evaluates to nil,
true, an integer, a float, a string, a symbol or a primitive.
Lists, lambda or lambda-macro expressions,
and quoted expressions are not atoms.
</p>
<!-- example -->
<pre>
(atom? '(1 2 3)) <span class='arw'>→</span> nil
(and (atom? 123)
(atom? "hello")
(atom? 'foo)) <span class='arw'>→</span> true
(atom? ''foo) <span class='arw'>→</span> nil
</pre>
<br/><br/>
<a name="base64-dec"></a>
<h2><span class="function">base64-dec</span></h2>
<h4>syntax: (base64-dec <em>str</em>)</h4>
<p>
The BASE64 string in <em>str</em> is decoded.
Note that <em>str</em> is not verified
to be a valid BASE64 string.
The decoded string is returned.
</p>
<!-- example -->
<pre>
(base64-dec "SGVsbG8gV29ybGQ=") <span class='arw'>→</span> "Hello World"
</pre>
<p>
For encoding,
use the <a href="#base64-enc">base64-enc</a> function.
</p>
<p>
newLISP's BASE64 handling is derived from
routines found in the Unix <a href="http://curl.haxx.se/">curl</a>
utility and conforms to the RFC 4648 standard.
</p>
<br/><br/>
<a name="base64-enc"></a>
<h2><span class="function">base64-enc</span></h2>
<h4>syntax: (base64-enc <em>str</em> [<em>bool-flag</em>])</h4>
<p>
The string in <em>str</em> is encoded into BASE64 format.
This format encodes groups of 3 * 8 = 24 input bits
into 4 * 8 = 32 output bits,
where each 8-bit output group
represents 6 bits from the input string.
The 6 bits are encoded into 64 possibilities
from the letters A–Z and a–z;
the numbers 0–9;
and the characters + (plus sign) and / (slash).
The = (equals sign) is used as a filler
in unused 3- to 4-byte translations.
This function is helpful for converting binary content
into printable characters.
</p>
<p>Without the optional <em>bool-flag</em> parameter the empty string <tt>""</tt> is
encoded into <tt>"===="</tt>. If <em>bool-flag</em> evaluates to <tt>true</tt>,
the empty string <tt>""</tt> is translated into <tt>""</tt>. Both translations
result in <tt>""</tt> when using <a href="base64-dec">base64-dec</a>.</p>
<p>
The encoded string is returned.
</p>
<p>
BASE64 encoding is used with many Internet protocols
to encode binary data for inclusion in text-based messages
(e.g., XML-RPC).
</p>
<!-- example -->
<pre>
(base64-enc "Hello World") <span class='arw'>→</span> "SGVsbG8gV29ybGQ="
(base64-enc "") <span class='arw'>→</span> "===="
(base64-enc "" true) <span class='arw'>→</span> ""
</pre>
<p>
Note that <tt>base64-enc</tt> does not insert
carriage-return/line-feed pairs in longer BASE64 sequences
but instead returns a pure BASE64-encoded string.
</p>
<p>
For decoding,
use the <a href="#base64-dec">base64-dec</a> function.
</p>
<p>
newLISP's BASE64 handling is derived from routines
found in the Unix <a href="http://curl.haxx.se/">curl</a>
utility and conforms to the RFC 4648 standard.
</p>
<br/><br/>
<a name="bayes-query"></a>
<h2><span class="function">bayes-query</span></h2>
<h4>syntax: (bayes-query <em>list-L</em> <em>context-D</em> [<em>bool-chain</em> [<em>bool-probs</em>]])</h4>
<p>
Takes a list of tokens (<em>list-L</em>) and a trained dictionary (<em>context-D</em>)
and returns a list of the combined probabilities of the tokens in one category
(<em>A</em> or <em>Mc</em>) versus a category (<em>B</em>) or
against all other categories (<em>Mi</em>). All tokens in <em>list-L</em>
should occur in <em>context-D</em>.
When using the default <em>R.A. Fisher inverse Chi² </em> mode,
nonexistent tokens will skew results toward equal probability in all categories.
</p>
<p>
Non-existing tokens will not have any influence on the result when using the
true <em>Chain Bayesian</em> mode with <em>bool-chain</em> set to <tt>true</tt>.
The optional last flag, <em>bool-probs</em>, indicates whether frequencies or
probability values are used in the data set. The <a href="#bayes-train">bayes-train</a>
function is typically used to generate a data set's frequencies.
</p>
<p>
Tokens can be strings or symbols. If strings are used, they are prepended
with an underscore before being looked up in <em>context-D</em>. If
<a href="#bayes-train">bayes-train</a> was used to generate <em>context-D</em>'s
frequencies, the underscore was automatically prepended during the learning process.
</p>
<p>
Depending on the flag specified in <em>bool-probs</em>,
<a href="#bayes-query">bayes-query</a> employs either the
R. A. Fisher inverse Chi² method of compounding probabilities
or the Chain Bayesian method.
By default, when no flag or <tt>nil</tt> is specified in <em>bool-probs</em>,
the inverse Chi² method of compounding probabilities is used.
When specifying <tt>true</tt> in <em>bool-probs</em>,
the Chain Bayesian method is used.
</p>
<p>
If the inverse Chi² method is used,
the total number of tokens
in the different training set's categories
should be equal or similar.
Uneven frequencies in categories
will skew the results.
</p>
<p>
For two categories <em>A</em> and <em>B</em>,
<tt>bayes-query</tt> uses the following formula:
</p>
<b><em>p(A|tkn) = p(tkn|A) * p(A) / ( p(tkn|A) * p(A) + p(tkn|B) * p(B) )</em></b>
<p>
For <em>N</em> categories, the formula can be generalized to:
</p>
<b><em>p(Mc|tkn) = p(tkn|Mc) * p(Mc) / sum-i-N( p(tkn|Mi) * p(Mi) )</em></b>
<p>
The probabilities (<em>p(Mi)</em> or <em>p(A)</em>, along with <em>p(B)</em>)
represent the <em>Bayesian prior probabilities</em>.
<em>p(Mc|tkn)</em> and <em>p(A|tkn)</em> are the
<em>posterior Bayesian</em> probabilities of a category or model.
This <i>naive</i> Bayes formula does nor take into account dependencies
between different categories.
</p>
<p>
Priors are handled differently,
depending on whether the R.A. Fisher inverse Chi²
or the Chain Bayesian method is used.
In Chain Bayesian mode,
posteriors from one token calculation get the priors in the next calculation.
In the default inverse Chi² method,
priors are not passed on via chaining,
but probabilities are compounded using the inverse Chi² method.
</p>
<p>
In Chain Bayes mode,
tokens with zero frequency in one category
will effectively put the probability of that category to 0 (zero).
This also causes all posterior priors to be set to 0
and the category to be completely suppressed in the result.
Queries resulting in zero probabilities for all categories
yield <em>NaN</em> values.
</p>
<p>
The default inverse Chi² method
is less sensitive about zero frequencies
and still maintains a low probability for that token.
This may be an important feature in natural language processing
when using <em>Bayesian statistics</em>.
Imagine that five different language <em>corpus</em> categories have been trained,
but some words occurring in one category are not present in another.
When the pure Chain Bayesian method is used,
a sentence could never be classified into its correct category
because the zero-count of just one word token could effectively exclude it
from the category to which it belongs.
</p>
<p>
On the other hand,
the Chain Bayesian method offers exact results
for specific proportions in the data.
When using Chain Bayesian mode for natural language data,
all zero frequencies should be removed from the trained dictionary first.
</p>
<p>
The return value of <tt>bayes-query</tt> is a list of probability values,
one for each category. Following are two examples: the first for the
default inverse Chi² mode, the second for a data set processed with the
Chain Bayesian method.
</p>
<br/>
<h3>R.A. Fisher inverse Chi² method</h3>
<p>
In the following example,
the two data sets are books from Project Gutenberg.
We assume that different authors
use certain words with different frequencies
and want to determine if a sentence is more likely to occur in one
or the other author's writing.
A similar method is frequently used to differentiate between spam
and legitimate email.
</p>
<pre>
;; from Project Gutenberg: http://www.gutenberg.org/catalog/
;; The Adventures of Sherlock Holmes - Sir Arthur Conan Doyle
(bayes-train (parse (lower-case (read-file "Doyle.txt"))
"[^a-z]+" 0) '() 'DoyleDowson)
;; A Comedy of Masks - Ernest Dowson and Arthur Moore
(bayes-train '() (parse (lower-case (read-file "Dowson.txt"))
"[^a-z]+" 0) 'DoyleDowson)
(save "DoyleDowson.lsp" 'DoyleDowson)
</pre>
<p>
The two training sets are loaded, split into tokens,
and processed by the <a href="#bayes-train">bayes-train</a> function.
In the end, the <tt>DoyleDowson</tt> dictionary is saved to a file,
which will be used later with the <tt>bayes-query</tt> function.
</p>
<p>
The following code illustrates how <tt>bayes-query</tt> is used
to classify a sentence as <em>Doyle</em> or <em>Dowson</em>:
</p>
<pre>
(load "DoyleDowson.lsp")
(bayes-query (parse "he was putting the last touches to a picture")
'DoyleDowson)
<span class='arw'>→</span> (0.0359554723158327 0.964044527684167)
(bayes-query (parse "immense faculties and extraordinary powers of observation")
'DoyleDowson)
<span class='arw'>→</span> (0.983569359827141 0.0164306401728594)
</pre>
<p>
The queries correctly identify the first sentence as a <em>Dowson</em> sentence,
and the second one as a <em>Doyle</em> sentence.
</p>
<br/>
<h3>Chain Bayesian method</h3>
<p>
The second example is frequently found
in introductory literature on Bayesian statistics.
It shows the Chain Bayesian method of
using <tt>bayes-query</tt> on the data of a previously processed data set:
</p>
<!-- example -->
<pre>
(set 'Data:test-positive '(8 18))
(set 'Data:test-negative '(2 72))
(set 'Data:total '(10 90))
</pre>
<p>
A disease occurs in 10 percent of the population.
A blood test developed to detect this disease
produces a false positive rate of 20 percent in the healthy population
and a false negative rate of 20 percent in the sick.
What is the probability of a person carrying
the disease after testing positive?</p>
<!-- example -->
<pre>
(bayes-query '(test-positive) Data true)
<span class='arw'>→</span> (0.3076923077 0.6923076923)
(bayes-query '(test-positive test-positive) Data true)
<span class='arw'>→</span> (0.64 0.36)
(bayes-query '(test-positive test-positive test-positive) Data true)
<span class='arw'>→</span> (0.8767123288 0.1232876712)
</pre>
<p>
Note that the Bayesian formulas used
assume statistical independence of events
for the <tt>bayes-query</tt> to work correctly.
</p>
<p>
The example shows that a person must test positive several times
before they can be confidently classified as sick.
</p>
<p>
Calculating the same example using the R.A. Fisher Chi² method
will give less-distinguished results.
</p>
<br/>
<h3>Specifying probabilities instead of counts</h3>
<p>
Often, data is already available as probability values
and would require additional work to reverse them into frequencies.
In the last example, the data were originally defined as percentages.
The additional optional <em>bool-probs</em> flag
allows probabilities to be entered directly
and should be used together with the Chain Bayesian mode
for maximum performance:
</p>
<!-- example -->
<pre>
(set 'Data:test-positive '(0.8 0.2))
(set 'Data:test-negative '(0.2 0.8))
(set 'Data:total '(0.1 0.9))
(bayes-query '(test-positive) Data true true)
<span class='arw'>→</span> (0.3076923077 0.6923076923)
(bayes-query '(test-positive test-positive) Data true true)
<span class='arw'>→</span> (0.64 0.36)
(bayes-query '(test-positive test-positive test-positive) Data true true)
<span class='arw'>→</span> (0.8767123288 0.1232876712)
</pre>
<p>
As expected, the results are the same for probabilities
as they are for frequencies.
</p>
<br/><br/>
<a name="bayes-train"></a>
<h2><span class="function">bayes-train</span></h2>
<h4>syntax: (bayes-train <em>list-M1</em> [<em>list-M2</em> ... ] <em>sym-context-D</em>)</h4>
<p>
Takes one or more lists of tokens (<em>M1</em>, <em>M2—</em>)
from a joint set of tokens. In newLISP, tokens can be symbols or strings
(other data types are ignored). Tokens are placed in a common dictionary
in <em>sym-context-D</em>, and the frequency is counted for each token
in each category <em>Mi</em>. If the context does not yet exist,
it must be quoted.
</p>
<p> The <em>M</em> categories represent data models for which sequences of
tokens can be classified (see <a href="#bayes-query">bayes-query</a>).
Each token in <em>D</em> is a content-addressable symbol
containing a list of the frequencies for this token within each category.
String tokens are prepended with an <tt>_</tt> (underscore)
before being converted into symbols. A symbol named <tt>total</tt> is created
containing the total of each category. The <tt>total</tt> symbol cannot be part
of the symbols passed as an <em>Mi</em> category.
</p>
<p>
The function returns a list of token frequencies found in the different categories
or models.
</p>
<!-- example -->
<pre>
(bayes-train '(A A B C C) '(A B B C C C) 'L) <span class='arw'>→</span> (5 6)
L:A <span class='arw'>→</span> (2 1)
L:B <span class='arw'>→</span> (1 2)
L:C <span class='arw'>→</span> (2 3)
L:total <span class='arw'>→</span> (5 6)
(bayes-train '("one" "two" "two" "three")
'("three" "one" "three")
'("one" "two" "three") 'S)
<span class='arw'>→</span> (4 3 3)
S:_one <span class='arw'>→</span> (1 1 1)
S:_two <span class='arw'>→</span> (2 0 1)
S:_three <span class='arw'>→</span> (1 2 1)
S:total <span class='arw'>→</span> (4 3 3)
</pre>
<p>The first example shows training with two lists of symbols. The second example
illustrates how an <tt>_</tt> is prepended when training with strings.</p>
<p><tt>bayes-train</tt> creates symbols from strings prepending an underscore
character. This is the same way hashes are created and contexts populates with
symbols by <tt>bayes-train</tt> can be used like hashes:</p>
<pre>
; use a bayes-trained context namespace like a hash dictionary
(S "two") <span class='arw'>→</span> (2 0 1)
(S "three") <span class='arw'>→</span> (1 2 1)
(S) <span class='arw'>→</span> (("one" (1 1 1)) ("three" (1 2 1)) ("two" (2 0 1)))
</pre>
<p>
Note that these examples are just for demonstration purposes. In reality, training
sets may contain thousands or millions of words, especially when training natural
language models. But small data sets may be used when the frequency of symbols
just describe already-known proportions. In this case, it may be better to describe
the model data set explicitly, without the <tt>bayes-train</tt> function:
</p>
<pre>
(set 'Data:tested-positive '(8 18))
(set 'Data:tested-negative '(2 72))
(set 'Data:total '(10 90))
</pre>
<p>
The last data are from a popular example used to describe the
<a href="#bayes-query">bayes-query</a> function in introductory papers
and books about <em>bayesian networks</em>.
</p>
<p>
Training can be done in different stages by using <tt>bayes-train</tt> on an
existing trained context with the same number of categories. The new symbols
will be added, then counts and totals will be correctly updated.</p>
<p>
Training in multiple batches may be necessary on big text corpora or documents
that must be tokenized first. These corpora can be tokenized in small portions,
then fed into <tt>bayes-train</tt> in multiple stages. Categories can also be
singularly trained by specifying an empty list for the absent corpus:
</p>
<pre>
(bayes-train shakespeare1 '() 'data)
(bayes-train shakespeare2 '() 'data)
(bayes-train '() hemingway1 'data)
(bayes-train '() hemingway2 'data)
(bayes-train shakepeare-rest hemingway-rest 'data)
</pre>
<p>
<tt>bayes-train</tt> will correctly update word counts and totals.</p>
<p>
Using <tt>bayes-train</tt> inside a context other than <tt>MAIN</tt>
requires the training contexts to have been created previously within
the <tt>MAIN</tt> context via the <a href="#context">context</a> function.
</p>
<p>
<tt>bayes-train</tt> is not only useful with the <a href="#bayes-query">bayes-query</a> function,
but also as a function for counting in general.
For instance, the resulting frequencies
could be analyzed using <a href="#prob-chi2">prob-chi2</a>
against a <em>null hypothesis</em> of proportional distribution
of items across categories.
</p>
<br/><br/>
<a name="begin"></a>
<h2><span class="function">begin</span></h2>
<h4>syntax: (begin <em>body</em>)</h4>
<p>
The <tt>begin</tt> function is used to group a block of expressions.
The expressions in <em>body</em> are evaluated in sequence, and
the value of the last expression in <em>body</em> is returned.
</p>
<!-- example -->
<pre>
(begin
(print "This is a block of 2 expressions\n")
(print "================================"))
</pre>
<p>
Some built-in functions like <a href="#cond">cond</a>, <a href="#define">define</a>,
<a href="#doargs">doargs</a>, <a href="#dolist">dolist</a>, <a href="#dostring">dostring</a>,
<a href="#dotimes">dotimes</a>, <a href="#when">when</a> and <a href="#while">while</a>
already allow multiple expressions in their bodies,
but <tt>begin</tt> is often used in an <a href="#if">if</a> expression.
</p>
<p>
The <a href="#silent">silent</a> function works like <tt>begin</tt>,
but suppresses console output on return.
</p>
<br/><br/>
<a name="beta"></a>
<h2><span class="function">beta</span></h2>
<h4>syntax: (beta <em>cum-a</em> <em>num-b</em>)</h4>
<p>
The <em>Beta</em> function, <tt>beta</tt>,
is derived from the <em>log Gamma</em>
<tt>gammaln</tt> function as follows:
</p>
<p><em><b>
beta = exp(gammaln(a) + gammaln(b) - gammaln(a + b))
</b></em></p>
<!-- example -->
<pre>
(beta 1 2) <span class='arw'>→</span> 0.5
</pre>
<br/><br/>
<a name="betai"></a>
<h2><span class="function">betai</span></h2>
<h4>syntax: (betai <em>num-x</em> <em>num-a</em> <em>num-b</em>)</h4>
<p>
The <em>Incomplete Beta</em> function, <tt>betai</tt>,
equals the cumulative probability of the <em>Beta</em> distribution, <tt>betai</tt>,
at <em>x</em> in <em>num-x</em>.
The cumulative binomial distribution is defined as the probability of an event, <em>pev</em>,
with probability <em>p</em> to occur <em>k</em> or more times in <em>N</em> trials:
</p>
<p><em><b> pev = Betai(p, k, N - k + 1) </b></em></p>
<!-- example -->
<pre>
(betai 0.5 3 8) <span class='arw'>→</span> 0.9453125
</pre>
<p>
The example calculates the probability for an event
with a probability of 0.5 to occur 3 or more times in 10 trials (8 = 10 - 3 + 1).
The incomplete Beta distribution can be used to derive a variety of other functions
in mathematics and statistics.
See also the <a href="#binomial">binomial</a> function.
</p>
<br/><br/>
<a name="bigint"></a>
<h2><span class="function">bigint</span></h2>
<h4>syntax: (bigint <em>number</em>)<br/>
syntax: (bigint <em>string</em>)</h4>
<p>A floating point or integer number gets converted to big integer format.
When converting from floating point, rounding errors occur going back and forth
between decimal and binary arithmetic.</p>
<p>A string argument gets parsed to a number and converted to a big integer.</p>
<!-- example -->
<pre>
(bigint 12345) <span class='arw'>→</span> 12345L
(bigint 1.234567890e30) <span class='arw'>→</span> 1234567889999999957361000000000L
(set 'num 567890)
(bigint num) <span class='arw'>→</span> 567890L
(bigint "-54321") <span class='arw'>→</span> -54321L
(bigint "123.45") <span class='arw'>→</span> 123L
(bigint "123hello") <span class='arw'>→</span> 123L
</pre>
<p>See also the manual chapter <a href="#big_int">Big integer, unlimited precision arithmetic</a></p>
<br/><br/>
<a name="bigintp"></a>
<h2><span class="function">bigint?</span></h2>
<h4>syntax: (bigint? <em>number</em>)</h4>
<p>Check if a number is formatted as a big integer.</p>
<!-- example -->
<pre>
(set 'x 12345)
(set 'y 12345L)
(set 'z 123456789012345678901234567890)
(set 'p 1.2345e20)
(set 'q (bigint p))
(bigint? x) <span class='arw'>→</span> nil
(bigint? y) <span class='arw'>→</span> true
(bigint? z) <span class='arw'>→</span> true
(bigint? p) <span class='arw'>→</span> nil
(bigint? q) <span class='arw'>→</span> true
</pre>
<p>See also the manual chapter <a href="#big_int">Big integer, unlimited precision arithmetic</a></p>
<br/><br/>
<a name="bind"></a>
<h2><span class="function">bind</span> <a href="#destructive">!</a></h2>
<h4>syntax: (bind <em>list-variable-associations</em> [<em>bool-eval</em>])</h4>
<p><em>list-variable-associations</em> contains an association list of
symbols and their values. <tt>bind</tt> sets all symbols
to their associated values.</p>
<p>The associated values are evaluated if the <em>bool-eval</em> flag is <tt>true</tt>:</p>
<pre>
(set 'lst '((a (+ 3 4)) (b "hello")))
(bind lst) <span class='arw'>→</span> "hello"
a <span class='arw'>→</span> (+ 3 4)
b <span class='arw'>→</span> "hello"
(bind lst true) <span class='arw'>→</span> "hello"
a <span class='arw'>→</span> 7
</pre>
<p>The return value of bind is the value of the last association.</p>
<p><tt>bind</tt> is often used to bind association lists returned
by <a href="#unify">unify</a>.</p>
<pre>
(bind (unify '(p X Y a) '(p Y X X))) <span class='arw'>→</span> a
X <span class='arw'>→</span> a
Y <span class='arw'>→</span> a
</pre>
<p>This can be used for de-structuring:</p>
<pre>
(set 'structure '((one "two") 3 (four (x y z))))
(set 'pattern '((A B) C (D E)))
(bind (unify pattern structure))
A <span class='arw'>→</span> one
B <span class='arw'>→</span> "two"
C <span class='arw'>→</span> 3
D <span class='arw'>→</span> four
E <span class='arw'>→</span> (x y z)
</pre>
<p><a href="#unify">unify</a> returns an association list and <tt>bind</tt> binds the
associations.</p>
<br/><br/>
<a name="binomial"></a>
<h2><span class="function">binomial</span></h2>
<h4>syntax: (binomial <em>int-n</em> <em>int-k</em> <em>float-p</em>)</h4>
<p>
The binomial distribution function is defined as the probability for an event
to occur <em>int-k</em> times in <em>int-n</em> trials if that event has a
probability of <em>float-p</em> and all trials are independent of one another:</p>
<em><b>binomial = pow(p, k) * pow(1.0 - p, n - k) * n! / (k! * (n - k)!)</b></em>
<p>
where <em>x!</em> is the factorial of <em>x</em>
and <em>pow(x, y)</em> is <em>x</em> raised to the power of <em>y</em>.
</p>
<br/>
<!-- example -->
<pre>
(binomial 10 3 0.5) <span class='arw'>→</span> 0.1171875
</pre>
<p>
The example calculates the probability for an event
with a probability of 0.5 to occur 3 times in 10 trials.
For a cumulated distribution,
see the <a href="#betai">betai</a> function.
</p>
<br/><br/>
<a name="bits"></a>
<h2><span class="function">bits</span></h2>
<h4>syntax: (bits <em>int</em> [<em>bool</em>])</h4>
<p>Transforms a number in <em>int</em> to a string of 1's and 0's or a
list, if <em>bool</em> evaluates to anything not <tt>nil</tt>.</p>
<p>In string representation bits are in high to low order. In list
presentation 1's and 0's are represented as <tt>true</tt> and <tt>nil</tt>
and in order from the lowest to the highest bit. This allows direct
indexing and program control switching on the result.</p>
<!-- example -->
<pre>
(bits 1234) <span class='arw'>→</span> "10011010010"
(int (bits 1234) 0 2) <span class='arw'>→</span> 1234
(bits 1234 true) <span class='arw'>→</span> (nil true nil nil true nil true true nil nil true)
((bits 1234 true) 0) <span class='arw'>→</span> nil ; indexing of the result
</pre>
<p><a href="#int">int</a> with a base of 2 is the inverse function to <tt>bits</tt>.</p>
<br/><br/>
<a name="callback"></a>
<h2><span class="function"> callback </span></h2>
<h4>syntax: (callback <em>int-index</em> <em>sym-function</em>)<br/>
syntax: (callback <em>sym-function</em> <em>str-return-type</em> [<em>str_param_type</em> ...])<br/>
syntax: (callback <em>sym-function</em>)</h4>
<p>In the first <b>simple <tt>callback</tt> syntax</b> up to sixteen (0 to 15) <em>callback</em>
functions for up to eight parameters can be registered with imported libraries.
The <tt>callback</tt> function returns a procedure address that invokes a
user-defined function in <em>sym-function</em>. The following example shows
the usage of callback functions when importing the <a href="http://www.opengl.org">OpenGL</a>
graphics library:</p>
<p>If more than sixteen callback functions are required, slots must be
reassigned to a different callback function.</p>
<!-- example -->
<pre>
...
(define (draw)
(glClear GL_COLOR_BUFFER_BIT )
(glRotated rotx 0.0 1.0 0.0)
(glRotated roty 1.0 0.0 0.0)
(glutWireTeapot 0.5)
(glutSwapBuffers))
(define (keyboard key x y)
(if (= (& key 0xFF) 27) (exit)) ; exit program with ESC
(println "key:" (& key 0xFF) " x:" x " y:" y))
(define (mouse button state x y)
(if (= state 0)
(glutIdleFunc 0) ; stop rotation on button press
(glutIdleFunc (callback 4 'rotation)))
(println "button: " button " state:" state " x:" x " y:" y))
(glutDisplayFunc (callback 0 'draw))
(glutKeyboardFunc (callback 1 'keyboard))
(glutMouseFunc (callback 2 'mouse))
...
</pre>
<p>The address returned by <tt>callback</tt> is registered with the
<a href="http://www.opengl.org/documentation/specs/glut/spec3/spec3.html">Glut</a> library.
The above code is a snippet from the file <tt>opengl-demo.lsp</tt>,
in the <tt>examples/</tt> directory of the source distribution of newLISP
and can also be downloaded from
<a href="http://www.newlisp.org/downloads/OpenGL/">newlisp.org/downloads/OpenGL</a>.</p>
<p>In the second <b>extended <tt>callback</tt> syntax</b> type specifiers are used to
describe the functions return and parameter value types when the function is called.
An unlimited number of callback functions can be registered with the second syntax, and
return values are passed back to the calling function. The symbol in <em>sym-function</em>
contains a newLISP defined function used as a callback function callable from a C program.</p>
<p>In the third syntax <tt>callback</tt> returns a previously returned C-callable
address for that symbol.</p>
<p>While the first simple <tt>callback</tt> syntax only handles integers and pointer
values, <tt>callback</tt> in the expanded syntax can also handle simple and double precision
floating point numbers passed in an out of the <tt>callback</tt> function.</p>
<p>Both the simple and extended syntax can be mixed inside the same program.</p>
<p>The following example shows the <a href="#import">import</a> of the <tt>qsort</tt>
C library function, which takes as one of it's arguments the address of a comparison
function. The comparison function in this case is written in newLISP and called into
by the imported <tt>qsort</tt> function:</p>
<pre>
; C void qsort(...) takes an integer array with number and width
; of array elements and a pointer to the comparison function
(import "libc.dylib" "qsort" "void" "void*" "int" "int" "void*")
(set 'rlist '(2 3 1 2 4 4 3 3 0 3))
; pack the list into an C readable 32-bit integer array
(set 'carray (pack (dup "ld " 10) rlist))
; the comparison callback function receives pointers to integers
(define (cmp a b)
(- (get-int a) (get-int b)))
; generate a C callable address for cmp
(set 'func (callback 'cmp "int" "void*" "void*"))
; sort the carray
(qsort carray 10 4 func)
; unpack the sorted array into a LISP list
(unpack (dup "ld" 10) carray) <span class='arw'>→</span> (0 1 2 2 3 3 3 3 4 4)
</pre>
<p>As type specifiers the same string tags can be used as in the
<a href="#import">import</a> function. All pointer types are passed as numbers in and
out of the <tt>callback</tt> function. The functions <a href="#get-char">get-char</a>,
<a href="#get-int">get-int</a>, <a href="#get-long">get-long</a> and
<a href="#get-string">get-string</a> can be used to extract numbers of
different precision from parameters. Use <a href="#pack">pack</a> and
<a href="#unpack">unpack</a> to extract data from binary buffers and structures.</p>
<p>Note that newLISP as already a fast built-in <a href="#sort">sort</a> function.</p>
<br/><br/>
<a name="case"></a>
<h2><span class="function">case</span></h2>
<h4>syntax: (case <em>exp-switch</em> (<em>exp-1</em> <em>body-1</em>) [(<em>exp-2</em> <em>body-2</em>) ... ])</h4>
<p>The result of evaluating <em>exp-switch</em>
is compared to each of the <em>unevaluated</em> expressions
<em>exp-1, exp-2,</em> —. If a match is found, the
corresponding expressions in <em>body</em>
are evaluated. The result of the last body expression is returned
as the result for the entire <tt>case</tt> expression. </p>
<!-- example -->
<pre>
(define (translate n)
(case n
(1 "one")
(2 "two")
(3 "three")
(4 "four")
(true "Can't translate this")))
(translate 3) <span class='arw'>→</span> "three"
(translate 10) <span class='arw'>→</span> "Can't translate this"
</pre>
<p>
The example shows how,
if no match is found,
the last expression in the body of a <tt>case</tt> function
can be evaluated.
</p>
<br/><br/>
<a name="catch"></a>
<h2><span class="function">catch</span></h2>
<h4>syntax: (catch <em>exp</em>)<br/>
syntax: (catch <em>exp</em> <em>symbol</em>)</h4>
<p>
In the first syntax,
<tt>catch</tt> will return the result of the evaluation of <em>exp</em>
or the evaluated argument of a <a href="#throw">throw</a>
executed during the evaluation of <em>exp</em>:
</p>
<!-- example -->
<pre>
(catch (dotimes (x 1000)
(if (= x 500) (throw x)))) <span class='arw'>→</span> 500
</pre>
<p>
This form is useful for breaking out of iteration loops
and for forcing an early return
from a function or expression block:
</p>
<pre>
(define (foo x)
…
(if condition (throw 123))
…
456)
;; if condition is true
(catch (foo p)) <span class='arw'>→</span> 123
;; if condition is not true
(catch (foo p)) <span class='arw'>→</span> 456
</pre>
<p>
In the second syntax,
<tt>catch</tt> evaluates the expression <em>exp</em>,
stores the result in <em>symbol</em>,
and returns <tt>true</tt>.
If an error occurs during evaluation,
<tt>catch</tt> returns <tt>nil</tt>
and stores the error message in <em>symbol</em>.
This form can be useful when errors are expected
as a normal potential outcome of a function
and are dealt with during program execution.
</p>
<!-- example -->
<pre>
(catch (func 3 4) 'result) <span class='arw'>→</span> nil
result
<span class='arw'>→</span> <span class='err'>"ERR: invalid function in function catch : (func 3 4)"</span>
(constant 'func +) <span class='arw'>→</span> + <4068A6>
(catch (func 3 4) 'result) <span class='arw'>→</span> true
result <span class='arw'>→</span> 7
</pre>
<p>
When a <a href="#throw">throw</a> is executed during the evaluation of <em>exp</em>,
<tt>catch</tt> will return <tt>true</tt>,
and the <tt>throw</tt> argument will be stored in <em>symbol</em>:
</p>
<pre>
(catch (dotimes (x 100)
(if (= x 50) (throw "fin"))) 'result) <span class='arw'>→</span> true
result <span class='arw'>→</span> "fin"
</pre>
<p>
As well as being used for early returns from functions and
for breaking out of iteration loops (as in the first syntax),
the second syntax of <tt>catch</tt> can also be used to catch errors.
The <a href="#throw-error">throw-error</a> function may be used
to throw user-defined errors.
</p>
<br/><br/>
<a name="ceil"></a>
<h2><span class="function">ceil</span></h2>
<h4>syntax: (ceil <em>number</em>)</h4>
<p>
Returns the next highest integer above <em>number</em>
as a floating point.
</p>
<!-- example -->
<pre>
(ceil -1.5) <span class='arw'>→</span> -1
(ceil 3.4) <span class='arw'>→</span> 4
</pre>
<p>See also the <a href="#floor">floor</a> function.
</p>
<br/><br/>
<a name="change-dir"></a>
<h2><span class="function">change-dir</span></h2>
<h4>syntax: (change-dir <em>str-path</em>)</h4>
<p>
Changes the current directory to be the one given in <em>str-path</em>.
If successful, <tt>true</tt> is returned; otherwise <tt>nil</tt> is returned.
</p>
<!-- example -->
<pre>
(change-dir "/etc")
</pre>
<p>
Makes <tt>/etc</tt> the current directory.
</p>
<br/><br/>
<a name="char"></a>
<h2><span class="function">char</span> <font size="-1"><a href="#utf8_capable">utf8</a></font></h2>
<h4>syntax: (char <em>str</em> [<em>int-index</em> [true]])<br/>
syntax: (char <em>int</em>)</h4>
<p>Given a string argument, extracts the character at <em>int-index</em> from <em>str</em>,
returning either the ASCII value of that character or the Unicode value on UTF-8 enabled
versions of newLISP.</p>
<p>If <em>int-index</em> is omitted, 0 (zero) is assumed. If <em>int-idx</em>
is followed by a boolean <tt>true</tt> value, than the index treats <em>str</em> as an 8-bit byte
array instead of an array of multi-byte UTF-8 characters.</p>
<p>The empty string returns <tt>nil</tt>. Both <tt>(char 0)</tt> and <tt>(char nil)</tt> will
return <tt>"\000"</tt>.</p>
<p>
See <a href="#indexing">Indexing elements of strings and lists</a>.
</p>
<p>
Given an integer argument,
<tt>char</tt> returns a string containing the ASCII character
with value <em>int</em>.
</p>
<p>
On UTF-8–enabled versions of newLISP, the value in <em>int</em>
is taken as Unicode and a UTF-8 character is returned.
</p>
<!-- example -->
<pre>
(char "ABC") <span class='arw'>→</span> 65 ; ASCII code for "A"
(char "ABC" 1) <span class='arw'>→</span> 66 ; ASCII code for "B"
(char "ABC" -1) <span class='arw'>→</span> 67 ; ASCII code for "C"
(char "B") <span class='arw'>→</span> 66 ; ASCII code for "B"
(char "Ω") <span class='arw'>→</span> 937 ; UTF-8 code for "Ω"
(char "Ω" 1 true) <span class='arw'>→</span> 169 ; byte value at offset 1
(char 65) <span class='arw'>→</span> "A"
(char 66) <span class='arw'>→</span> "B"
(char (char 65)) <span class='arw'>→</span> 65 ; two inverse applications
(map char (sequence 1 255)) ; returns current character set
; The Zen of UTF-8
(char (& (char "生") (char "死"))) <span class='arw'>→</span> 愛 ; by @kosh_bot
</pre>
<br/><br/>
<a name="chop"></a>
<h2><span class="function">chop</span> <font size="-1"><a href="#utf8_capable">utf8</a></font></h2>
<h4>syntax: (chop <em>str</em> [<em>int-chars</em>])<br/>
syntax: (chop <em>list</em> [<em>int-elements</em>])</h4>
<p>
If the first argument evaluates to a string,
<tt>chop</tt> returns a copy of <em>str</em>
with the last <em>int-char</em> characters omitted.
If the <em>int-char</em> argument is absent,
one character is omitted.
<tt>chop</tt> does not alter <em>str</em>.</p>
<p>
If the first argument evaluates to a list,
a copy of <em>list</em> is returned
with <em>int-elements</em> omitted
(same as for strings).
</p>
<!-- example -->
<pre>
(set 'str "newLISP") <span class='arw'>→</span> "newLISP"
(chop str) <span class='arw'>→</span> "newLIS"
(chop str 2) <span class='arw'>→</span> "newLI"
str <span class='arw'>→</span> "newLISP"
(set 'lst '(a b (c d) e))
(chop lst) <span class='arw'>→</span> (a b (c d))
(chop lst 2) <span class='arw'>→</span> (a b)
lst <span class='arw'>→</span> (a b (c d) e)
</pre>
<br/><br/>
<a name="clean"></a>
<h2><span class="function">clean</span></h2>
<h4>syntax: (clean <em>exp-predicate</em> <em>list</em>)</h4>
<p>
The predicate <em>exp-predicate</em> is applied
to each element of <em>list</em>.
In the returned list,
all elements for which <em>exp-predicate</em> is <tt>true</tt>
are eliminated.
</p>
<p>
<tt>clean</tt> works like <a href="#filter">filter</a>
with a negated predicate.
</p>
<!-- example -->
<pre>
(clean symbol? '(1 2 d 4 f g 5 h)) <span class='arw'>→</span> (1 2 4 5)
(filter symbol? '(1 2 d 4 f g 5 h)) <span class='arw'>→</span> (d f g h)
(define (big? x) (> x 5)) <span class='arw'>→</span> (lambda (x) (> x 5))
(clean big? '(1 10 3 6 4 5 11)) <span class='arw'>→</span> (1 3 4 5)
(clean <= '(3 4 -6 0 2 -3 0)) <span class='arw'>→</span> (3 4 2)
(clean (curry match '(a *)) '((a 10) (b 5) (a 3) (c 8) (a 9)))
<span class='arw'>→</span> ((b 5) (c 8))
</pre>
<p>
The predicate may be a built-in predicate
or a user-defined function or lambda expression.
</p>
<p>
For cleaning numbers from one list
using numbers from another,
use <a href="#difference">difference</a>
or <a href="#intersect">intersect</a>
(with the list mode option).
</p>
<p>
See also the related function <a href="#index">index</a>,
which returns the indices of the remaining elements,
and <a href="#filter">filter</a>,
which returns all elements for which a predicate returns true.
</p>
<br/><br/>
<a name="close"></a>
<h2><span class="function">close</span></h2>
<h4>syntax: (close <em>int-file</em>)</h4>
<p>
Closes the file specified by the file handle in <em>int-file</em>.
The handle would have been obtained
from a previous <a href="#open">open</a> operation.
If successful, <tt>close</tt> returns <tt>true</tt>; otherwise <tt>nil</tt> is returned.
</p>
<!-- example -->
<pre>
(close (device)) <span class='arw'>→</span> true
(close 7) <span class='arw'>→</span> true
(close aHandle) <span class='arw'>→</span> true
</pre>
<p>
Note that using <tt>close</tt> on <a href="#device">device</a>
automatically resets it to 0 (zero, the screen device).
</p>
<br/><br/>
<a name="collect"></a>
<h2><span class="function">collect</span></h2>
<h4>syntax: (collect <em>exp</em> [<em>int-max-count</em>])</h4>
<p>Evaluates the expression in <em>exp</em> and collects the results in a list
until evaluation of <em>exp</em> returns <tt>nil</tt>.</p>
<p>Optionally a maximum count of elements can be specified in <em>int-max-count</em>.</p>
<pre>
; collect results until nil is returned
(set 'x 0)
(collect (if (<= (inc x) 10) x)) <span class='arw'>→</span> (1 2 3 4 5 6 7 8 9 10)
; collect results until nil is returned or 6 results are collected
(set 'x 0)
(collect (if (<= (inc x) 10) x) 6) <span class='arw'>→</span> (1 2 3 4 5 6)
</pre>
<br/><br/>
<a name="command-event"></a>
<h2><span class="function">command-event</span></h2>
<h4>syntax: (command-event <em>sym-event-handler</em> | <em>func-event-handler</em>)<br/>
syntax: (command-event nil)</h4>
<p>Specifies a user defined function for pre-processing the newLISP command-line
before it gets evaluated. This can be used to write customized interactive
newLISP shells and to transform HTTP requests when running in server mode.</p>
<p><tt>command-event</tt> takes either a symbol of a user-defined function or a lambda
function. The event-handler function must return a string or the command-line will be
passed untranslated to newLISP.</p>
<p>To only force a prompt and disable command processing, the function should return
the empty string <tt>""</tt>. To reset <tt>command-event</tt>, use the second syntax.</p>
<p>The following example makes the newLISP shell work like a normal Unix
shell when the command starts with a letter. But starting the line with an open
parenthesis or a space initiates a newLISP evaluation.</p>
<!-- example -->
<pre>
(command-event (fn (s)
(if (starts-with s "[a-zA-Z]" 0) (append "!" s) s)))
</pre>
<p>See also the related <a href="#prompt-event">prompt-event</a> which can be used
for further customizing interactive mode by modifying the newLISP prompt.</p>
<p>The following program can be used either stand-alone or included in newLISP's
<tt>init.lsp</tt> startup file:</p>
<pre>
#!/usr/local/bin/newlisp
; set the prompt to the current directory name
(prompt-event (fn (ctx) (append (real-path) "> ")))
; pre-process the command-line
(command-event (fn (s)
(if
(starts-with s "cd")
(string " " (true? (change-dir (last (parse s " ")))))
(starts-with s "[a-zA-Z]" 0)
(append "!" s)
true s)))
</pre>
<p>In the definition of the command-line translation function the Unix
command <tt>cd</tt> gets a special treatment, to make sure that the directory
is changed for newLISP process too. This way when shelling out with <tt>!</tt> and
coming back, newLISP will maintain the changed directory.</p>
<p>Command lines for newLISP must start either with a space or an opening
parenthesis. Unix commands must start at the beginning of the line.</p>
<p>When newLISP is running in server mode either using the <tt>-c</tt> or
<tt>-http</tt> option, it receives HTTP requests similar to the following:</p>
<pre>
GET /index.html
</pre>
<p>Or if a query is involved:</p>
<pre>
GET /index.cgi?userid=joe&password=secret
</pre>
<p>A function specified by <tt>command-event</tt> could filter and transform
these request lines, e.g.: discovering all queries trying to perform CGI using
a file ending in <tt>.exe</tt>. Such a request would be translated into a
request for an error page:</p>
<pre>
;; httpd-conf.lsp
;;
;; filter and translate HTTP requests for newLISP
;; -c or -http server modes
;; reject query commands using CGI with .exe files
(command-event (fn (s)
(let (request s)
(when (find "?" s) ; is this a query
(set 'request (first (parse s "?")))
; discover illegal extension in queries
(when (ends-with request ".exe")
(set 'request "GET /errorpage.html")) )
request)
))
</pre>
<p>When starting the server mode with <tt>newlisp httpd-conf.lsp -c -d80 -w ./httpdoc</tt>
newLISP will load the definition for <tt>command-event</tt> for filtering incoming
requests, and the query:</p>
<pre>
GET /cmd.exe?dir
</pre>
<p>Would be translated into:</p>
<pre>
GET /errorpage.html
</pre>
<p>The example shows a technique frequently used in the past by spammers on MS
Windows based, bad configured web servers to gain control over servers.</p>
<p><tt>httpd-conf.lsp</tt> files can easily be debugged loading the file into an interactive
newLISP session and entering the HTTP requests manually. newLISP will translate the command
line and dispatch it to the built-in web server. The server output will appear in the shell
window.</p>
<p>Note, that the command line length as well as the line length in HTTP headers is limited to 512 characters for newLISP.</p>
<br/><br/>
<a name="cond"></a>
<h2><span class="function">cond</span></h2>
<h4>syntax: (cond (<em>exp-condition-1</em> <em>body-1</em>) [(<em>exp-condition-2</em> <em>body-2</em>) ... ])</h4>
<p>
Like <tt>if</tt>, <tt>cond</tt> conditionally evaluates the expressions
within its body.
The <em>exp-condition</em>s are evaluated in turn,
until some <em>exp-condition-i</em> is found
that evaluates to anything other than <tt>nil</tt>
or an empty list <tt>()</tt>.
The result of evaluating <em>body-i</em>
is then returned as the result of the entire <em>cond-expression</em>.
If all conditions evaluate to <tt>nil</tt>
or an empty list,
<em>cond</em> returns the value of the last <em>cond-expression</em>.
</p>
<!-- example -->
<pre>
(define (classify x)
(cond
((< x 0) "negative")
((< x 10) "small")
((< x 20) "medium")
((>= x 30) "big")))
(classify 15) <span class='arw'>→</span> "medium"
(classify 22) <span class='arw'>→</span> "nil"
(classify 100) <span class='arw'>→</span> "big"
(classify -10) <span class='arw'>→</span> "negative"
</pre>
<p>
When a <em>body-n</em> is missing,
the value of the last <em>cond-expression</em> evaluated
is returned.
If no condition evaluates to <tt>true</tt>,
the value of the last conditional expression is returned
(i.e., <tt>nil</tt> or an empty list).
</p>
<pre>
(cond ((+ 3 4))) <span class='arw'>→</span> 7
</pre>
<p>
When used with multiple arguments,
the function <a href="#if">if</a>
behaves like <tt>cond</tt>,
except it does not need extra parentheses
to enclose the condition-body pair
of expressions.
</p>
<br/><br/>
<a name="cons"></a>
<h2><span class="function">cons</span></h2>
<h4>syntax: (cons <em>exp-1</em> <em>exp-2</em>)</h4>
<p>
If <em>exp-2</em> evaluates to a list,
then a list is returned with the result of evaluating <em>exp-1</em>
inserted as the first element.
If <em>exp-2 </em>evaluates to anything other than a list,
the results of evaluating <em>exp-1</em> and <em>exp-2</em>
are returned in a list.
Note that there is no <em>dotted pair</em> in newLISP:
<em>cons</em>ing two atoms constructs a list, not a dotted pair.
</p>
<!-- example -->
<pre>
(cons 'a 'b) <span class='arw'>→</span> (a b)
(cons 'a '(b c)) <span class='arw'>→</span> (a b c)
(cons (+ 3 4) (* 5 5)) <span class='arw'>→</span> (7 25)
(cons '(1 2) '(3 4)) <span class='arw'>→</span> ((1 2) 3 4)
(cons nil 1) <span class='arw'>→</span> (nil 1)
(cons 1 nil) <span class='arw'>→</span> (1 nil)
(cons 1) <span class='arw'>→</span> (1)
(cons) <span class='arw'>→</span> ()
</pre>
<p>
Unlike other Lisps that return <tt>(s)</tt>
as the result of the expression <tt>(cons 's nil)</tt>,
newLISP's <tt>cons</tt> returns <tt>(s nil)</tt>.
In newLISP, <tt>nil</tt> is a Boolean value
and is not equivalent to an empty list,
and a newLISP cell holds only one value.
</p>
<p>
<tt>cons</tt> behaves like the inverse operation of <a href="#first">first</a>
and <a href="#rest">rest</a>
(or <a href="#first">first</a> and <a href="#last">last</a> if the list is a pair):
</p>
<pre>
(cons (first '(a b c)) (rest '(a b c))) <span class='arw'>→</span> (a b c)
(cons (first '(x y)) (last '(x y))) <span class='arw'>→</span> (x y)
</pre>
<br/><br/>
<a name="constant"></a>
<h2><span class="function">constant</span> <a href="#destructive">!</a></h2>
<h4>syntax: (constant <em>sym-1</em> <em>exp-1</em> [<em>sym-2</em> <em>exp-2</em>] ...)</h4>
<p>
Identical to <a href="#set">set</a> in functionality,
<tt>constant</tt> further protects the symbols from subsequent modification.
A symbol set with <tt>constant</tt> can only be modified
using the <tt>constant</tt> function again.
When an attempt is made to modify the contents of a symbol protected with <tt>constant</tt>,
newLISP generates an error message.
Only symbols from the current context can be used with <tt>constant</tt>.
This prevents the overwriting of symbols
that have been protected in their home context.
The last <em>exp-n</em> initializer is always optional.
</p>
<p>
Symbols initialized with <a href="#set">set</a>, <a href="#define">define</a>,
or <a href="#define-macro"> define-macro</a> can still be protected by using
the <tt>constant</tt> function:
</p>
<pre>
(constant 'aVar 123) <span class='arw'>→</span> 123
(set 'aVar 999)
<span class='err'>ERR: symbol is protected in function set: aVar</span>
(define (double x) (+ x x))
(constant 'double)
;; equivalent to
(constant 'double (fn (x) (+ x x)))
</pre>
<p>
The first example defines a constant, <tt>aVar</tt>,
which can only be changed by using another <tt>constant</tt> statement.
The second example protects <tt>double</tt> from being changed
(except by <tt>constant</tt>).
Because a function definition in newLISP
is equivalent to an assignment of a lambda function,
both steps can be collapsed into one,
as shown in the last statement line.
This could be an important technique
for avoiding protection errors
when a file is loaded multiple times.
</p>
<p>
The last value to be assigned can be omitted.
<tt>constant</tt> returns the contents of
the last symbol set and protected.
</p>
<p>
Built-in functions can be assigned to symbols
or to the names of other built-in functions,
effectively redefining them as different functions.
There is no performance loss when renaming functions.
</p>
<pre>
(constant 'squareroot sqrt) <span class='arw'>→</span> sqrt <406C2E>
(constant '+ add) <span class='arw'>→</span> add <4068A6>
</pre>
<p>
<tt>squareroot</tt> will behave like <tt>sqrt</tt>.
The <tt>+</tt> (plus sign) is redefined
to use the mixed type floating point mode of <tt>add</tt>.
The hexadecimal number displayed in the result
is the binary address of the built-in function
and varies on different platforms and OSes.
</p>
<br/><br/>
<a name="context"></a>
<h2><span class="function">context</span></h2>
<h4>syntax: (context [<em>sym-context</em>])<br/>
syntax: (context <em>sym-context</em> <em>str | sym</em> [<em>exp-value</em>])</h4>
<p> In the first syntax, <tt>context</tt> is used to switch to a different context namespace.
Subsequent <a href="#load">load</a>s of newLISP source or functions like
<a href="#eval-string">eval-string</a> and <a href="#sym">sym</a> will put newly created
symbols and function definitions in the new context.</p>
<p>If the context still needs to be created, the symbol for the new context should be specified.
When no argument is passed to <tt>context</tt>, then the symbol for the current context is returned. </p>
<p>Because contexts evaluate to themselves, a quote is not necessary
to switch to a different context if that context already exists.
</p>
<!-- example -->
<pre>
(context 'GRAPH) ; create / switch context GRAPH
(define (foo-draw x y z) ; function resides in GRAPH
(…))
(set 'var 12345)
(symbols) <span class='arw'>→</span> (foo-draw var) ; GRAPH has now two symbols
(context MAIN) ; switch back to MAIN (quote not required)
(print GRAPH:var) <span class='arw'>→</span> 12345 ; contents of symbol in GRAPH
(GRAPH:foo-draw 10 20 30) ; execute function in GRAPH
(set 'GRAPH:var 6789) ; assign to a symbol in GRAPH
</pre>
<p>
If a context symbol is referred to before the context exists,
the context will be created implicitly.
</p>
<pre>
(set 'person:age 0) ; no need to create context first
(set 'person:address "") ; useful for quickly defining data structures
</pre>
<p>
Contexts can be copied:
</p>
<pre>
(new person 'JohnDoe) <span class='arw'>→</span> JohnDoe
(set 'JohnDoe:age 99)
</pre>
<p>
Contexts can be referred to by a variable:
</p>
<pre>
(set 'human JohnDoe)
human:age <span class='arw'>→</span> 99
(set 'human:address "1 Main Street")
JohnDoe:address <span class='arw'>→</span> "1 Main Street"
</pre>
<p>An evaluated context (no quote) can be given as an argument:
</p>
<pre>
<b>></b> (context 'FOO)
<b>FOO</b>
<b>FOO></b> (context MAIN)
<b>MAIN</b>
<b>></b> (set 'old FOO)
FOO
<b>></b> (context 'BAR)
<b>BAR</b>
<b>BAR></b> (context MAIN:old)
<b>FOO</b>
<b>FOO></b>
</pre>
<p>
If an identifier with the same symbol already exists,
it is redefined to be a context.
</p>
<p>
Symbols within the current context
are referred to simply by their names,
as are built-in functions and special symbols
like <tt>nil</tt> and <tt>true</tt>.
Symbols outside the current context
are referenced by prefixing the symbol name
with the context name and a <tt>:</tt> (colon).
To quote a symbol in a different context,
prefix the context name with a <tt>'</tt> (single quote).
</p>
<p>
Within a given context, symbols may be created
with the same name as built-in functions
or context symbols in MAIN.
This overwrites the symbols in MAIN
when they are prefixed with a context:
</p>
<pre>
(context 'CTX)
(define (CTX:new var)
(…))
(context 'MAIN)
</pre>
<p><tt>CTX:new</tt> will overwrite new in MAIN.</p>
<p> In the second syntax, <tt>context</tt> can be used to create symbols in a namespace.
Note that this should not be used for creating hashes or dictionaries. For a shorter,
more convenient method to use namespaces as hash-like dictionaries, see the chapter
<a href="#hash">Hash functions and dictionaries</a>.
</p>
<pre>
;; create a symbol and store data in it
(context 'Ctx "abc" 123) <span class='arw'>→</span> 123
(context 'Ctx 'xyz 999) <span class='arw'>→</span> 999
;; retrieve contents from symbol
(context 'Ctx "abc") <span class='arw'>→</span> 123
(context 'Ctx 'xyz) <span class='arw'>→</span> 999
Ctx:abc <span class='arw'>→</span> 123
Ctx:xyz <span class='arw'>→</span> 999
</pre>
<p>
The first three statements create a symbol and store a value of any data type inside.
The first statement also creates the context named <tt>Ctx</tt>.
When a symbol is specified for the name, the name is taken
from the symbol and creates a symbol with the same name
in the context <tt>Ctx</tt>.
</p>
<p>
Symbols can contain spaces or any other special characters
not typically allowed in newLISP symbols being used as variable names.
This second syntax of <tt>context</tt> only creates the new symbol
and returns the value contained in it. It does not switch to the new namespace.
</p>
<br/><br/>
<a name="contextp"></a>
<h2><span class="function">context?</span></h2>
<h4>syntax: (context? <em>exp</em>)<br/>
syntax: (context? <em>exp</em> <em>str-sym</em>)</h4>
<p>
In the first syntax,
<em>context?</em> is a predicate that returns <tt>true</tt>
only if <em>exp</em> evaluates to a context;
otherwise, it returns <tt>nil</tt>.
</p>
<!-- example -->
<pre>
(context? MAIN) <span class='arw'>→</span> true
(set 'x 123)
(context? x) <span class='arw'>→</span> nil
(set 'FOO:q "hola") <span class='arw'>→</span> "hola"
(set 'ctx FOO)
(context? ctx) <span class='arw'>→</span> true ; ctx contains context foo
</pre>
<p>
The second syntax checks for the existence of a symbol in a context.
The symbol is specified by its name string in <em>str-sym</em>.
</p>
<pre>
(context? FOO "q") <span class='arw'>→</span> true
(context? FOO "p") <span class='arw'>→</span> nil
</pre>
<p>
Use <a href="#context">context</a> to change and create namespaces
and to create hash symbols in contexts.
</p>
<br/><br/>
<a name="copy"></a>
<h2><span class="function">copy</span></h2>
<h4>syntax: (copy <em>exp</em>)<br/>
syntax: (copy <em>int-addr</em> [<em>bool-flag</em>])</h4>
<p>The first syntax makes a copy from evaluating expression in <em>exp</em>.
Some built-in functions are <a href="#destructice">destructive</a>, changing
the original contents of a list, array or string they are working on.
With <tt>copy</tt> their behavior can be made non-destructive.</p>
<pre>
(set 'aList '(a b c d e f))
(replace 'c (copy aList)) <span class='arw'>→</span> (a b d e f)
aList <span class='arw'>→</span> (a b c d e f)
(set 'str "newLISP") <span class='arw'>→</span> "newLISP"
(rotate (copy str)) <span class='arw'>→</span> "PnewLIS"
str <span class='arw'>→</span> "newLISP"
</pre>
<p>Using <tt>copy</tt> the functions <a href="#replace">replace</a> and
<a href="#rotate">rotate</a> are prevented from changing the data.
A modified version of the data is returned.</p>
<p>The second syntax, marked by the <tt>true</tt> in <em>bool-flag</em>,
copies a newLISP expression from a memory address.The following two
expressions are equivalent:</p>
<pre>
(set 'x "hello world")
(copy x) <span class='arw'>→</span> "hello world"
(copy (first (dump x)) true) <span class='arw'>→</span> "hello world"
</pre>
<p>The second syntax can be useful when interfacing with C-code generating
newLISP expressions.</p>
<br/><br/>
<a name="copy-file"></a>
<h2><span class="function">copy-file</span></h2>
<h4>syntax: (copy-file <em>str-from-name</em> <em>str-to-name</em>)</h4>
<p>
Copies a file from a path-filename given in <em>str-from-name</em>
to a path-filename given in <em>str-to-name</em>.
Returns <tt>true</tt> if the copy was successful or <tt>nil</tt>,
if the copy was unsuccessful.
</p>
<!-- example -->
<pre>
(copy-file "/home/me/newlisp/data.lsp" "/tmp/data.lsp")
</pre>
<br/><br/>
<a name="corr"></a>
<h2><span class="function">corr</span></h2>
<h4>syntax: (corr <em>list-vector-X</em> <em>list-vector-Y</em>)</h4>
<p>Calculates the <em>Pearson</em> product-moment correlation coefficient as a measure
of the linear relationship between the two variables in <em>list-vector-X</em>
and <em>list-vector-Y</em>. Both lists must be of same length.</p>
<p><tt>corr</tt> returns a list containing the following values:</p>
<table>
<tr align="left"><th>name</th><th>description</th></tr>
<tr><td>r</td><td>Correlation coefficient</td></tr>
<tr><td>b0</td><td>Regression coefficient offset</td></tr>
<tr><td>b1</td><td>Regression coefficient slope</td></tr>
<tr><td>t</td><td>t - statistic for significance testing</td></tr>
<tr><td>df</td><td>Degrees of freedom for t</td></tr>
<tr><td>p</td><td>Two tailed probability of t under the null hypothesis</td></tr>
</table>
<br />
<!-- example -->
<pre>
(set 'study-time '(90 100 130 150 180 200 220 300 350 400))
(set 'test-errors '(25 28 20 20 15 12 13 10 8 6))
(corr study-time test-errors) <span class='arw'>→</span> (-0.926 29.241 -0.064 -6.944 8 0.0001190)
</pre>
<p>The negative correlation of <tt>-0.926</tt> between study time and test errors is
highly significant with a two-tailed <tt>p</tt> of about <tt>0.0001</tt> under the null hypothesis.</p>
<p>The regression coefficients <tt>b0 = 29.241</tt> and <tt>b1 = -0.064</tt>
can be used to estimate values of the Y variable (test errors) from values in X (study time)
using the equation <tt><em><b>Y = b0 + b1 * X</b></em></tt>.</p>
<br/><br/>
<a name="cos"></a>
<h2><span class="function">cos</span></h2>
<h4>syntax: (cos <em>num-radians</em>)</h4>
<p>
Calculates the cosine of <em>num-radians</em>
and returns the result.
</p>
<!-- example -->
<pre>
(cos 1) <span class='arw'>→</span> 0.5403023059
(set 'pi (mul 2 (acos 0))) <span class='arw'>→</span> 3.141592654
(cos pi) <span class='arw'>→</span> -1
</pre>
<br/><br/>
<a name="cosh"></a>
<h2><span class="function">cosh</span></h2>
<h4>syntax: (cosh <em>num-radians</em>)</h4>
<p>Calculates the hyperbolic cosine of <em>num-radians</em>.
The hyperbolic cosine is defined mathematically as:
<em>(exp (x) + exp (-x)) / 2</em>.
An overflow to <tt>inf</tt> may occur
if <em>num-radians</em> is too large.</p>
<!-- example -->
<pre>
(cosh 1) <span class='arw'>→</span> 1.543080635
(cosh 10) <span class='arw'>→</span> 11013.23292
(cosh 1000) <span class='arw'>→</span> inf
(= (cosh 1) (div (add (exp 1) (exp -1)) 2)) <span class='arw'>→</span> true
</pre>
<br/><br/>
<a name="count"></a>
<h2><span class="function">count</span></h2>
<h4>syntax: (count <em>list-1</em> <em>list-2</em>)</h4>
<p>
Counts elements of <em>list-1</em> in <em>list-2</em>
and returns a list of those counts.
</p>
<!-- example -->
<pre>
(count '(1 2 3) '(3 2 1 4 2 3 1 1 2 2)) <span class='arw'>→</span> (3 4 2)
(count '(z a) '(z d z b a z y a)) <span class='arw'>→</span> (3 2)
(set 'lst (explode (read-file "myFile.txt")))
(set 'letter-counts (count (unique lst) lst))
</pre>
<p>
The second example counts all occurrences
of different letters in <tt>myFile.txt</tt>.
</p>
<p>
The first list in <tt>count</tt>,
which specifies the items to be counted in the second list,
should be unique.
For items that are not unique,
only the first instance will carry a count;
all other instances will display <tt>0</tt> (zero).
</p>
<br/><br/>
<a name="cpymem"></a>
<h2><span class="function">cpymem</span>
<a href="#shared-lib"><font size="+2">⚠</font></a></h2>
<h4>syntax: (cpymem <em>int-from-address</em> <em>int-to-address</em> <em>int-bytes</em>)</h4>
<p>Copies <em>int-bytes</em> of memory from <em>int-from-address</em>
to <em>int-to-address</em>. This function can be used for
direct memory writing/reading or for hacking newLISP internals
(e.g., type bits in newLISP cells, or building functions with binary
executable code on the fly).</p>
<p>Note that this function should only be used when familiar with newLISP internals.
<tt>cpymem</tt> can crash the system or make it unstable if used incorrectly.</p>
<!-- example -->
<pre>
(set 's "0123456789")
(cpymem "xxx" (+ (address s) 5) 3)
s <span class='arw'>→</span> "01234xxx89")
</pre>
<p>The example copies a string directly into a string variable.</p>
<p>The following example creates a new function from scratch,
runs a piece of binary code, and adds up two numbers.
This assembly language snippet shows the x86 (Intel CPU) code
to add up two numbers and return the result:</p>
<pre>
55 push ebp
8B EC mov ebp, esp
8B 45 08 mov eax, [ebp+08]
03 45 0C add eax, [ebp+0c]
5D pop ebp
C3 ret
; for Win32/stdcall change last line
C2 08 00 ret
</pre>
<p>The binary representation is attached to a new function created
in newLISP:</p>
<pre>
; set up 32-bit version of machine code
; on Windows use 32-bit version of newLISP
(set 'foo-code (append
(pack "bbbbbbbbbb" 0x55 0x8B 0xEC 0x8B 0x45 0x08 0x03 0x45 0x0C 0x5D)
(if (= ostype "Windows") (pack "bbb" 0xC2 0x08 0x00) (pack "b" 0xC3))))
; put a function cell template into foo, protect symbol from deletion
(constant 'foo print)
; put the correct type, either 'stdcall' or 'cdecl'
(cpymem (pack "ld" (if (= ostype "Windows") 8456 4360)) (first (dump foo)) 4)
; put the address of foo-code into the new function cell
(cpymem (pack "ld" (address foo-code)) (+ (first (dump foo)) 12) 4)
; take the name address from the foo symbol, copy into function cell
(set 'sym-name (first (unpack "lu" (+ (address 'foo) 8))))
(cpymem (pack "ld" sym-name) (+ (first (dump foo)) 8) 4)
; test the new function
(println "3 * 4 -> " (foo 3 4))
</pre>
<p>The last example will not work on all hardware platforms and OSs.</p>
<p>Use the <a href="#dump">dump</a> function to retrieve binary addresses
and the contents from newLISP cells.</p>
<br/><br/>
<a name="crc32"></a>
<h2><span class="function">crc32</span></h2>
<h4>syntax: (crc32 <em>str-data</em>)</h4>
<p>
Calculates a running 32-bit CRC (Circular Redundancy Check) sum
from the buffer in <em>str-data</em>,
starting with a CRC of <tt>0xffffffff</tt> for the first byte.
<tt>crc32</tt> uses an algorithm published
by <a href="http://www.w3.org">www.w3.org</a>.
</p>
<!-- example -->
<pre>
(crc32 "abcdefghijklmnopqrstuvwxyz") <span class='arw'>→</span> 1277644989
</pre>
<p>
<tt>crc32</tt> is often used to verify data integrity
in unsafe data transmissions.
</p>
<br/><br/>
<a name="crit-chi2"></a>
<h2><span class="function">crit-chi2</span></h2>
<h4>syntax: (crit-chi2 <em>num-probability</em> <em>int-df</em>)</h4>
<p>Calculates the critical minimum <em>Chi² </em> for a given confidence probability
<em>num-probability</em> under the null hypothesis and the degrees of freedom in
<em>int-df </em> for testing the significance of a statistical null hypothesis.</p>
<p>Note that versions prior to 10.2.0 took <em>(1.0 - p)</em> for the probability
instead of <em>p</em>.</p>
<!-- example -->
<pre>
(crit-chi2 0.01 4) <span class='arw'>→</span> 13.27670443
</pre>
<p>
See also the inverse function <a href="#prob-chi2">prob-chi2</a>.
</p>
<br/><br/>
<a name="crit-f"></a>
<h2><span class="function">crit-f</span></h2>
<h4>syntax: (crit-f <em>num-probability</em> <em>int-df1</em> <em>int-df2</em>)</h4>
<p>Calculates the critical minimum <em>F </em> for a given confidence probability
<em>num-probability</em> under the null hypothesis and the degrees of freedom
given in <em>int-df1</em> and <em>int-df2</em> for testing the significance of a
statistical null hypothesis using the <em>F-test</em>.</p>
<!-- example -->
<pre>
(crit-f 0.05 10 12) <span class='arw'>→</span> 2.753386727
</pre>
<p>
See also the inverse function <a href="#prob-f">prob-f</a>.
</p>
<br/><br/>
<a name="crit-t"></a>
<h2><span class="function">crit-t</span></h2>
<h4>syntax: (crit-t <em>num-probability</em> <em>int-df</em>)</h4>
<p>Calculates the critical minimum <em>Student's t</em> for a given confidence probability
<em>num-probability</em> under the null hypothesis and the degrees of freedom in
<em>int-df </em> for testing the significance of a statistical null hypothesis.
</p>
<!-- example -->
<pre>
(crit-t 0.05 14) <span class='arw'>→</span> 1.761310142
</pre>
<p>
See also the inverse function <a href="#prob-t">prob-t</a>.
</p>
<br/><br/>
<a name="crit-z"></a>
<h2><span class="function">crit-z</span></h2>
<h4>syntax: (crit-z <em>num-probability</em>)</h4>
<p>Calculates the critical normal distributed Z value
of a given cumulated probability <em>num-probability</em>
for testing of statistical significance and confidence intervals.</p>
<!-- example -->
<pre>
(crit-z 0.999) <span class='arw'>→</span> 3.090232372
</pre>
<p>
See also the inverse function <a href="#prob-z">prob-z</a>.
</p>
<br/><br/>
<a name="current-line"></a>
<h2><span class="function">current-line</span></h2>
<h4>syntax: (current-line)</h4>
<p>
Retrieves the contents of the last
<a href="#read-line">read-line</a> operation.
<tt>current-line</tt>'s contents are also implicitly used
when <a href="#write-line">write-line</a>
is called without a string parameter.
</p>
<p>
The following source shows the typical code pattern
for creating a Unix command-line filter:
</p>
<!-- example -->
<pre>
#!/usr/local/bin/newlisp
(set 'inFile (open (main-args 2) "read"))
(while (read-line inFile)
(if (starts-with (current-line) ";;")
(write-line)))
(exit)
</pre>
<p>
The program is invoked:
</p>
<pre>
./filter myfile.lsp
</pre>
<p>
This displays all comment lines starting with <tt>;;</tt>
from a file given as a command-line argument
when invoking the script <tt>filter</tt>.
</p>
<br/><br/>
<a name="curry"></a>
<h2><span class="function">curry</span></h2>
<h4>syntax: (curry <em>func</em> <em>exp</em>)</h4>
<p>Transforms <em>func</em> from a function <em>f(x, y)</em> that takes
two arguments into a function <em>fx(y)</em> that takes a single argument.
<tt>curry</tt> works like a macro in that it does not evaluate its arguments.
Instead, they are evaluated during the application of <em>func</em>.</p>
<!-- example -->
<pre>
(set 'f (curry + 10)) <span class='arw'>→</span> (lambda ($x) (+ 10 $x))
(f 7) <span class='arw'>→</span> 17
(filter (curry match '(a *)) '((a 10) (b 5) (a 3) (c 8) (a 9)))
<span class='arw'>→</span> ((a 10) (a 3) (a 9))
(clean (curry match '(a *)) '((a 10) (b 5) (a 3) (c 8) (a 9)))
<span class='arw'>→</span> ((b 5) (c 8))
(map (curry list 'x) (sequence 1 5))
<span class='arw'>→</span> ((x 1) (x 2) (x 3) (x 4) (x 5))
</pre>
<p><tt>curry</tt> can be used on all functions taking two arguments.</p>
<br/><br/>
<a name="date"></a>
<h2><span class="function">date</span> <font size="-1"><a href="#utf8_capable">utf8</a></font></h2>
<h4>syntax: (date)<br/>
syntax: (date <em>int-secs</em> [<em>int-offset</em>])<br/>
syntax: (date <em>int-secs</em> <em>int-offset</em> <em>str-format</em>)</h4>
<p>
The first syntax returns the local time zone's
current date and time as a string representation.
If <em>int-secs</em> is out of range, <tt>nil</tt> is returned.
</p>
<p>
In the second syntax, <tt>date</tt> translates the number of seconds
in <em>int-secs</em> into its date/time string representation
for the local time zone.
The number in <em>int-secs</em> is usually retrieved from the system
using <a href="#date-value">date-value</a>.
Optionally, a time-zone offset (in minutes) can be specified
in <em>int-offset</em>, which is added
or subtracted before conversion of <em>int-sec</em> to a string.
If <em>int-secs</em> is out of range or an invalid <em>str-format</em>
is specified, an empty string <tt>""</tt> is returned.
</p>
<!-- example -->
<pre>
(date) <span class='arw'>→</span> "Fri Oct 29 09:56:58 2004"
(date (date-value)) <span class='arw'>→</span> "Sat May 20 11:37:15 2006"
(date (date-value) 300) <span class='arw'>→</span> "Sat May 20 16:37:19 2006" ; 5 hours offset
(date 0) <span class='arw'>→</span> "Wed Dec 31 16:00:00 1969"
(date 0 (now 0 -2)) <span class='arw'>→</span> "Thu Jan 1 00:00:00 1970" ; Unix epoch
</pre>
<p>The way the date and time are presented in a string
depends on the underlying operating system.</p>
<p>The second example would show 1-1-1970 0:0 when in the Greenwich time zone,
but it displays a time lag of 8 hours when in Pacific Standard Time (PST).
<tt>date</tt> assumes the <em>int-secs</em> given are in Coordinated Universal
Time (UTC; formerly Greenwich Mean Time (GMT)) and converts it according to the
local time-zone.</p>
<p>The third syntax makes the date string fully customizable by using a format
specified in <em>str-format</em>. This allows the day and month names to be
translated into results appropriate for the current locale:</p>
<!-- example -->
<pre>
(set-locale "german") <span class='arw'>→</span> "de_DE"
; on Linux - no leading 0 on day with %-d
(date (date-value) 0 "%A %-d. %B %Y") <span class='arw'>→</span> "Montag 7. März 2005"
(set-locale "C") ; default POSIX
(date (date-value) 0 "%A %B %d %Y") <span class='arw'>→</span> "Monday March 07 2005"
; suppressing leading 0 on MS Windows using #
(date (date-value) 0 "%a %#d %b %Y") <span class='arw'>→</span> "Mon 7 Mar 2005"
(set-locale "german")
(date (date-value) 0 "%x") <span class='arw'>→</span> "07.03.2005" ; day month year
(set-locale "C")
(date (date-value) 0 "%x") <span class='arw'>→</span> "03/07/05" ; month day year
</pre>
<p>The following table summarizes all format specifiers available
on both MS Windows and Linux/Unix platforms. More format options are
available on Linux/Unix. For details, consult the manual page for
the C function <tt>strftime()</tt> of the individual platform's C library.
</p>
<table width="98%" summary="date formatting">
<tr align="left"><th>format</th><th>description</th></tr>
<tr><td>%a</td><td>abbreviated weekday name according to the current locale</td></tr>
<tr><td>%A</td><td>full weekday name according to the current locale</td></tr>
<tr><td>%b</td><td>abbreviated month name according to the current locale</td></tr>
<tr><td>%B</td><td>full month name according to the current locale</td></tr>
<tr><td>%c</td><td>preferred date and time representation for the current locale</td></tr>
<tr><td>%d</td><td>day of the month as a decimal number (range 01–31)</td></tr>
<tr><td>%H</td><td>hour as a decimal number using a 24-hour clock (range 00–23)</td></tr>
<tr><td>%I</td><td>hour as a decimal number using a 12-hour clock (range 01–12)</td></tr>
<tr><td>%j</td><td>day of the year as a decimal number (range 001–366)</td></tr>
<tr><td>%m</td><td>month as a decimal number (range 01–12)</td></tr>
<tr><td>%M</td><td>minute as a decimal number</td></tr>
<tr><td>%p</td><td>either 'am' or 'pm' according to the given time value or
the corresponding strings for the current locale</td></tr>
<tr><td>%S</td><td>second as a decimal number 0–61 (60 and 61 to account
for occasional leap seconds)</td></tr>
<tr><td>%U</td><td>week number of the current year as a decimal number,
starting with the first Sunday as the first day of the first week</td></tr>
<tr><td>%w</td><td>day of the week as a decimal, Sunday being 0</td></tr>
<tr><td>%W</td><td>week number of the current year as a decimal number,
starting with the first Monday as the first day of the first week</td></tr>
<tr><td>%x</td><td>preferred date representation for the current locale
without the time</td></tr>
<tr><td>%X</td><td>preferred time representation for the current locale
without the date</td></tr>
<tr><td>%y</td><td>year as a decimal number without a century (range 00–99)</td></tr>
<tr><td>%Y</td><td>year as a decimal number including the century</td></tr>
<tr><td>%z</td><td>time zone or name or abbreviation (same as %Z on MS Windows,
different on Unix)</td></tr>
<tr><td>%Z</td><td>time zone or name or abbreviation (same as %z on MS Windows,
different on Unix)</td></tr>
<tr><td>%%</td><td>a literal '%' character</td></tr>
</table><br/>
<p>
Leading zeroes in the display of decimal day numbers can be suppressed
using <tt>"%-d"</tt> on Linux and FreeBSD and using <tt>"%e"</tt>
on OpenBSD, SunOS/Solaris and macOS. On MS Windows use <tt>"%#d"</tt>.
</p>
<p>See also <a href="#date-value">date-value</a>, <a href="#date-list">date-list</a>,
<a href="#date-parse">date-parse</a>,
<a href="#time-of-day">time-of-day</a>,
<a href="#time">time</a>, and <a href="#now">now</a>.
</p>
<br/><br/>
<a name="date-list"></a>
<h2><span class="function">date-list</span></h2>
<h4>syntax: (date-list <em>int-seconds</em> [<em>int-index</em>])<br/>
syntax: (date-list)</h4>
<p>Returns a list of year, month, date, hours, minutes, seconds, day of year
and day of week from a time value given in seconds after January 1st, 1970 00:00:00.
The date and time values aren given as UTC, which may differ from the local timezone.
</p>
<p>When no parameters are given <tt>date-list</tt> generates the list from the
number of seconds for the current time, return of <tt>(date-value)</tt>.</p>
<p>The week-day value ranges from 1 to 7 for Monday thru Sunday.</p>
<pre>
(date-list 1282479244) <span class='arw'>→</span> (2010 8 22 12 14 4 234 1)
(date-list 1282479244 0) <span class='arw'>→</span> 2010 ; year
(date-list 1282479244 -2) <span class='arw'>→</span> 234 ; day of year
(date-value (date-list 1282479244)) <span class='arw'>→</span> 1282479244
(date-list 0) <span class='arw'>→</span> (1970 1 1 0 0 0 1 4) ; Thursday 1st, Jan 1970
</pre>
<p>A second optional <em>int-index</em> parameter can be used to return
a specific member of the list.</p>
<p><tt>date-list</tt> is the inverse operation of <a href="#date-value">date-value</a>.</p>
<br/><br/>
<a name="date-parse"></a>
<h2><span class="function">date-parse</span></h2>
<h4>syntax: (date-parse <em>str-date</em> <em>str-format</em>)</h4>
<p>Parses a date from a text string in <em>str-date</em>
using a format as defined in <em>str-format</em>, which uses
the same formatting rules found in <a href="#date">date</a>.
The function <tt>date-parse</tt> returns the number of UTC seconds passed
since January 1st, 1970 UTC starting with 0 and up to 2147472000 for a date
of January 19th, 2038.</p>
<p>This function is not available on MS Windows platforms. The function was
named <tt>parse-date</tt> in previous versions. The old form is deprecated.</p>
<!-- example -->
<pre>
(date-parse "2007.1.3" "%Y.%m.%d") <span class='arw'>→</span> 1167782400
(date-parse "January 10, 07" "%B %d, %y") <span class='arw'>→</span> 1168387200
; output of date-parse as input value to date-list produces the same date
(date-list (date-parse "2010.10.18 7:00" "%Y.%m.%d %H:%M"))
<span class='arw'>→</span> (2010 10 18 7 0 0 290 1)
</pre>
<p>See the <a href="#date">date</a> function for all possible format descriptors.</p>
<br/><br/>
<a name="date-value"></a>
<h2><span class="function">date-value</span></h2>
<h4>syntax: (date-value <em>int-year</em> <em>int-month</em> <em>int-day</em> [<em>int-hour</em> <em>int-min</em> <em>int-sec</em>])<br/>
syntax: (date-value <em>list-date-time</em>)<br/>
syntax: (date-value)</h4>
<p>In the first syntax, <tt>date-value</tt> returns the time
in seconds since 1970-1-1 00:00:00 for a given date and time.
The parameters for the hour, minutes and seconds are optional.
The time is assumed to be Coordinated Universal Time (UTC),
not adjusted for the current time zone.</p>
<p>In the second syntax the same data can be given in a list.
As with the first syntax, numbers for the hour, minutes
and seconds are optional.</p>
<p>In the third syntax, <tt>date-value</tt> returns the time value
in seconds for the current time.</p>
<!-- example -->
<pre>
(date-value 2002 2 28) <span class='arw'>→</span> 1014854400
(date-value '(2002 2 28)) <span class='arw'>→</span> 1014854400
(date-value 1970 1 1 0 0 0) <span class='arw'>→</span> 0
(date (date-value (now))) <span class='arw'>→</span> "Wed May 24 10:02:47 2006"
(date (date-value)) <span class='arw'>→</span> "Wed May 24 10:02:47 2006"
(date) <span class='arw'>→</span> "Wed May 24 10:02:47 2006"
</pre>
<p>The function <a href="#date-list">date-list</a> can be used to transform
a <tt>date-value</tt> back into a list:</p>
<pre>
(date-list 1014854400) <span class='arw'>→</span> (2002 2 28 0 0 0)
(date-value (date-list 1014854400)) <span class='arw'>→</span> 1014854400
</pre>
<p>See also <a href="#date">date</a>,
<a href="#date-list">date-list</a>, <a href="#date-parse">date-parse</a>,
<a href="#time-of-day">time-of-day</a>, <a href="#time">time</a>, and
<a href="#now">now</a>.</p>
<br/><br/>
<a name="debug"></a>
<h2><span class="function">debug</span></h2>
<h4>syntax: (debug <em>func</em>)</h4>
<p>
Calls <a href="#trace">trace</a> and begins evaluating the user-defined
function in <em>func</em>. <tt>debug</tt> is a shortcut for executing
<tt>(trace true)</tt>, then entering the function to be debugged.</p>
<!-- example -->
<pre>
;; instead of doing
(trace true)
(my-func a b c)
(trace nil)
;; use debug as a shortcut
(debug (my-func a b c))
</pre>
<p>When in <tt>debug</tt> or <a href="#trace">trace</a> mode, error messages
will be printed. The function causing the exception will return either
<tt>0</tt> or <tt>nil</tt> and processing will continue. This way, variables
and the current state of the program can still be inspected while debugging.</p>
<p>See also the <a href="#trace">trace</a> function.</p>
<br/><br/>
<a name="dec"></a>
<h2><span class="function">dec</span> <a href="#destructive">!</a></h2>
<h4>syntax: (dec <em>place</em> [<em>num</em>])</h4>
<p>
The number in <em>place</em> is decremented by <tt>1.0</tt> or the optional number
<em>num</em> and returned. <tt>dec</tt> performs float arithmetic and converts
integer numbers passed into floating point type.</p>
<p><em>place</em> is either a symbol or a place in a list structure holding a
number, or a number returned by an expression.</p>
<!-- example -->
<pre>
(set x 10) <span class='arw'>→</span> 10
(dec x) <span class='arw'>→</span> 9
x <span class='arw'>→</span> 9
(dec x 0.25) <span class='arw'>→</span> 8.75
x <span class='arw'>→</span> 8.75
</pre>
<p>If the symbol for <em>place</em> contains <tt>nil</tt>, it is treated
as if containing <tt>0.0</tt>:</p>
<pre>
z <span class='arw'>→</span> nil
(dec z) <span class='arw'>→</span> -1
(set z nil)
(dec z 0.01) <span class='arw'>→</span> -0.01
</pre>
<p>Places in a list structure or a number returned by another expression
can be updated too:</p>
<pre>
(set 'l '(1 2 3 4))
(dec (l 3) 0.1) <span class='arw'>→</span> 3.9
(dec (first l)) <span class='arw'>→</span> 0
l <span class='arw'>→</span> (0 2 3 3.9)
(dec (+ 3 4)) <span class='arw'>→</span> 6
</pre>
<p>Use the <a href="#deci">--</a> function to decrement in integer mode.
Use the <a href="#inc">inc</a> function to increment numbers floating point mode.</p>
<br/><br/>
<a name="def-new"></a>
<h2><span class="function">def-new</span></h2>
<h4>syntax: (def-new <em>sym-source</em> [<em>sym-target</em>])</h4>
<p>
This function works similarly to <a href="#new">new</a>,
but it only creates a copy of one symbol
and its contents from the symbol in <em>sym-source</em>.
When <em>sym-target</em> is not given,
a symbol with the same name is created
in the current context.
All symbols referenced inside <em>sym-source</em>
will be translated into symbol references into the current context,
which must not be MAIN.</p>
<p>
If an argument is present in <em>sym-target</em>, the copy will be made
into a symbol and context as referenced by the symbol in <em>sym-target</em>.
In addition to allowing renaming of the function while copying, this also
enables the copy to be placed in a different context. All symbol references
in <em>sym-source</em> with the same context as <em>sym-source</em> will
be translated into symbol references of the target context.
</p>
<p>
<tt>def-new</tt> returns the symbol created:
</p>
<!-- example -->
<pre>
> (set 'foo:var '(foo:x foo:y))
<b>(foo:x foo:y)</b>
> (def-new 'foo:var 'ct:myvar)
<b>ct:myvar</b>
> ct:myvar
<b>(ct:x ct:y)</b>
> (context 'K)
K> (def-new 'foo:var)
<b>var</b>
K> var
<b>(x y)</b>
</pre>
<p>The following example shows how a statically scoped function can
be created by moving it its own namespace:</p>
<pre>
> (set 'temp (lambda (x) (+ x x)))
<b>(lambda (x) (+ x x))</b>
> (def-new 'temp 'double:double)
<b>double:double</b>
> (double 10)
<b>20</b>
> double:double
<b>(lambda (double:x) (+ double:x double:x))</b>
</pre>
<p>The following definition of <tt>def-static</tt> can be used to
create functions living in their own lexically protected name-space:</p>
<pre>
(define (def-static s body)
(def-new 'body (sym s s)))
(def-static 'acc (lambda (x)
(inc sum x)))
> (acc 1)
<b>1</b>
> (acc 1)
<b>2</b>
> (acc 8)
<b>10</b>
>
</pre>
<p>The function <tt>def-new</tt> can also be used to configure contexts
or context objects in a more granular fashion than is possible
with <a href="#new">new</a>, which copies a whole context.</p>
<br/><br/>
<a name="default"></a>
<h2><span class="function">default</span></h2>
<h4>syntax: (default <em>context</em>)</h4>
<p>Return the contents of the default functor in <em>context</em>.</p>
<!-- example -->
<pre>
(define Foo:Foo 123)
(default Foo) <span class='arw'>→</span> 123
(setf (default Foo) 456)
(set 'ctx Foo)
(default ctx) <span class='arw'>→</span> 456
Foo:Foo <span class='arw'>→</span> 456
</pre>
<p>In many situations newLISP defaults automatically to the default functor
when seeing a context name. In circumstances where this is not the case,
the <tt>default</tt> function can be used.</p>
<br/><br/>
<a name="define"></a>
<h2><span class="function">define</span> <a href="#destructive">!</a></h2>
<h4>syntax: (define (<em>sym-name</em> [<em>sym-param-1</em> ... ]) [<em>body-1</em> ... ])<br/>
syntax: (define (<em>sym-name</em> [(<em>sym-param-1</em> <em>exp-default</em>) ... ]) [<em>body-1</em> ... ])<br/>
syntax: (define <em>sym-name</em> <em>exp</em>)</h4>
<p>
Defines the new function <em>sym-name</em>,
with optional parameters <em>sym-param-1</em>—.
<tt>define</tt> is equivalent to assigning
a lambda expression to <em>sym-name</em>.
When calling a defined function,
all arguments are evaluated and assigned
to the variables in <em>sym-param-1</em>—,
then the <em>body-1— </em> expressions are evaluated.
When a function is defined, the lambda expression
bound to <em>sym-name</em> is returned.
</p>
<p>
All parameters defined are optional.
When a user-defined function is called without arguments,
those parameters assume the value <tt>nil</tt>.
<!-- 8.9.4 -->If those parameters have a default value
specified in <em>exp-default</em>,
they assume that value.
</p>
<p>
The return value of <tt>define</tt>
is the assigned <em>lambda</em> expression.
When calling a user-defined function,
the return value is the last expression evaluated
in the function body.
</p>
<!-- example -->
<pre>
(define (area x y) (* x y)) <span class='arw'>→</span> (lambda (x y) (* x y))
(area 2 3) <span class='arw'>→</span> 6
</pre>
<p>
As an alternative, <tt>area</tt> could be defined
as a function without using <tt>define</tt>.
</p>
<pre>
(set 'area (lambda (x y) (* x y))
</pre>
<p>
<em>lambda</em> or <em>fn</em> expressions may be used by themselves
as <em>anonymous</em> functions without being defined as a symbol:
</p>
<pre>
((lambda ( x y) (* x y)) 2 3) <span class='arw'>→</span> 6
((fn ( x y) (* x y)) 2 3) <span class='arw'>→</span> 6
</pre>
<p>
<tt>fn</tt> is just a shorter form of writing <tt>lambda</tt>.
</p>
<!-- 8.9.4 -->
<p>
Parameters can have default values specified:
</p>
<pre>
(define (foo (a 1) (b 2))
(list a b))
(foo) <span class='arw'>→</span> (1 2)
(foo 3) <span class='arw'>→</span> (3 2)
(foo 3 4) <span class='arw'>→</span> (3 4)
</pre>
<p>
Expressions in <em>exp-default</em>
are evaluated in the function's
current environment.
</p>
<pre>
(define (foo (a 10) (b (div a 2)))
(list a b))
(foo) <span class='arw'>→</span> (10 5)
(foo 30) <span class='arw'>→</span> (30 15)
(foo 3 4) <span class='arw'>→</span> (3 4)
</pre>
<p>
The second version of <tt>define</tt>
works like the <a href="#set">set</a> function.
</p>
<!-- example -->
<pre>
(define x 123) <span class='arw'>→</span> 123
;; is equivalent to
(set 'x 123) <span class='arw'>→</span> 123
(define area (lambda ( x y) (* x y)))
;; is equivalent to
(set 'area (lambda ( x y) (* x y)))
;; is equivalent to
(define (area x y) (* x y))
</pre>
<p>
Trying to redefine a protected symbol will cause an error message.
</p>
<br/><br/>
<a name="define-macro"></a>
<h2><span class="function">define-macro</span></h2>
<h4>syntax: (define-macro (<em>sym-name</em> [<em>sym-param-1</em> ... ]) <em>body</em>)<br/>
syntax: (define-macro (<em>sym-name</em> [(<em>sym-param-1</em> <em>exp-default</em>) ... ]) <em>body</em>)</h4>
<p>Functions defined using <tt>define-macro</tt> are called <i>fexpr</i>
in other LISPs as they don't do variable expansion. In newLISP they are still
called macros, because they are written with the same purpose of creating
special syntax forms with non-standard evaluation patterns of arguments.
Functions created using <tt>define-macro</tt> can be combined with template
expansion using <a href="#expand">expand</a> or <a href="#letex">letex</a>.</p>
<p>Since v.10.5.8, newLISP also has expansion macros using <a href="#macro">macro</a>.</p>
<p>Defines the new fexpr <em>sym-name</em>, with optional arguments <em>sym-param-1</em>.
<tt>define-macro</tt> is equivalent to assigning a lambda-macro expression to a symbol.
When a <tt>define-macro</tt> function is called, unevaluated arguments are assigned to
the variables in <em>sym-param-1 ...</em>. Then the <em>body</em> expressions are evaluated.
When evaluating the <tt>define-macro</tt> function, the lambda-macro expression is returned.
</p>
<!-- example -->
<pre>
(define-macro (my-setq p1 p2) (set p1 (eval p2)))
<span class='arw'>→</span> (lambda-macro (p1 p2) (set p1 (eval p2)))
(my-setq x 123) <span class='arw'>→</span> 123
x <span class='arw'>→</span> 123
</pre>
<p>New functions can be created to behave like built-in functions
that delay the evaluation of certain arguments. Because fexprs can
access the arguments inside a parameter list, they can be used to
create flow-control functions like those already built-in to newLISP.</p>
<p>All parameters defined are optional. When a macro is called without
arguments, those parameters assume the value <tt>nil</tt>.
If those parameters have a default value specified in <em>exp-default</em>,
they assume that default value.</p>
<pre>
(define-macro (foo (a 1) (b 2))
(list a b))
(foo) <span class='arw'>→</span> (1 2)
(foo 3) <span class='arw'>→</span> (3 2)
(foo 3 4) <span class='arw'>→</span> (3 4)
</pre>
<p>Expressions in <em>exp-default</em> are evaluated in the function's
current environment.</p>
<pre>
(define-macro (foo (a 10) (b (div a 2)))
(list a b))
(foo) <span class='arw'>→</span> (10 5)
(foo 30) <span class='arw'>→</span> (30 15)
(foo 3 4) <span class='arw'>→</span> (3 4)
</pre>
<p>Note that in <em>fexprs</em>, the danger exists of passing a parameter
with the same variable name as used in the <tt>define-macro</tt> definition.
In this case, the <em>fexpr's</em> internal variable would end up
receiving <tt>nil</tt> instead of the intended value:</p>
<pre>
;; not a good definition!
(define-macro (my-setq x y) (set x (eval y)))
;; symbol name clash for x
(my-setq x 123) <span class='arw'>→</span> 123
x <span class='arw'>→</span> nil
</pre>
<p>There are several methods that can be used
to avoid this problem, known as <em>variable capture</em>,
by writing <em>hygienic</em> <tt>define-macro</tt>s:</p>
<ul>
<li>
Put the definition into its own lexically closed namespace context.
If the function has the same name as the context, it can be
called by using the context name alone. A function with this
characteristic is called a <a href="#default_function">
<em>default function</em></a>. This is the preferred method in
newLISP to write <tt>define-macro</tt>s.
</li>
<br/>
<li>Use <a href="#args">args</a> to access arguments passed by the
function.</li>
</ul>
<!-- example -->
<pre>
;; a define-macro as a lexically isolated function
;; avoiding variable capture in passed parameters
(context 'my-setq)
(define-macro (my-setq:my-setq x y) (set x (eval y)))
(context MAIN)
(my-setq x 123) <span class='arw'>→</span> 123 ; no symbol clash
x <span class='arw'>→</span> 123
</pre>
<p>
The definition in the example is lexically isolated,
and no variable capture can occur.
Instead of the function being called using <tt>(my-setq:my-setq …)</tt>,
it can be called with just <tt>(my-setq …)</tt>
because it is a <a href="#default_function"><em>default function</em></a>.
</p>
<p>
The second possibility is to refer to passed parameters
using <a href="#args">args</a>:
</p>
<!-- example -->
<pre>
;; avoid variable capture in macros using the args function
(define-macro (my-setq) (set (args 0) (eval (args 1))))
</pre>
<p>See also the <a href="#macro">macro</a> expansion function not
susceptible to variable capture.</p>
<br/><br/>
<a name="delete"></a>
<h2><span class="function">delete</span>
<a href="#shared-lib"><font size="+2">⚠</font></a></h2>
<h4>syntax: (delete <em>symbol</em> [<em>bool</em>])<br/>
syntax: (delete <em>sym-context</em> [<em>bool</em>])</h4>
<p>In the first syntax deletes a symbol <em>symbol</em> and references to
the symbol in other expressions will be changed to <tt>nil</tt>.</p>
<p>In the second syntax all symbols of the namespace referred to by
<em>sym-context</em> will be deleted and references to them in other
espressions will be changed to <tt>nil</tt>. The context symbol
<em>sym-context</em> will be changed to a normal symbol
containing <tt>nil</tt>.</p>
<p>When the expression in <em>bool</em> evaluates
to <tt>true</tt>, symbols are only deleted when they are not referenced.
</p>
<p>
When the expression in <em>bool</em> evaluates
to <tt>nil</tt>, symbols will be deleted without any reference checking.
Note that this mode should only be used, if no references to the symbol
exist outside it's namespace. If external references exist, this mode
can lead to system crashes, as the external reference is not set to
<tt>nil</tt> when using this mode. This mode can be used to delete
namespace hashes and to delete namespaces in object systems, where variables are
strictly treated as private.</p>
<p>
Protected symbols of built-in functions and special symbols
like <tt>nil</tt> and <tt>true</tt> cannot be deleted.
</p>
<p>
<tt>delete</tt> returns <tt>true</tt> if the symbol was deleted
successfully or <tt>nil</tt> if the symbol was not deleted.
</p>
<p>When deleting a context symbol, the first <tt>delete</tt> removes the context
namespace contents and demotes the context symbol to a normal mono-variable symbol.
A second <tt>delete</tt> will remove the symbol from the symbol table.</p>
<!-- example -->
<pre>
(set 'lst '(a b aVar c d))
(delete 'aVar) ; aVar deleted, references marked nil
lst <span class='arw'>→</span> (a b nil c d)
(set 'lst '(a b aVar c d))
(delete 'aVar true)
<span class='arw'>→</span> nil ; protect aVar if referenced
lst <span class='arw'>→</span> (a b aVar c d)
;; delete all symbols in a context
(set 'foo:x 123)
(set 'foo:y "hello")
(delete 'foo) <span class='arw'>→</span> foo:x, foo:y deleted
</pre>
<p>In the last example only the symbols inside context <tt>foo</tt>
will be deleted but not the context symbol <tt>foo</tt> itself. It
will be converted to a normal unprotected symbol and contain <tt>nil</tt>.
</p>
<p>
Note that deleting a symbol that is part of an expression
which is currently executing can crash the system
or have other unforeseen effects.
</p>
<br/><br/>
<a name="delete-file"></a>
<h2><span class="function">delete-file</span></h2>
<h4>syntax: (delete-file <em>str-file-name</em>)</h4>
<p>Deletes a file given in <em>str-file-name</em>.
Returns <tt>true</tt> if the file was deleted
successfully.</p>
<p>On failure the function returns <tt>nil</tt>. For error information,
use <a href="#sys-error">sys-error</a> when used on files. When used
on URLs <a href="#net-error">net-error</a> gives more error
information.</p>
<p>The file name can be given as a URL.</p>
<!-- example -->
<pre>
(delete-file "junk")
(delete-file "http://asite.com/example.html")
(delete-file "file://aFile.txt")
</pre>
<p>
The first example deletes the file <tt>junk</tt> in the current directory.
The second example shows how to use a URL to specify the file.
In this form, additional parameters can be given.
See <a href="#delete-url">delete-url</a> for details.
</p>
<br/><br/>
<a name="delete-url"></a>
<h2><span class="function">delete-url</span></h2>
<h4>syntax: (delete-url <em>str-url</em>)</h4>
<p>This function deletes the file on a remote HTTP server specified in <em>str-url</em>.
The HTTP <tt>DELETE</tt> protocol must be enabled on the target web server,
or an error message string may be returned. The target file must also have
access permissions set accordingly. Additional parameters such as timeout and custom headers
are available exactly as in the <a href="#get-url">get-url</a> function.</p>
<p>If <em>str-url</em> starts with <tt>file://</tt> a file on the local file system
is deleted.</p>
<p>This feature is also available when the <a href="#delete-file">delete-file</a>
function is used and a URL is specified for the filename.</p>
<!-- example -->
<pre>
(delete-url "http://www.aserver.com/somefile.txt")
(delete-url "http://site.org:8080/page.html" 5000)
; delete on the local file system
(delete-url "file:///home/joe/somefile.txt")
</pre>
<p>The second example configures a timeout option of five seconds.
Other options such as special HTTP protocol headers
can be specified, as well.
See the <a href="#get-url">get-url</a> function for details.</p>
<p><tt>delete-url</tt> requests are also understood by newLISP server nodes, but will
not be served when the server is started in <tt>-http-safe</tt> mode.</p>
<br/><br/>
<a name="destroy"></a>
<h2><span class="function">destroy</span></h2>
<h4>syntax: (destroy <em>int-pid</em>)<br/>
syntax: (destroy <em>int-pid</em> <em>int-signal</em>)</h4>
<p>Destroys a process with process id in <em>int-pid</em> and returns <tt>true</tt>
on success or <tt>nil</tt> on failure. The process id is normally obtained from a
previous call to <a href="#fork">fork</a> on macOS and other Unix or
<a href="#process">process</a> on all platforms. On Unix, <tt>destroy</tt> works like
the system utility <em>kill</em> using the SIGKILL signal.</p>
<p>CAUTION! If <em>int-pid</em> is <tt>0</tt> the signal is sent to all processes whose
group ID is equal to the process group ID of the sender. If <em>int-pid</em> is <tt>-1</tt>
all processes with the current user id will be killed, if newLISP is started with
super user privileges, all processes except system processes are destroyed.
</p>
<p>When specifying <em>int-signal</em>, <tt>destroy</tt> works like a Unix <tt>kill</tt>
command sending the specified Unix signal to the process in <em>int-pid</em>.
This second syntax is not available on MS Windows.</p>
<!-- example -->
<pre>
(set 'pid (process "/usr/local/bin/bc" bcin bcout))
(destroy pid)
(set 'pid (fork (dotimes (i 1000) (println i) (sleep 10))))
(sleep 100) (destroy pid)
</pre>
<br/><br/>
<a name="det"></a>
<h2><span class="function">det</span></h2>
<h4>syntax: (det <em>matrix</em> [<em>float-pivot</em>])</h4>
<p>Returns the determinant of a square matrix. A matrix can either
be a nested list or an <a href="#array">array</a>.</p>
<p>Optionally <tt>0.0</tt> or a very small value can be specified
in <em>float-pivot</em>. This value substitutes pivot elements in
the LU-decomposition algorithm, which result in zero when
the algorithm deals with a singular matrix.</p>
<!-- example -->
<pre>
(set 'A '((-1 1 1) (1 4 -5) (1 -2 0)))
(det A) <span class='arw'>→</span> -1
; treatment of singular matrices
(det '((2 -1) (4 -2))) <span class='arw'>→</span> nil
(det '((2 -1) (4 -2)) 0) <span class='arw'>→</span> -0
(det '((2 -1) (4 -2)) 1e-20) <span class='arw'>→</span> -4e-20
</pre>
<p>If the matrix is singular and <em>float-pivot</em> is not
specified, <tt>nil</tt> is returned.</p>
<p>See also the other matrix operations
<a href="#invert">invert</a>, <a href="#mat">mat</a>,
<a href="#multiply">multiply</a> and <a href="#transpose">transpose</a>.
</p>
<br/>
<a name="device"></a>
<h2><span class="function">device</span></h2>
<h4>syntax: (device [<em>int-io-handle</em>])</h4>
<p><em>int-io-handle</em> is an I/O device number, which is set to 0 (zero)
for the default STD I/O pair of handles, 0 for <i>stdin</i>, 1
for <i>stdout</i> and 2 for <i>stderr</i>. <em>int-io-handle</em> may also
be a file handle previously obtained using <a href="#open">open</a>. In this
case both, input and output are channeled through this handle.
When no argument is supplied, the current I/O device number is returned.
</p>
<p>The I/O channel specified by <tt>device</tt> is used internally
by the functions <a href="#print">print</a>, <a href="#println">println</a>,
<a href="#write">write</a>, <a href="#write-line">write-line</a> and
<a href="#read-char">read-char</a>, <a href="#read-line">read-line</a>.
When the current I/O device is 0 or 1, <a href="#print">print</a>
sends output to the console window and <a href="#read-line">read-line</a>
accepts input from the keyboard. If the current I/O device has been set
by opening a file, then <a href="#print">print</a> and <a href="#read-line">read-line</a>
work on that file.</p>
<p>Note, that on Unix like operating systems, stdin channel 0 can also be used
for output and stdout channel 1 can also be used for reading input. This is
not the case on Windows, where 0 is strictly for input and stdout 1 strictly
for output.</p>
<!-- example -->
<pre>
(device (open "myfile" "write")) <span class='arw'>→</span> 5
(print "This goes in myfile") <span class='arw'>→</span> "This goes in myfile"
(close (device)) <span class='arw'>→</span> true
</pre>
<p>Note that using <a href="#close">close</a> on <tt>device</tt>
automatically resets <tt>device</tt> to 0 (zero).</p>
<br/><br/>
<a name="difference"></a>
<h2><span class="function">difference</span></h2>
<h4>syntax: (difference <em>list-A</em> <em>list-B</em>)<br/>
syntax: (difference <em>list-A</em> <em>list-B</em> <em>bool</em>)</h4>
<p>
In the first syntax, <tt>difference</tt> returns
the <em>set</em> difference between <em>list-A</em> and <em>list-B</em>.
The resulting list only has elements occurring in <em>list-A</em>,
but not in <em>list-B</em>.
All elements in the resulting list are unique,
but <em>list-A</em> and <em>list-B</em> need not be unique.
Elements in the lists can be any type of Lisp expression.
</p>
<!-- example -->
<pre>
(difference '(2 5 6 0 3 5 0 2) '(1 2 3 3 2 1)) <span class='arw'>→</span> (5 6 0)
</pre>
<p>
In the second syntax, <tt>difference</tt> works in <em>list</em> mode.
<em>bool</em> specifies <tt>true</tt>
or an expression not evaluating to <tt>nil</tt>.
In the resulting list, all elements of <em>list-B</em>
are eliminated in <em>list-A</em>,
but duplicates of other elements in <em>list-A</em> are left.
</p>
<!-- example -->
<pre>
(difference '(2 5 6 0 3 5 0 2) '(1 2 3 3 2 1) true) <span class='arw'>→</span> (5 6 0 5 0)
</pre>
<p>
See also the set functions <a href="#intersect">intersect</a>,
<a href="#unique">unique</a> and <a href="#union">union</a>.
</p>
<br/><br/>
<a name="directory"></a>
<h2><span class="function">directory</span></h2>
<h4>syntax: (directory [<em>str-path</em>])<br/>
syntax: (directory <em>str-path</em> <em>str-pattern</em> [<em>regex-option</em>])</h4>
<p>
A list of directory entry names is returned
for the directory path given in <em>str-path</em>.
On failure, <tt>nil</tt> is returned.
When <em>str-path</em> is omitted,
the list of entries in the current directory is returned.
</p>
<!-- example -->
<pre>
(directory "/bin")
(directory "c:/")
</pre>
<p>
The first example returns the directory of <tt>/bin</tt>,
the second line returns a list of directory entries
in the root directory of drive C:.
Note that on MS Windows systems,
a forward slash (<tt>/</tt>) can be included in path names.
When used, a backslash (<tt>\</tt>) must be
preceded by a second backslash.
</p>
<p>
In the second syntax, <tt>directory</tt> can take
a regular expression pattern in <em>str-pattern</em>.
Only filenames matching the pattern will be returned
in the list of directory entries.
In <em>regex-option</em>, special regular expression options
can be specified; see <a href="#regex">regex</a> for details.
</p>
<!-- example -->
<pre>
(directory "." "\\.c") <span class='arw'>→</span> ("foo.c" "bar.c")
;; or using braces as string pattern delimiters
(directory "." {\.c}) <span class='arw'>→</span> ("foo.c" "bar.c")
; show only hidden files (starting with dot)
(directory "." "^[.]") <span class='arw'>→</span> ("." ".." ".profile" ".rnd" ".ssh")</pre>
<p>
The regular expression forces <tt>directory</tt>
to return only file names containing the string <tt>".c"</tt>.
</p>
<p>
Other functions that use regular expressions
are <a href="#find">find</a>, <!-- 8.9.4 --><a href="#find-all">find-all</a>,
<a href="#parse">parse</a>,
<a href="#regex">regex</a>, <a href="#replace">replace</a>,
and <a href="#search">search</a>.
</p>
<br/><br/>
<a name="directoryp"></a>
<h2><span class="function">directory?</span></h2>
<h4>syntax: (directory? <em>str-path</em>)</h4>
<p>
Checks if <em>str-path</em> is a directory.
Returns <tt>true</tt> or <tt>nil</tt> depending on the outcome.
</p>
<pre>
(directory? "/etc") <span class='arw'>→</span> true
(directory? "/usr/local/bin/emacs/") <span class='arw'>→</span> nil
</pre>
<br/><br/>
<a name="display-html"></a>
<h2><span class="function">display-html
<a href="#JS"><font size="-1">JS</font></a></span></h2>
<h4>syntax: (display-html <em>str-html</em>)<br/>
syntax: (display-html <em>str-html</em> <em>bool-flag</em>)</h4>
<p>Using the first syntax, the function replaces the current page in
the browser with the HTML page found in <em>str-html</em>.</p>
<p>If <em>bool-flag</em> evaluates to <tt>true</tt>, the page gets
opened in a new browser tab and the current page is not affected.</p>
<p>This function is only available on newLISP compiled to JavaScript.</p>
<pre>
(set 'page [text]
<html>
<head>
<title>Hello App</title>
</head>
<body>
<h2>Hello World</h2>
</body>
</html>
[/text])
; open the page in a new browser tab
(display-html page true) <span class='arw'>→</span> "92"
</pre>
<p>The function returns the length of the HTML document displayed as a string.
</p>
<p>See also the function <a href="#eval-string-js">eval-string-js</a> for
evaluation of JavaScript in the current page.</p>
<br/><br/>
<a name="div"></a>
<h2><span class="function">div</span></h2>
<h4>syntax: (div <em>num-1</em> <em>num-2</em> [<em>num-3</em> ... ])<br/>
syntax: (div <em>num-1</em>)</h4>
<p>
Successively divides <em>num-1</em>
by the number in <em>num-2—</em>.
<tt>div</tt> can perform mixed-type arithmetic,
but it always returns floating point numbers.
Any floating point calculation
with <tt>NaN</tt> also returns <tt>NaN</tt>.
</p>
<!-- example -->
<pre>
(div 10 3) <span class='arw'>→</span> 3.333333333
(div 120 (sub 9.0 6) 100) <span class='arw'>→</span> 0.4
(div 10) <span class='arw'>→</span> 0.1
</pre>
<p>
When <em>num-1</em> is the only argument,
<tt>div</tt> calculates the inverse of <em>num-1</em>.
</p>
<br/><br/>
<a name="do-until"></a>
<h2><span class="function">do-until</span></h2>
<h4>syntax: (do-until <em>exp-condition</em> [<em>body</em>])</h4>
<p>
The expressions in <em>body</em> are evaluated
before <em>exp-condition</em> is evaluated.
If the evaluation of <em>exp-condition</em> is not <tt>nil</tt>,
then the <tt>do-until</tt> expression is finished;
otherwise, the expressions in <em>body</em> get evaluated again.
Note that <tt>do-until</tt> evaluates the conditional expression
<em>after</em> evaluating the body expressions,
whereas <a href="#until">until</a> checks the condition
<em>before</em> evaluating the body.
The return value of the <tt>do-until</tt> expression
is the last evaluation of the <em>body</em> expression.
If <em>body</em> is empty, the last result of <em>exp-condition</em>
is returned.
</p>
<p><tt>do-until</tt> also updates the system iterator symbol <tt>$idx</tt>.</p>
<!-- example -->
<pre>
(set 'x 1)
(do-until (> x 0) (inc x))
x <span class='arw'>→</span> 2
(set 'x 1)
(until (> x 0) (inc x))
x <span class='arw'>→</span> 1
</pre>
<p>
While <tt>do-until</tt> goes through the loop at least once,
<a href="#until">until</a> never enters the loop.
</p>
<p>
See also the functions <a href="#while">while</a>
and <a href="#do-while">do-while</a>.
</p>
<br/><br/>
<a name="do-while"></a>
<h2><span class="function">do-while</span></h2>
<h4>syntax: (do-while <em>exp-condition body</em>)</h4>
<p>
The expressions in <em>body</em> are evaluated
before <em>exp-condition</em> is evaluated.
If the evaluation of <em>exp-condition</em> is <tt>nil</tt>,
then the <tt>do-while</tt> expression is finished;
otherwise the expressions in <em>body</em> get evaluated again.
Note that <tt>do-while</tt> evaluates the conditional expression
<em>after</em> evaluating the body expressions,
whereas <a href="#while">while</a> checks the condition
<em>before</em> evaluating the body.
The return value of the <tt>do-while</tt> expression
is the last evaluation of the <em>body</em> expression.
</p>
<p><tt>do-while</tt> also updates the system iterator symbol <tt>$idx</tt>.</p>
<!-- example -->
<pre>
(set 'x 10)
(do-while (< x 10) (inc x))
x <span class='arw'>→</span> 11
(set 'x 10)
(while (< x 10) (inc x))
x <span class='arw'>→</span> 10
</pre>
<p>
While <tt>do-while</tt> goes through the loop at least once,
<a href="#while">while</a> never enters the loop.
</p>
<p>
See also the functions <a href="#until">until</a>
and <a href="#do-until">do-until</a>.
</p>
<br/><br/>
<a name="doargs"></a>
<h2><span class="function">doargs</span></h2>
<h4>syntax: (doargs (<em>sym</em> [<em>exp-break</em>])<em> body</em>)</h4>
<p>Iterates through all members of the argument list
inside a user-defined function or macro. This function or macro can be defined using <a href="#define">define</a>,
<a href="#define-macro">define-macro</a>, <a href="#lambda">lambda</a>, or
<a href="#lambda-macro">lambda-macro</a>.
The variable in <em>sym</em> is set sequentially to all members in the argument list
until the list is exhausted or an optional break expression
(defined in <em>exp-break</em>) evaluates to <tt>true</tt> or a logical true value.
The <tt>doargs</tt> expression always returns the result of the last evaluation.</p>
<p><tt>doargs</tt> also updates the system iterator symbol <tt>$idx</tt>.</p>
<!-- example -->
<pre>
(define (foo)
(doargs (i) (println i)))
<b>></b> (foo 1 2 3 4)
<b>1
2
3
4</b>
</pre>
<p>The optional break expression causes <tt>doargs</tt>
to interrupt processing of the arguments:</p>
<pre>
(define-macro (foo)
(doargs (i (= i 'x))
(println i)))
<b>></b> (foo a b x c d e)
<b>a
b
true</b>
</pre>
<p>Use the <a href="#args">args</a> function to access the entire argument list at once.</p>
<br/><br/>
<a name="dolist"></a>
<h2><span class="function">dolist</span></h2>
<h4>syntax: (dolist (<em>sym</em> <em>list</em>|<em>array</em> [<em>exp-break</em>])<em> body</em>)</h4>
<p>
The expressions in <em>body</em> are evaluated
for each element in <em>list</em> or <em>array</em>.
The variable in <em>sym</em> is set to each of the elements
before evaluation of the body expressions.
The variable used as loop index is local
and behaves according to the rules of dynamic scoping.
</p>
<p>
Optionally, a condition for early loop exit
may be defined in <em>exp-break</em>.
If the break expression evaluates to any non-<tt>nil</tt> value,
the <tt>dolist</tt> loop returns with the value of <em>exp-break</em>.
The break condition is tested before evaluating <em>body.</em></p>
<!-- example -->
<pre>
(set 'x 123)
(dolist (x '(a b c d e f g)) ; prints: abcdefg
(print x)) <span class='arw'>→</span> g ; return value
(dolist (x '(a b c d e f g) (= x 'e)) ; prints: abcd
(print x))
;; x is local in dolist
;; x has still its old value outside the loop
x <span class='arw'>→</span> 123 ; x has still its old value
</pre>
<p>
This example prints <tt>abcdefg</tt> in the console window.
After the execution of <tt>dolist</tt>,
the value for <tt>x</tt> remains unchanged
because the <tt>x</tt> in <tt>dolist</tt> has local scope.
The return value of <tt>dolist</tt> is the result
of the last evaluated expression.
</p>
<p>
The internal system variable <tt>$idx</tt>
keeps track of the current offset
into the list passed to <tt>dolist</tt>,
and it can be accessed during its execution:
</p>
<pre>
(dolist (x '(a b d e f g))
(println $idx ":" x)) <span class='arw'>→</span> g
<b>0:a
1:b
2:d
3:e
4:f
5:g</b>
</pre>
<p>
The console output is shown in boldface.
<tt>$idx</tt> is protected and cannot be changed by the user.
</p>
<br/><br/>
<a name="dostring"></a>
<h2><span class="function">dostring</span> <font size="-1"><a href="#utf8_capable">utf8</a></font></h2>
<h4>syntax: (dostring (<em>sym</em> <em>string</em> [<em>exp-break</em>]) <em>body</em>)</h4>
<p>
The expressions in <em>body</em> are evaluated
for each character in <em>string</em>.
The variable in <em>sym</em> is set to each ASCII or UTF-8 integer value of the characters
before evaluation of the body expressions.
The variable used as loop index is local
and behaves according to the rules of dynamic scoping.
</p>
<p>
Optionally, a condition for early loop exit
may be defined in <em>exp-break</em>.
If the break expression evaluates to any non-<tt>nil</tt> value,
the <tt>dolist</tt> loop returns with the value of <em>exp-break</em>.
The break condition is tested before evaluating <em>body.</em>
</p>
<!-- example -->
<pre>
; ASCII example
(set 'str "abcdefg")
(dostring (c str) (println c " - " (char c)))
<b>97 - a
98 - b
99 - c
100 - d
101 - e
102 - f
103 - g</b>
; UTF8 example
(set 'utf8str "我能吞下玻璃而不伤身体。")
(dostring (c utf8str) (println c " - " (char c)))
<b>25105 - 我
33021 - 能
21534 - 吞
...
20307 - 体
12290 - 。 </b>
</pre>
<p>
This example prints the value of each character
in the console window. In UTF-8 enabled versions of newLISP,
individual characters may be longer than one byte and the
number in the loop variable may exceed 255.
The return value of <tt>dostring</tt> is the result
of the last evaluated expression.
</p>
<p>
The internal system variable <tt>$idx</tt>
keeps track of the current offset
into the string passed to <tt>dostring</tt>,
and it can be accessed during its execution.
</p>
<br/><br/>
<a name="dotimes"></a>
<h2><span class="function">dotimes</span></h2>
<h4>syntax: (dotimes (<em>sym-var</em> <em>int-count</em> [<em>exp-break</em>]) <em>body</em>)</h4>
<p>
The expressions in <em>body</em> are evaluated <em>int</em> times.
The variable in <em>sym</em> is set from 0 (zero) to (<em>int</em> - 1)
each time before evaluating the body expression(s).
The variable used as the loop index is local to the <tt>dotimes</tt>
expression and behaves according the rules of dynamic scoping.
The loop index is of integer type.
<tt>dotimes</tt> returns the result of
the last expression evaluated in <em>body</em>.
After evaluation of the <tt>dotimes</tt>
statement <em>sym</em> assumes its previous
value.
</p>
<p>
Optionally, a condition for early loop exit
may be defined in <em>exp-break</em>.
If the break expression evaluates to any non-<tt>nil</tt> value,
the <tt>dotimes</tt> loop returns with the value of <em>exp-break</em>.
The break condition is tested before evaluating <em>body</em>.
</p>
<!-- example -->
<pre>
(dotimes (x 10)
(print x)) <span class='arw'>→</span> 9 ; return value
</pre>
<p>
This prints <tt>0123456789</tt> to the console window.
</p>
<br/><br/>
<a name="dotree"></a>
<h2><span class="function">dotree</span></h2>
<h4>syntax: (dotree (<em>sym</em> <em>sym-context</em> [<em>bool</em>]) <em>body</em>)</h4>
<p>The expressions in <em>body</em> are evaluated for all symbols in <em>sym-context</em>.
The symbols are accessed in a sorted order. Before each evaluation of the body expression(s),
the variable in <em>sym</em> is set to the next symbol from <em>sym-context</em>.
The variable used as the loop index is local to the <tt>dotree</tt> expression
and behaves according the rules of dynamic scoping.</p>
<p>When the optional <em>bool</em> expression evaluates to not <tt>nil</tt>, only symbols
starting with an underscore character <tt>_</tt> are accessed. Symbol names starting with
an <tt>_</tt> underscore are used for <a href="#hash">hash keys</a> and symbols created by
<a href="#bayes-train">bayes-train</a>.</p>
<p><tt>dotree</tt> also updates the system iterator symbol <tt>$idx</tt>.</p>
<!-- example -->
<pre>
;; faster and less memory overhead
(dotree (s SomeCTX) (print s " "))
;; slower and higher memory usage
(dolist (s (symbols SomeCTX)) (print s " "))
</pre>
<p>
This example prints the names of all symbols inside SomeCTX to the console window.
</p>
<br/><br/>
<a name="dump"></a>
<h2><span class="function">dump</span></h2>
<h4>syntax: (dump [<em>exp</em>])</h4>
<p>
Shows the binary contents of a newLISP cell.
Without an argument, this function outputs
a listing of all Lisp cells to the console.
When <em>exp</em> is given,
it is evaluated and the contents
of a Lisp cell are returned in a list.
</p>
<!-- example -->
<pre>
(dump 'a) <span class='arw'>→</span> (9586996 5 9578692 9578692 9759280)
(dump 999) <span class='arw'>→</span> (9586996 130 9578692 9578692 999)
</pre>
<p>
The list contains the following memory addresses and information:
</p>
<table summary="dump data types">
<tr align="left"><th>offset</th><th>description</th></tr>
<tr><td>0</td><td>memory address of the newLISP cell</td></tr>
<tr><td>1</td><td>cell->type: major/minor type, see newlisp.h for details</td></tr>
<tr><td>2</td><td>cell->next: linked list ptr</td></tr>
<tr><td>3</td><td>cell->aux:<br/>
string length+1 or <br/>
low (little endian) or high (big endian) word of 64-bit integer or<br/>
low word of IEEE 754 double float</td></tr>
<tr><td>4</td><td>cell->contents:<br/>
string/symbol address or<br/>
high (little endian) or low (big endian) word of 64-bit integer or<br/>
high word of IEEE 754 double float</td></tr>
</table><br/>
<p>
This function is valuable for changing type bits in cells
or hacking other parts of newLISP internals.
See the function <a href="#cpymem">cpymem</a>
for a comprehensive example.
</p>
<br/><br/>
<a name="dup"></a>
<h2><span class="function">dup</span></h2>
<h4>syntax: (dup <em>exp</em> <em>int-n</em> [<em>bool</em>])<br/>
syntax: (dup <em>exp</em>)</h4>
<p>
If the expression in <em>exp</em> evaluates to a string,
it will be replicated <em>int-n</em> times within a string and returned.
When specifying an expression evaluating
to anything other than <tt>nil</tt> in <em>bool</em>,
the string will not be concatenated
but replicated in a list like any other data type.
</p>
<p>
If <em>exp</em> contains any data type other than string,
the returned list will contain <em>int-n</em> evaluations of <em>exp</em>.
</p>
<p>Without the repetition parameter, <tt>dup</tt> assumes 2.</p>
<!-- example -->
<pre>
(dup "A" 6) <span class='arw'>→</span> "AAAAAA"
(dup "A" 6 true) <span class='arw'>→</span> ("A" "A" "A" "A" "A" "A")
(dup "A" 0) <span class='arw'>→</span> ""
(dup "AB" 5) <span class='arw'>→</span> "ABABABABAB"
(dup 9 7) <span class='arw'>→</span> (9 9 9 9 9 9 9)
(dup 9 0) <span class='arw'>→</span> ()
(dup 'x 8) <span class='arw'>→</span> (x x x x x x x x)
(dup '(1 2) 3) <span class='arw'>→</span> ((1 2) (1 2) (1 2))
(dup "\000" 4) <span class='arw'>→</span> "\000\000\000\000"
(dup "*") <span class='arw'>→</span> "**"
</pre>
<p>
The last example shows handling of binary information,
creating a string filled with four binary zeroes.
</p>
<p>
See also the functions <a href="#sequence">sequence</a>
and <a href="#series">series</a>.
</p>
<br/><br/>
<a name="emptyp"></a>
<h2><span class="function">empty?</span></h2>
<h4>syntax: (empty? <em>exp</em>)<br/>
syntax: (empty? <em>str</em>)</h4>
<p>
<em>exp</em> is tested for an empty list
(or <em>str</em> for an empty string).
Depending on whether the argument contains elements,
<tt>true</tt> or <tt>nil</tt> is returned.
</p>
<!-- example -->
<pre>
(set 'var '())
(empty? var) <span class='arw'>→</span> true
(empty? '(1 2 3 4)) <span class='arw'>→</span> nil
(empty? "hello") <span class='arw'>→</span> nil
(empty? "") <span class='arw'>→</span> true
</pre>
<p>
The first example checks a list,
while the second two examples check a string.
</p>
<br/><br/>
<a name="encrypt"></a>
<h2><span class="function">encrypt</span></h2>
<h4>syntax: (encrypt <em>str-source</em> <em>str-pad</em>)</h4>
<p>
Performs a <a href="http://en.wikipedia.org/wiki/One-time_pad">one-time pad</a> (OTP)
encryption of <em>str-source</em> using the encryption pad in <em>str-pad</em>.
The longer <em>str-pad</em> is and the more random the bytes are,
the safer the encryption. If the pad is as long as the source text,
is fully random, and is used only once, then one-time–pad encryption
is virtually impossible to break, since the encryption seems to contain only
random data. To retrieve the original, the same function and pad
are applied again to the encrypted text:
</p>
<!-- example -->
<pre>
(set 'secret
(encrypt "A secret message" "my secret key"))
<span class='arw'>→</span> ",YS\022\006\017\023\017TM\014\022\n\012\030E"
(encrypt secret "my secret key") <span class='arw'>→</span> "A secret message"
</pre>
<p>
The second example encrypts a whole file:
</p>
<pre>
(write-file "myfile.enc"
(encrypt (read-file "myfile") "29kH67*"))
</pre>
<br/><br/>
<a name="ends-with"></a>
<h2><span class="function">ends-with</span></h2>
<h4>syntax: (ends-with <em>str-data</em> <em>str-key</em> [<em>num-option</em>])<br/>
syntax: (ends-with <em>list</em> <em>exp</em>)</h4>
<p>In the first syntax, <tt>ends-with</tt> tests the string in <em>str-data</em> to see if it
ends with the string specified in <em>str-key</em>. It returns <tt>true</tt> or <tt>nil</tt>
depending on the outcome. </p>
<p>If a regular expression <em>option</em> number is
specified, <em>str-key</em> contains a regular expression pattern. See
<a href="#regex">regex</a> for valid numbers for <em>option</em>.
</p>
<!-- example -->
<pre>
(ends-with "newLISP" "LISP") <span class='arw'>→</span> true
(ends-with "newLISP" "lisp") <span class='arw'>→</span> nil
;; use regular expressions
(ends-with "newLISP" "lisp|york" 1) <span class='arw'>→</span> true
</pre>
<p>
In the second syntax,
<tt>ends-with</tt> checks if a list
ends with the list element in <em>exp</em>.
<tt>true</tt> or <tt>nil</tt> is returned depending on outcome.
</p>
<!-- example -->
<pre>
(ends-with '(1 2 3 4 5) 5) <span class='arw'>→</span> true
(ends-with '(a b c d e) 'b) <span class='arw'>→</span> nil
(ends-with '(a b c (+ 3 4)) '(+ 3 4)) <span class='arw'>→</span> true
</pre>
<p>
The last example shows that <em>exp</em> could be a list by itself.
</p>
<p>
See also the <a href="#starts-with">starts-with</a> function.
</p>
<br/><br/>
<a name="env"></a>
<h2><span class="function">env</span></h2>
<h4>syntax: (env)<br/>
syntax: (env <em>var-str</em>)<br/>
syntax: (env <em>var-str</em> <em>value-str</em>)</h4>
<p>In the first syntax (without arguments), the operating system's environment is
retrieved as an association list in which each entry is a key-value pair of
environment variable and value.</p>
<!-- example -->
<pre>
(env)
<span class='arw'>→</span> (("PATH" "/bin:/usr/bin:/sbin") ("TERM" "xterm-color") ... ))
</pre>
<p>In the second syntax, the name of an environment variable
is given in <em>var-str</em>. <tt>env</tt> returns the value
of the variable or <tt>nil</tt> if the variable does not exist
in the environment.</p>
<!-- example -->
<pre>
(env "PATH") <span class='arw'>→</span> "/bin:/usr/bin:/usr/local/bin"
</pre>
<p>The third syntax (variable name in <em>var-str</em>
and value pair in <em>value-str</em>) sets or creates
an environment variable. If <em>value-str</em> is the
empty string <tt>""</tt>, then the variable is completely
removed from the environment except when running on Solaris,
where the variable stays with an empty string.</p>
<!-- example -->
<pre>
(env "NEWLISPBIN" "/usr/local/bin/") <span class='arw'>→</span> true
(env "NEWLISPBIN") <span class='arw'>→</span> "/usr/bin/"
(env "NEWLISPBIN" "") <span class='arw'>→</span> true
(env "NEWLISPBIN") <span class='arw'>→</span> nil
</pre>
<br/><br/>
<a name="erf"></a>
<h2><span class="function">erf</span></h2>
<h4>syntax: (erf <em>num</em>)</h4>
<p>
<tt>erf</tt> calculates the error function
of a number in <em>num</em>.
The error function is defined as:
</p>
<p><b><em>erf (x) = 2/sqrt(pi) * integral from 0 to x of exp(-t^2) dt</em></b></p>
<!-- example -->
<pre>
(map erf (sequence 0.0 6.0 0.5))
<span class='arw'>→</span>
(0 0.5204998778 0.8427007929 0.9661051465 0.995322265 0.999593048
0.9999779095 0.9999992569 0.9999999846 0.9999999998 1 1 1)
</pre>
<br/><br/>
<a name="error-event"></a>
<h2><span class="function">error-event</span></h2>
<h4>syntax: (error-event <em>sym-event-handler | func-event-handler</em>)<br/>
syntax: (error-event nil)</h4>
<p><em>sym-event-handler</em> contains a user-defined function for handling errors.
Whenever an error occurs, the system performs a <a href="#reset">reset</a>
and executes the user-defined error handler. The error handler can use the
built-in function <a href="#last-error">last-error</a> to retrieve the number
and text of the error. The event handler is specified as either a quoted
symbol or a lambda function.</p>
<p>To cancel <tt>error-event</tt>, use the second syntax.</p>
<!-- example -->
<pre>
(define (my-handler)
(print "error # " (first (last-error)) " has occurred\n") )
(error-event 'my-handler) <span class='arw'>→</span> my-handler
;; specify a function directly
(error-event my-handler) <span class='arw'>→</span> $error-event
(error-event
(fn () (print "error # " (first (last-error)) " has occurred\n")))
(error-event exit) <span class='arw'>→</span> $error-event
</pre>
<p>For a different way of handling errors, see the <a href="#catch">catch</a> function.
Use <a href="#throw-error">throw-error</a> to throw user-defined errors.</p>
<br/><br/>
<a name="eval"></a>
<h2><span class="function">eval</span></h2>
<h4>syntax: (eval <em>exp</em>)</h4>
<p><em>eval</em> evaluates the result of evaluating <em>exp</em> in the current
variable environment.</p>
<!-- example -->
<pre>
(set 'expr '(+ 3 4)) <span class='arw'>→</span> (+ 3 4)
(eval expr) <span class='arw'>→</span> 7
(eval (list + 3 4)) <span class='arw'>→</span> 7
(eval ''x) <span class='arw'>→</span> x
(set 'y 123)
(set 'x 'y)
x <span class='arw'>→</span> y
(eval x) <span class='arw'>→</span> 123
</pre>
<p>As usual, evaluation of variables happens in the current variable environment:</p>
<pre>
; eval in global (top level) environment
(set 'x 3 'y 4)
(eval '(+ x y)) <span class='arw'>→</span> 7
; eval in local environment
(let ( (x 33) (y 44) )
(eval '(+ x y))) <span class='arw'>→</span> 77
; old environment after leaving local let environment
(eval '(+ x y)) <span class='arw'>→</span> 7
</pre>
<p>
newLISP passes all arguments by value.
Using a quoted symbol,
expressions can be passed
by reference through the symbol.
<tt>eval</tt> can be used
to access the original contents of the symbol:
</p>
<pre>
(define (change-list aList) (push 999 (eval aList)))
(set 'data '(1 2 3 4 5))
(change-list 'data) <span class='arw'>→</span> (999 1 2 3 4 5)
</pre>
<p>
In the example, the parameter <tt>'data </tt> is quoted,
so <tt>push</tt> can work on the original list.
</p>
<p>
There is a safer method to pass arguments by reference in newLISP
by enclosing the data inside context objects.
See the chapter <a href="#pass_big">Passing data by reference</a>.
Passing references into user defined
function using namespace ids avoids <em>variable capture</em> of
the passed symbol, in case the symbol passed is the same used as a
parameter in the function.</p>
<br/><br/>
<a name="eval-string"></a>
<h2><span class="function">eval-string</span></h2>
<h4>syntax: (eval-string <em>str-source</em> [<em>sym-context</em> [<em>exp-error</em> [<em>int-offset</em>]]])</h4>
<p>
The string in <em>str-source</em> is compiled into newLISP's internal format
and then evaluated. The evaluation result is returned. If the string contains
more than one expression, the result of the last evaluation is returned.
</p>
<p>An optional second argument can be used to specify the context to which
the string should be parsed and translated.</p>
<p>If an error occurs while parsing and evaluating <em>str-source</em> then
<em>exp-error</em> will be evaluated and the result returned.</p>
<p><em>int-offset</em> specifies an optional offset into <em>str-source</em>,
where to start evaluation.</p>
<!-- example -->
<pre>
(eval-string "(+ 3 4)") <span class='arw'>→</span> 7
(set 'X 123) <span class='arw'>→</span> 123
(eval-string "X") <span class='arw'>→</span> 123
(define (repl) ; read print eval loop
(while true
(println "=> " (eval-string (read-line) MAIN (last-error)))
)
)
(set 'a 10)
(set 'b 20)
(set 'foo:a 11)
(set 'foo:b 22)
(eval-string "(+ a b)") <span class='arw'>→</span> 30
(eval-string "(+ a b)" 'foo) <span class='arw'>→</span> 33
</pre>
<p>The second example shows a simple newLISP interpreter eval loop.</p>
<p>The last example shows how to specify a target context for translation. The symbols
<tt>a</tt> and <tt>b</tt> now refer to symbols and their values in context <tt>foo</tt> instead of
<tt>MAIN</tt>.</p>
<p>See also the function <a href="#read-expr">read-expr</a> which translates a string
without evaluating it.</p>
<br/><br/>
<a name="eval-string-js"></a>
<h2><span class="function">eval-string-js
<a href="#JS"><font size="-1">JS</font></a></span></h2>
<h4>syntax: (eval-string-js <em>str-JavaScript-source</em>)</h4>
<p>The function takes a program source in <em>str-JavaScript-source</em>
and returns the result in a string.</p>
<p>This function is only available on newLISP compiled to JavaScript.</p>
<pre>
(eval-string-js "window.prompt('Enter some text:', '')")
; for single and double quotes inside a string passed to a
; JavaScropt function, single and double quotes must be
; preceded by a backslash \ and the whole string passed
; to eval-string-js limited by [text], [/text] tags.
(eval-string-js [text]alert('A double quote: \" and a single quote: \' ')[/text])
(eval-string-js "6 * 7")
</pre>
<p>The first expression will pop up a dialog box to enter text. The function
will return the text string entered. The second expression will return the
string <tt>42</tt>.</p>
<p>See also the function <a href="#display-html">display-html</a> for displaying
an HTML page in the browser.</p>
<br/><br/>
<a name="evenp"></a>
<h2><span class="function">even?</span>
<a href="#big_int"><font size="-1">bigint</font></a></h2>
<h4>syntax: (even? <em>int-number</em>)</h4>
<p>Checks if an integer number is <em>even divisible</em> by <tt>2</tt>, without remainder.
When a floating point number is passed for <em>int-number</em>, it will be converted to an
integer by cutting off its fractional part.</p>
<pre>
(even? 123) <span class='arw'>→</span> nil
(even? 8) <span class='arw'>→</span> true
(even? 8.7) <span class='arw'>→</span> true
</pre>
<p>Use <a href="#oddp">odd?</a> to check if an integer is not divisible by <tt>2</tt>.</p>
<br/><br/>
<a name="exec"></a>
<h2><span class="function">exec</span></h2>
<h4>syntax: (exec <em>str-process</em>)<br/>
syntax: (exec <em>str-process</em> [<em>str-stdin</em>])</h4>
<p>In the first form, <tt>exec</tt> launches a process described in <em>str-process</em>
and returns all standard output as a list of strings
(one for each line in standard out (STDOUT)). <tt>exec</tt> returns <tt>nil</tt>
if the process could not be launched. If the process could be launched but
only returns and error and no valid output, the empty list will be returned.
</p>
<!-- example -->
<pre>
(exec "ls *.c") <span class='arw'>→</span> ("newlisp.c" "nl-math.c" "nl-string.c")
</pre>
<p>
The example starts a process and performs the shell command <tt>ls</tt>,
capturing the output in an array of strings.
</p>
<p>
In the second form,
<tt>exec</tt> creates a process pipe,
starts the process in <em>str-process</em>,
and receives from <em>str-stdin</em>
standard input for this process.
The return value is <tt>true</tt>
if the process was successfully launched;
otherwise it is <tt>nil</tt>.
</p>
<!-- example -->
<pre>
(exec "cgiProc" query)
</pre>
<p>
In this example,
cgiProc could be a cgi processor (e.g., Perl or newLISP)
that receives and processes standard input supplied by a string
contained in the variable query.
</p>
<br/><br/>
<a name="exists"></a>
<h2><span class="function">exists</span></h2>
<h4>syntax: (exists <em>func-condition</em> <em>list</em>)</h4>
<p>Successively applies <em>func-condition</em>
to the elements of <em>list</em>
and returns the first element
that meets the condition in <em>func-condition</em>.
If no element meets the condition,
<tt>nil</tt> is returned.</p>
<!-- example -->
<pre>
(exists string? '(2 3 4 6 "hello" 7)) <span class='arw'>→</span> "hello"
(exists string? '(3 4 2 -7 3 0)) <span class='arw'>→</span> nil
(exists zero? '(3 4 2 -7 3 0)) <span class='arw'>→</span> 0 ; check for 0 or 0.0
(exists < '(3 4 2 -7 3 0)) <span class='arw'>→</span> -7 ; check for negative
(exists (fn (x) (> x 3)) '(3 4 2 -7 3 0)) <span class='arw'>→</span> 4
(exists (fn (x) (= x 10)) '(3 4 2 -7 3 0)) <span class='arw'>→</span> nil
</pre>
<p>If <em>func-condition</em> is <tt>nil?</tt>, the result <tt>nil</tt> is ambiguous.
In this case <a href="#index">index</a> or <a href="#find">find</a> are the better
method when looking for <tt>nil</tt>.</p>
<p>Use the <a href="#for-all">for-all</a> function
to check if a condition is met for all elements in a list.</p>
<br/><br/>
<a name="exit"></a>
<h2><span class="function">exit</span></h2>
<h4>syntax: (exit [<em>int</em>])</h4>
<p>
Exits newLISP.
An optional exit code, <em>int</em>, may be supplied.
This code can be tested by the host operating system.
When newLISP is run in <a href="#daemon">daemon server mode</a>
using <tt>-d</tt> as a command-line option,
only the network connection is closed,
while newLISP stays resident,
listening for a new connection.
</p>
<!-- example -->
<pre>
(exit 5)
</pre>
<br/><br/>
<a name="exp"></a>
<h2><span class="function">exp</span></h2>
<h4>syntax: (exp <em>num</em>)</h4>
<p>The expression in <em>num</em> is evaluated, and the exponential function
is calculated based on the result. <tt>exp</tt> is the inverse function of
<a href="#log">log</a>.
</p>
<!-- example -->
<pre>
(exp 1) <span class='arw'>→</span> 2.718281828
(exp (log 1)) <span class='arw'>→</span> 1
</pre>
<br/><br/>
<a name="expand"></a>
<h2><span class="function">expand</span></h2>
<h4>syntax: (expand <em>exp</em> <em>sym-1</em> [<em>sym-2</em> ... ])<br/>
syntax: (expand <em>exp</em> <em>list-assoc</em> [<em>bool</em>])<br/>
syntax: (expand <em>exp</em>)</h4>
<p>In the first syntax, one symbol in <em>sym</em>
(or more in <em>sym-2</em> through <em>sym-n</em>)
is looked up in a simple or nested expression <em>exp</em>.
They are then expanded to the current binding of the symbol
and the expanded expression is returned. The original list remains unchanged.
</p>
<!-- example -->
<pre>
(set 'x 2 'a '(d e))
(set 'foo 'a)
(expand foo 'a) <span class='arw'>→</span> (d e)
(expand '(a x b) 'x) <span class='arw'>→</span> (a 2 b)
(expand '(a x (b c x)) 'x) <span class='arw'>→</span> (a 2 (b c 2))
(expand '(a x (b c x)) 'x 'a) <span class='arw'>→</span> ((d e) 2 (b c 2))
</pre>
<p><tt>expand</tt> is useful when composing lambda expressions
and doing variable expansion as in rewrite macros.</p>
<pre>
(define (raise-to power)
(expand (fn (base) (pow base power)) 'power))
(define square (raise-to 2))
(define cube (raise-to 3))
(square 5) <span class='arw'>→</span> 25
(cube 5) <span class='arw'>→</span> 125
</pre>
<p>
If more than one symbol is present,
<tt>expand</tt> will work in an incremental fashion:
</p>
<pre>
(set 'a '(b c))
(set 'b 1)
(expand '(a b c) 'a 'b) <span class='arw'>→</span> ((1 c) 1 c)
</pre>
<p>
Like the <a href="#apply">apply</a> function,
<tt>expand</tt> <em>reduces</em> its argument list.
</p>
<h4>syntax: (expand <em>list</em> <em>list-assoc</em> [<em>bool</em>])</h4>
<p>The second syntax of <tt>expand</tt> allows expansion bindings to be specified
on the fly, without performing a <a href="#set">set</a> on the participating variables:
</p>
<p>If the <em>bool</em> evaluates to <tt>true</tt>, the value parts in the
association list are evaluated.</p>
<!-- example -->
<pre>
(expand '(a b c) '((a 1) (b 2))) <span class='arw'>→</span> (1 2 c)
(expand '(a b c) '((a 1) (b 2) (c (x y z)))) <span class='arw'>→</span> (1 2 (x y z))
(expand '(a b) '((a (+ 1 2)) (b (+ 3 4)))) <span class='arw'>→</span> ((+ 1 2) (+ 3 4))
(expand '(a b) '((a (+ 1 2)) (b (+ 3 4))) true) <span class='arw'>→</span> (3 7)
</pre>
<p>
Note that the contents of the variables
in the association list will not change.
This is different from the <a href="#letex">letex</a> function,
where variables are set by evaluating
and assigning their association parts.
</p>
<p>
This form of <tt>expand</tt> is frequently used
in logic programming,
together with the <a href="#unify">unify</a> function.
</p>
<h4>syntax: (expand <em>list</em>)</h4>
<p>
A third syntax is used to expand only the contents
of variables starting with an uppercase character.
This PROLOG mode may also be used
in the context of logic programming.
As in the first syntax of <tt>expand</tt>,
symbols must be preset.
Only uppercase variables and those bound
to anything other than <tt>nil</tt>
will be expanded:
</p>
<!-- example -->
<pre>
(set 'A 1 'Bvar 2 'C nil 'd 5 'e 6)
(expand '(A (Bvar) C d e f)) <span class='arw'>→</span> (1 (2) C d e f)
</pre>
<p>
Only the symbols <tt>A</tt> and <tt>Bvar</tt> are expanded
because they have capitalized names
and non-<tt>nil</tt> contents.
</p>
<p>
The <em>currying</em> function in the example
demonstrating the first syntax of <tt>expand</tt>
can now be written even more simply
using an uppercase variable:
</p>
<pre>
(define (raise-to Power)
(expand (fn (base) (pow base Power))))
> (define cube (raise-to 3))
<b>(lambda (base) (pow base 3))</b>
> (cube 4)
<b>64</b>
> _
</pre>
<p>
See the <a href="#letex">letex</a> function,
which also provides an expansion mechanism,
and the function <a href="#unify">unify</a>,
which is frequently used together with <tt>expand</tt>.
</p>
<br/><br/>
<a name="explode"></a>
<h2><span class="function">explode</span> <font size="-1"><a href="#utf8_capable">utf8</a></font></h2>
<h4>syntax: (explode <em>str</em> [<em>int-chunk</em> [<em>bool</em>]])<br/>
syntax: (explode <em>list</em> [<em>int-chunk</em> [<em>bool</em>]])</h4>
<p>
In the first syntax,
<tt>explode</tt> transforms the string (<em>str</em>)
into a list of single-character strings.
Optionally, a chunk size can be specified in <em>int-chunk</em>
to break the string into multi-character chunks.
When specifying a value for <em>bool</em> other than <tt>nil</tt>,
the last chunk will be omitted
if it does not have the full length specified
in <em>int-chunk</em>.
</p>
<!-- example -->
<pre>
(explode "newLISP") <span class='arw'>→</span> ("n" "e" "w" "L" "I" "S" "P")
(join (explode "keep it together")) <span class='arw'>→</span> "keep it together"
(explode "newLISP" 2) <span class='arw'>→</span> ("ne" "wL" "IS" "P")
(explode "newLISP" 3) <span class='arw'>→</span> ("new" "LIS" "P")
; omit last chunk if too short
(explode "newLISP" 3 true) <span class='arw'>→</span> ("new" "LIS")
</pre>
<p>
Only on non UTF8– enabled versions, <tt>explode</tt> also works on binary content:
</p>
<pre>
(explode "\000\001\002\003")
<span class='arw'>→</span> ("\000" "\001" "\002" "\003")
</pre>
<p>
When called in UTF-8–enabled versions of newLISP,
<tt>explode</tt> will work on character boundaries rather than byte boundaries.
In UTF-8–encoded strings, characters may contain more than one byte.
Processing will stop when a zero byte character is found.
</p>
<p>To explode binary contents on UTF-8–enabled versions of newLISP
use <a href="#unpack">unpack</a> as shown in the following example:</p>
<pre>
(set 'str "\001\002\003\004") <span class='arw'>→</span> "\001\002\003\004"
(unpack (dup "c" (length str)) str) <span class='arw'>→</span> (1 2 3 4)
(unpack (dup "s" (length str)) str) <span class='arw'>→</span> ("\001" "\002" "\003" "\004")
</pre>
<p>
In the second syntax,
<tt>explode</tt> explodes a list (<em>list</em>)
into sublists of chunk size <em>int-chunk</em>,
which is 1 (one) by default.
</p>
<p>
The following shows an example of the last chunk being omitted
when the value for <em>bool</em> is other than <tt>nil</tt>,
and the chunk does not have the full length specified
in <em>int-chunk</em>.
</p>
<!-- example -->
<pre>
(explode '(a b c d e f g h)) <span class='arw'>→</span> ((a) (b) (c) (d) (e) (f) (g) (h))
(explode '(a b c d e f g) 2) <span class='arw'>→</span> ((a b) (c d) (e f) (g))
; omit last chunk if too short
(explode '(a b c d e f g) 2 true) <span class='arw'>→</span> ((a b) (c d) (e f))
(transpose (explode '(a b c d e f g h) 2))
<span class='arw'>→</span> ((a c e g) (b d f h))
</pre>
<p>
The <a href="#join">join</a> and <a href="#append">append</a> functions
are inverse operations of <tt>explode</tt>.
</p>
<br/><br/>
<a name="extend"></a>
<h2><span class="function">extend</span> <a href="#destructive">!</a></h2>
<h4>syntax: (extend <em>list-1</em> [<em>list-2</em> ... ])<br/>
syntax: (extend <em>string-1</em> [<em>string-2</em> ... ])</h4>
<p>The list in <em>list-1</em> is extended by appending <em>list-2</em>. More
than one list may be appended.</p>
<p>The string in <em>string-1</em> is extended by appending <em>string-2</em>. More
than one string may be appended. The string can contain binary <tt>0</tt> (zero)
characters.</p>
<p>The first parameter can be an un-initialized variable.</p>
<p>The extended list or string is returned.</p>
<!-- example -->
<pre>
; extending lists
(extend lst '(a b) '(c d)) <span class='arw'>→</span> (a b c d)
(extend lst '(e f g)) <span class='arw'>→</span> (a b c d e f)
lst <span class='arw'>→</span> (a b c d e f g)
; extending strings
(extend str "ab" "cd") <span class='arw'>→</span> "abcd"
(extend str "efg") <span class='arw'>→</span> "abcdefg"
str <span class='arw'>→</span> "abcdefg"
; extending in place
(set 'L '(a b "CD" (e f)))
(extend (L 2) "E")
L <span class='arw'>→</span> (a b "CDE" (e f))
(extend (L 3) '(g))
L <span class='arw'>→</span> (a b "CDE" (e f g))
</pre>
<p>For a non-destructive list or string extension see <a href="#append">append</a>.</p>
<br/><br/>
<a name="factor"></a>
<h2><span class="function">factor</span></h2>
<h4>syntax: (factor <em>int</em>)</h4>
<p>Factors the number in <em>int</em> into its prime components.
When floating point numbers are passed, they are truncated to
their integer part first.</p>
<!-- example -->
<pre>
(factor 123456789123456789) <span class='arw'>→</span> (3 3 7 11 13 19 3607 3803 52579)
;; check correctness of factoring
(= (apply * (factor 123456789123456789)) 123456789123456789)
<span class='arw'>→</span> true
;; factor the biggest integer
(factor 9223372036854775807) <span class='arw'>→</span> (7 7 73 127 337 92737 649657)
;; primes.lsp - return all primes in a list, up to n
(define (primes n , p)
(dotimes (e n)
(if (= (length (factor e)) 1)
(push e p -1))) p)
(primes 20) <span class='arw'>→</span> (2 3 5 7 11 13 17 19)
</pre>
<p>
<tt>factor</tt> returns <tt>nil</tt>
for numbers smaller than <tt>2</tt>.
For numbers larger than 9,223,372,036,854,775,807
(the largest 64-bit integer)
converted from floating point numbers,
the largest integer is factored.
</p>
<br/><br/>
<a name="fft"></a>
<h2><span class="function">fft</span></h2>
<h4>syntax: (fft <em>list-num</em>)</h4>
<p>
Calculates the discrete Fourier transform
on the list of complex numbers in <em>list-num</em>
using the FFT method (Fast Fourier Transform).
Each complex number is specified by its real part
followed by its imaginary part.
If only real numbers are used,
the imaginary part is set to <tt>0.0</tt> (zero).
When the number of elements in <em>list-num</em>
is not a power of 2,
<tt>fft</tt> increases the number of elements
by padding the list with zeroes.
When the imaginary part of a complex number is <tt>0</tt>,
simple numbers can be used instead.
</p>
<!-- example -->
<pre>
(ifft (fft '((1 0) (2 0) (3 0) (4 0))))
<span class='arw'>→</span> ((1 0) (2 0) (3 0) (4 0))
;; when imaginary part is 0, plain numbers work too
;; plain numbers and complex numbers can be intermixed
(fft '(1 2 3 4)) <span class='arw'>→</span> ((10 0) (-2 -2) (-2 0) (-2 2))
(fft '(1 2 (3 0) 4)) <span class='arw'>→</span> ((10 0) (-2 -2) (-2 0) (-2 2))
</pre>
<p>
The inverse operation of <tt>fft</tt>
is the <a href="#ifft">ifft</a> function.
</p>
<br/><br/>
<a name="file-info"></a>
<h2><span class="function">file-info</span></h2>
<h4>syntax: (file-info <em>str-name</em> [<em>int-index</em> [<em>bool-flag</em>]])</h4>
<p>Returns a list of information about the file or directory in <em>str_name</em>.
The optional index specifies the list member to return. When no <em>bool-flag</em>
is specified or when <em>bool-flag</em> evaluates to <tt>nil</tt> information about
the link is returned if the file is a link to an original file. If <em>bool-flag</em>
evaluates to anything else than <tt>nil</tt>, information about the original file
referenced by the link is returned.</p>
<table summary="file attributes">
<tr align="left"><th>offset</th><th>contents</th></tr>
<tr><td>0</td><td>size</td></tr>
<tr><td>1</td><td>mode (differs with <tt>true</tt> flag)</td></tr>
<tr><td>2</td><td>device mode</td></tr>
<tr><td>3</td><td>user ID</td></tr>
<tr><td>4</td><td>group ID</td></tr>
<tr><td>5</td><td>access time</td></tr>
<tr><td>6</td><td>modification time</td></tr>
<tr><td>7</td><td>status change time</td></tr>
</table><br/>
<p>Depending on <em>bool-flag</em> set, the function reports on either
the link (no flag or <tt>nil</tt> flag) or on the original linked file
(<tt>true</tt> flag).</p>
<!-- example -->
<pre>
(file-info ".bashrc")
<span class='arw'>→</span> (124 33188 0 500 0 920951022 920951022 920953074)
(file-info ".bashrc" 0) <span class='arw'>→</span> 124
(date (file-info "/etc" -1)) <span class='arw'>→</span> "Mon Mar 8 18:23:17 2005"
</pre>
<p> In the second example, the last status change date
for the directory <em>/etc</em> is retrieved.</p>
<p><tt>file-info</tt> gives file statistics (size) for a linked file,
not the link, except for the <em>mode</em> field.</p>
<br/><br/>
<a name="filep"></a>
<h2><span class="function">file?</span></h2>
<h4>syntax: (file? <em>str-path-name</em> [<em>bool</em>])</h4>
<p>Checks for the existence of a file in <em>str-name</em>. Returns <tt>true</tt>
if the file exists; otherwise, it returns <tt>nil</tt>. This function will also return
<tt>true</tt> for directories. If the optional <em>bool</em> value is <tt>true</tt>,
the file must not be a directory and <em>str-path-name</em> is returned or <tt>nil</tt>
if the file is a directory. The existence of a file does not imply anything about its
read or write permissions for the current user.</p>
<!-- example -->
<pre>
(if (file? "afile") (set 'fileNo (open "afile" "read")))
(file? "/usr/local/bin/newlisp" true) <span class='arw'>→</span> "/usr/local/bin/newlisp"
(file? "/usr/bin/foo" true) <span class='arw'>→</span> nil
</pre>
<br/><br/>
<a name="filter"></a>
<h2><span class="function">filter</span></h2>
<h4>syntax: (filter <em>exp-predicate</em> <em>exp-list</em>)</h4>
<p>
The predicate <em>exp-predicate</em> is applied
to each element of the list <em>exp-list</em>.
A list is returned containing the elements
for which <em>exp-predicate</em> is true.
<tt>filter</tt> works like <a href="#clean">clean</a>,
but with a negated predicate.
</p>
<!-- example -->
<pre>
(filter symbol? '(1 2 d 4 f g 5 h)) <span class='arw'>→</span> (d f g h)
(define (big? x) (> x 5)) <span class='arw'>→</span> (lambda (x) (> x 5))
(filter big? '(1 10 3 6 4 5 11)) <span class='arw'>→</span> (10 6 11)
; filter with comparison functor
(set 'L '((a 10 2 7) (b 5) (a 8 3) (c 8) (a 9)))
(filter (curry match '(a *)) L) <span class='arw'>→</span> ((a 10 2 7) (a 8 3) (a 9))
(filter (curry match '(? ?)) L) <span class='arw'>→</span> ((b 5) (c 8) (a 9))
(filter (curry match '(* 8 *)) L) <span class='arw'>→</span> ((a 8 3) (c 8))
</pre>
<p>
The predicate may be a built-in predicate, a user-defined function,
or a lambda expression.
</p>
<p>
For filtering a list of elements with the elements from another list,
use the <a href="#difference"> difference</a> function or
<a href="#intersect">intersect</a> (with the <em>list</em> option).
</p>
<p>
See also the related function <a href="#index">index</a>, which returns the
indices of the filtered elements and <a href="#clean">clean</a>,
which returns all elements of a list for which a predicate is false.
</p>
<br/><br/>
<a name="find"></a>
<h2><span class="function">find</span></h2>
<h4>syntax: (find <em>exp-key</em> <em>list</em> [<em>func-compare</em> | <em>regex-option</em>])<br/>
syntax: (find <em>str-key</em> <em>str-data</em> [<em>regex-option</em> [<em>int-offset</em>]])</h4>
<h3>Find an expression in a list</h3>
<p>If the second argument evaluates to a <em>list</em>, then <tt>find</tt> returns
the index position (offset) of the element derived from evaluating <em>exp-key</em>.</p>
<p>
Optionally, an operator or user-defined function can be specified in <em>func-compare</em>.
If the <em>exp-key</em> is a string, a regular expression option
can be specified with the <em>regex-option</em> parameter.</p>
<p>When using regular expressions or comparison functors the system
variable <tt>$0</tt> is set to the last element found.</p>
<!-- example -->
<pre>
; find an expression in a list
(find '(1 2) '((1 4) 5 6 (1 2) (8 9))) <span class='arw'>→</span> 3
(find "world" '("hello" "world")) <span class='arw'>→</span> 1
(find "hi" '("hello" "world")) <span class='arw'>→</span> nil
(find "newlisp" '("Perl" "Python" "newLISP") 1) <span class='arw'>→</span> 2
; same with string option
(find "newlisp" '("Perl" "Python" "newLISP") "i") <span class='arw'>→</span> 2
; use the comparison functor
(find 3 '(8 4 3 7 2 6) >) <span class='arw'>→</span> 4
$0 <span class='arw'>→</span> 2
(find "newlisp" '("Perl" "Python" "newLISP")
(fn (x y) (regex x y 1))) <span class='arw'>→</span> 2
$0 <span class='arw'>→</span> "newLISP"
(find 5 '((l 3) (k 5) (a 10) (z 22))
(fn (x y) (= x (last y)))) <span class='arw'>→</span> 1
$0 <span class='arw'>→</span> (k 5)
(find '(a ?) '((l 3) (k 5) (a 10) (z 22)) match) <span class='arw'>→</span> 2
$0 <span class='arw'>→</span> (a 10)
(find '(X X) '((a b) (c d) (e e) (f g)) unify) <span class='arw'>→</span> 2
$0 <span class='arw'>→</span> (e e)
; define the comparison functor first for better readability
(define (has-it-as-last x y) (= x (last y)))
(find 22 '((l 3) (k 5) (a 10) (z 22)) has-it-as-last) <span class='arw'>→</span> 3
$0 <span class='arw'>→</span> (z 22)
</pre>
<p>
Using <a href="#match">match</a> and <a href="#unify">unify</a>,
list searches can be formulated which are as powerful
as regular expression searches are for strings.
</p>
<h3>Find a string in a string</h3>
<p>If the second argument, <em>str-data</em>,
evaluates to a string, then the offset position
of the string <em>str-key</em> (found in the first argument,
<em>str-data</em>) is returned. In this case, <tt>find</tt>
also works on binary <em>str-data</em>. The offset position
returned is always based on counting single byte characters
even when running the UTF-8 enabled version of newLISP.</p>
<p>The presence of a third parameter specifies a search
using the regular expression pattern specified in <em>str-pattern</em>,
as well as an option number specified in <em>regex-option</em>
(i.e., 1 (one) for case-insensitive search or <tt>0</tt> (zero)
for no special options). If <em>regex-option</em> is specified
an optional <em>int-offset</em> argument can be specified too
to start the search not at the beginning but at the offset given.
In any case the position returned by <tt>find</tt> is calculated
relative to the beginning of the string.</p>
<p>To specify <em>int-offset</em> in a simple string search without regular
expressions, specify <tt>nil</tt> for <em>regex-option</em>.</p>
<p>In newLISP, regular expressions are standard
Perl Compatible Regular Expression (PCRE) searches.
Found expressions or subexpressions are returned
in the system variables <tt>$0</tt>, <tt>$1</tt>, <tt>$2</tt>, etc.,
which can be used like any other symbol.
As an alternative,
the contents of these variables
can also be accessed
by using <tt>($ 0)</tt>, <tt>($ 1)</tt>, <tt>($ 2)</tt>, etc.
This method allows indexed access
(i.e., <tt>($ i)</tt>, where <tt>i</tt> is an integer).
</p>
<p>See <a href="#regex">regex</a> for the meaning of the
option numbers and more information on regular expression searching.
</p>
<!-- example -->
<pre>
; simple string search
(find "world" "Hello world") <span class='arw'>→</span> 6
(find "WORLD" "Hello woRLd") <span class='arw'>→</span> nil
; case-insensitive regex
(find "WorlD" "Hello woRLd" 1) <span class='arw'>→</span> 6
; or
(find "WorlD" "Hello woRLd" "i") <span class='arw'>→</span> 6
(find "hi" "hello world") <span class='arw'>→</span> nil
(find "Hello" "Hello world") <span class='arw'>→</span> 0
; regex with default options
(find "cat|dog" "I have a cat" 0) <span class='arw'>→</span> 9
$0 <span class='arw'>→</span> "cat"
(find "cat|dog" "my dog" 0) <span class='arw'>→</span> 3
$0 <span class='arw'>→</span> "dog"
(find "cat|dog" "MY DOG" 1) <span class='arw'>→</span> 3
$0 <span class='arw'>→</span> "DOG"
; use an optional offset
(find "cat|dog" "I have a cat and a dog" 0) <span class='arw'>→</span> 9
(find "cat|dog" "I have a cat and a dog" 0 12) <span class='arw'>→</span> 19
;; find with subexpressions in regular expression
;; and access with system variables
(set 'str "http://nuevatec.com:80")
(find "http://(.*):(.*)" str 0) <span class='arw'>→</span> 0
$0 <span class='arw'>→</span> "http://nuevatec.com:80"
$1 <span class='arw'>→</span> "nuevatec.com"
$2 <span class='arw'>→</span> "80"
;; system variables as an indexed expression (since 8.0.5)
($ 0) <span class='arw'>→</span> "http://nuevatec.com:80"
($ 1) <span class='arw'>→</span> "nuevatec.com"
($ 2) <span class='arw'>→</span> "80"
</pre>
<p>
For other functions using regular expressions,
see <a href="#directory">directory</a>,
<a href="#find-all">find-all</a>,
<a href="#parse">parse</a>,
<a href="#regex">regex</a>,
<a href="#replace">replace</a>,
and <a href="#search">search</a>.
</p>
<p>
To find expressions in nested
or multidimensional lists,
use the <a href="#ref">ref</a> and <a href="#ref-all">ref-all</a> functions.
</p>
<br/><br/>
<a name="find-all"></a>
<h2><span class="function">find-all</span></h2>
<h4>syntax: (find-all <em>str-regex-pattern</em> <em>str-text</em> [<em>exp</em> [<em>regex-option</em>]])<br/>
syntax: (find-all <em>list-match-pattern</em> <em>list</em> [<em>exp</em>])<br/>
syntax: (find-all <em>exp-key</em> <em>list</em> [<em>exp</em> [<em>func-compare</em>]])</h4>
<p>
In the first syntax, <tt>find-all</tt> finds all occurrences of <em>str-regex-pattern</em>
in the text <em>str-text</em>, returning a list containing all matching strings.
The empty list <tt>()</tt> is returned if no matches are found. In the first syntax
string searches are always done using regular expression patterns, even if no
<em>regex-option</em> is specified. The system variable <tt>$count</tt> is updated
with the number of matches found.</p>
<p>
Optionally, an expression can be specified to process the found string or regular subexpressions
before placing them into the returned list. An additional option, <em>regex-option</em>,
specifies special regular expression options
(see <a href="#regex">regex</a> for further details).
</p>
<!-- example -->
<pre>
(find-all {\d+} "lkjhkljh34ghfdhgfd678gfdhfgd9")
<span class='arw'>→</span> ("34" "678" "9")
$count <span class='arw'>→</span> 3
(find-all {(new)(lisp)} "newLISPisNEWLISP" (append $2 $1) 1)
<span class='arw'>→</span> ("LISPnew" "LISPNEW")
(unique (sort
(find-all {[a-zA-Z]+}
(replace "<[^>]+>" (get-url "http://newlisp.org") "" 0) )
))
<span class='arw'>→</span> ("A" "ACC" "AI" "API" "About" "All" "Amazing" "Apps"
...
"where" "whole" "width" "wiki" "will" "with" "work" "written")
; use $count in evaluated expr
(find-all "a" "ababab" (string $count $it)) <span class='arw'>→</span> ("1a" "2a" "3a")
</pre>
<p>
The first example discovers all numbers in a text.
The second example shows how an optional expression in <em>exp</em>
can work on subexpressions found by the regular expression pattern
in <em>str-pattern</em>. The last example retrieves a web page,
cleans out all HTML tags, and then collects all words
into a unique and sorted list.
</p>
<p>
Note that <tt>find-all</tt> with strings always performs a regular expression search,
even if the option in <em>regex-option</em> is omitted.
</p>
<p>In the second syntax, <tt>find-all</tt> searches for all list
<a href="#match">match</a> patterns <em>list-match-pattern</em> in
<em>list</em>. As in <tt>find-all</tt> for strings, an expression can
be specified in <em>exp</em> to process further the matched sublist found in
<em>list</em>. The system variable <tt>$count</tt> is updated with the number
of matches found.</p>
<!-- example -->
<pre>
(find-all '(? 2) '((a 1) (b 2) (a 2) (c 4))) <span class='arw'>→</span> ((b 2) (a 2))
(find-all '(? 2) '((a 1) (b 2) (a 2) (c 4)) (first $it)) <span class='arw'>→</span> (b a)
$count <span class='arw'>→</span> 2
</pre>
<p><tt>find-all</tt> for list matches always uses <a href="#match">match</a> to compare when
searching for sublists and always needs a list for the pattern expression.</p>
<p>In the third syntax, <tt>find-all</tt> can specify a built-in or user-defined
function used for comparing list elements with the key expression in <em>exp-key</em>:</p>
<!-- example -->
<pre>
(find-all 5 '(2 7 4 5 9 2 4 9 7 4 8) $it <) <span class='arw'>→</span> (7 9 9 7 8)
; process the found element available in $it
(find-all 5 '(2 7 4 5 9 2 4 9 7 4 8) (* 3 $it) <) <span class='arw'>→</span> (21 27 27 21 24)
; same as
(find-all 5 '(2 7 4 5 9 2 4 9 7 4 8) (* 3 $it) (fn (x y) (< x y))) <span class='arw'>→</span> (21 27 27 21 24)
(find-all 5 '(2 7 4 5 9 2 4 9 7 4 8) ("abcdefghijk" $it) <) <span class='arw'>→</span> ("h" "j" "j" "h" "i")
$count <span class='arw'>→</span> 5
; use $count
(find-all 'a '(a b a b a b) (list $count $it)) <span class='arw'>→</span> ((1 a) (2 a) (3 a))
</pre>
<p>Any type of expression can be searched for or can be contained in the list. <tt>find-all</tt>
in this syntax works similar to <a href="#filter">filter</a> but with the added benefit of
being able to define a processing expression for the found element.</p>
<p>If no <em>func-compare</em> is defined and <em>exp-key</em> is a list, then
<a href="#match">match</a> will be used for comparison, as in the second syntax.</p>
<br/><br/>
<a name="first"></a>
<h2><span class="function">first</span> <font size="-1"><a href="#utf8_capable">utf8</a></font></h2>
<h4>syntax: (first <em>list</em>)<br/>
syntax: (first <em>array</em>)<br/>
syntax: (first <em>str</em>)</h4>
<p>
Returns the first element of a list or the first character of a string.
The operand is not changed. This function is equivalent to <em>car</em>
or <em>head</em> in other Lisp dialects.</p>
<!-- example -->
<pre>
(first '(1 2 3 4 5)) <span class='arw'>→</span> 1
(first '((a b) c d)) <span class='arw'>→</span> (a b)
(set 'aList '(a b c d e)) <span class='arw'>→</span> (a b c d e)
(first aList) <span class='arw'>→</span> a
aList <span class='arw'>→</span> (a b c d e)
(set 'A (array 3 2 (sequence 1 6)))
<span class='arw'>→</span> ((1 2) (3 4) (5 6))
(first A) <span class='arw'>→</span> (1 2)
(first '()) <span class='arw'>→</span> <span class='err'>ERR: list is empty</span>
</pre>
<p>In the third syntax, the first character is returned
from the string in <em>str</em> as a string.</p>
<!-- example -->
<pre>
(first "newLISP") <span class='arw'>→</span> "n"
(first (rest "newLISP")) <span class='arw'>→</span> "e"
</pre>
<p>
Note that <a href="#first">first</a> works on character boundaries
rather than byte boundaries
when the UTF-8–enabled version of newLISP is used.
See also the functions <a href="#last">last</a>
and <a href="#rest">rest</a>.
</p>
<br/><br/>
<a name="flat"></a>
<h2><span class="function">flat</span></h2>
<h4>syntax: (flat <em>list</em> [<em>int-level</em>])</h4>
<p>Returns a flattened list from a list:</p>
<!-- example -->
<pre>
(set 'lst '(a (b (c d))))
(flat lst) <span class='arw'>→</span> (a b c d)
; extract a list of index vectors of all elements
(map (fn (x) (ref x lst)) (flat lst))
<span class='arw'>→</span> ((0) (1 0) (1 1 0) (1 1 1))
</pre>
<p>The optional <em>int-level</em> parameter can be used to limit
the recursion level when flattening the list:</p>
<!-- example -->
<pre>
(flat '(a b (c d (e f)) (g h (i j))) ) <span class='arw'>→</span> (a b c d e f g h i j)
(flat '(a b (c d (e f)) (g h (i j))) 1) <span class='arw'>→</span> (a b c d (e f) g h (i j))
(flat '(a b (c d (e f)) (g h (i j))) 2) <span class='arw'>→</span> (a b c d e f g h i j)
</pre>
<p>If <em>int-level</em> is <tt>0</tt>, no flattening will occur.</p>
<p><tt>flat</tt> can be used to iterate through nested lists.</p>
<br/><br/>
<a name="float"></a>
<h2><span class="function">float</span></h2>
<h4>syntax: (float <em>exp</em> [<em>exp-default</em>])</h4>
<p>
If the expression in <em>exp</em>
evaluates to a number or a string,
the argument is converted to a float
and returned.
If <em>exp</em> cannot be converted to a float
then <tt>nil</tt> or, if specified,
the evaluation of <em>exp-default</em>
will be returned.
This function is mostly used to convert strings
from user input or when reading and parsing text.
The string must start with a digit
or the <tt>+</tt> (plus sign), <tt>-</tt> (minus sign),
or <tt>.</tt> (period).
If <em>exp</em> is invalid,
<tt>float</tt> returns <tt>nil</tt>
as a default value.
</p>
<p>
Floats with exponents larger than 1e308
or smaller than -1e308
are converted to +INF or -INF, respectively.
The display of +INF and -INF
differs on different platforms and compilers.
</p>
<!-- example -->
<pre>
(float "1.23") <span class='arw'>→</span> 1.23
(float " 1.23") <span class='arw'>→</span> 1.23
(float ".5") <span class='arw'>→</span> 0.50
(float "-1.23") <span class='arw'>→</span> -1.23
(float "-.5") <span class='arw'>→</span> nil
(float "#1.23") <span class='arw'>→</span> nil
(float "#1.23" 0.0) <span class='arw'>→</span> 0
(float? 123) <span class='arw'>→</span> nil
(float? (float 123)) <span class='arw'>→</span> true
(float '(a b c)) <span class='arw'>→</span> nil
(float '(a b c) 0) <span class='arw'>→</span> 0
(float nil 0) <span class='arw'>→</span> 0
(float "abc" "not a number") <span class='arw'>→</span> "not a number"
(float "1e500") <span class='arw'>→</span> inf
(float "-1e500") <span class='arw'>→</span> -inf
(print "Enter a float num:")
(set 'f-num (float (read-line)))
</pre>
<p>
Use the <a href="#int">int</a> function
to parse integer numbers.
</p>
<br/><br/>
<a name="floatp"></a>
<h2><span class="function">float?</span></h2>
<h4>syntax: (float? <em>exp</em>)</h4>
<p>
<tt>true</tt> is returned only
if <em>exp</em> evaluates to a floating point number;
otherwise, <tt>nil</tt> is returned.
</p>
<!-- example -->
<pre>
(set 'num 1.23)
(float? num) <span class='arw'>→</span> true
</pre>
<br/><br/>
<a name="floor"></a>
<h2><span class="function">floor</span></h2>
<h4>syntax: (floor <em>number</em>)</h4>
<p>
Returns the next lowest integer below <em>number</em>
as a floating point.
</p>
<!-- example -->
<pre>
(floor -1.5) <span class='arw'>→</span> -2
(floor 3.4) <span class='arw'>→</span> 3
</pre>
<p>
See also the <a href="#ceil">ceil</a> function.
</p>
<br/><br/>
<a name="flt"></a>
<h2><span class="function">flt</span></h2>
<h4>syntax: (flt <em>number</em>)</h4>
<p>
Converts <em>number</em> to a 32-bit float
represented by an integer.
This function is used when passing 32-bit floats
to library routines.
newLISP floating point numbers
are 64-bit and are passed as 64-bit floats
when calling imported C library routines.
</p>
<!-- example -->
<pre>
(flt 1.23) <span class='arw'>→</span> 1067282596
;; pass 32-bit float to C-function: foo(float value)
(import "mylib.so" "foo")
(foo (flt 1.23))
(get-int (pack "f" 1.23)) <span class='arw'>→</span> 1067282596
(unpack "f" (pack "ld" (flt 1.2345))) <span class='arw'>→</span> (1.234500051)
</pre>
<p>
The last two statements illustrate
the inner workings of <tt>flt</tt>.
</p>
<p>
Use the <a href="#import">import</a> function
to import libraries.
</p>
<br/><br/>
<a name="fn"></a>
<h2><span class="function">fn</span></h2>
<h4>syntax: (fn (<em>list-parameters</em>) <em>exp-body</em>)</h4>
<p>
<tt>fn</tt> or <tt>lambda</tt> are used to define anonymous functions,
which are frequently used in <a href="#map">map</a>, <a href="#sort">sort</a>,
and all other expressions where functions can be used as arguments.
The <tt>fn</tt> or <tt>lambda</tt> word does not exist on its own as a symbol,
but indicates a special list type: the <em>lambda list</em>. Together with <tt>fn-macro</tt>
and <tt>lambda-macro</tt> these terms are recognized during source parsing. They indicate a
specialized type of list which can be used and applied like a function or operator.
</p>
<p>
Using an anonymous function eliminates the need to define a new function with
<a href="#define">define</a>. Instead, a function is defined on the fly:
</p>
<!-- example -->
<pre>
(map (fn (x) (+ x x)) '(1 2 3 4 5)) <span class='arw'>→</span> (2 4 6 8 10)
(sort '(".." "..." "." ".....") (fn (x y) (> (length x) (length y))))
<span class='arw'>→</span> ("....." "..." ".." ".")
</pre>
<p>
The example defines the function <em>fn(x)</em>, which takes an integer
(<em>x</em>) and doubles it. The function is <em>mapped</em> onto a list of
arguments using <a href="#map">map</a>. The second example shows strings being
sorted by length.
</p>
<p>
The <a href="#lambda">lambda</a> function (the longer, traditional form of writing)
can be used in place of <tt>fn</tt>.
</p>
<br/><br/>
<a name="for"></a>
<h2><span class="function">for</span></h2>
<h4>syntax: (for (<em>sym</em> <em>num-from</em> <em>num-to</em> [<em>num-step</em> [<em>exp-break</em>]]) <em>body</em>)</h4>
<p>
Repeatedly evaluates the expressions in <em>body</em>
for a range of values specified
in <em>num-from</em> and <em>num-to</em>, inclusive.
A step size may be specified with <em>num-step</em>.
If no step size is specified, <tt>1</tt> is assumed.
</p>
<p>
Optionally, a condition for early loop exit
may be defined in <em>exp-break</em>.
If the break expression evaluates
to any non-<tt>nil</tt> value,
the <tt>for</tt> loop returns with
the value of <em>exp-break</em>.
The break condition is tested
before evaluating <em>body</em>. If a
break condition is defined, <em>num-step</em>
must be defined, too.
</p>
<p>
The symbol <em>sym</em>
is local in dynamic scope
to the <tt>for</tt> expression.
It takes on each value successively
in the specified range as an integer value
if no step size is specified, or
as a floating point value when a step size is
present. After evaluation of the <tt>for</tt>
statement <em>sym</em> assumes its previous
value.
</p>
<!-- example -->
<pre>
> (for (x 1 10 2) (println x))
<b>1
3
5
7
9</b>
> (for (x 8 6 0.5) (println x))
<b>8
7.5
7
6.5
6</b>
> (for (x 1 100 2 (> (* x x) 30)) (println x))
<b>1
3
5
true</b>
> _
</pre>
<p>
The second example uses
a range of numbers
from highest to lowest.
Note that the step size
is always a positive number.
In the third example,
a break condition is tested.
</p>
<p>
Use the <a href="#sequence">sequence</a> function
to make a sequence of numbers.
</p>
<br/><br/>
<a name="for-all"></a>
<h2><span class="function">for-all</span></h2>
<h4>syntax: (for-all <em>func-condition</em> <em>list</em>)</h4>
<p>Applies the function in <em>func-condition</em>
to all elements in <em>list</em>.
If all elements meet the condition in <em>func-condition</em>,
the result is <tt>true</tt>;
otherwise, <tt>nil</tt> is returned.</p>
<!-- example -->
<pre>
(for-all number? '(2 3 4 6 7)) <span class='arw'>→</span> true
(for-all number? '(2 3 4 6 "hello" 7)) <span class='arw'>→</span> nil
(for-all (fn (x) (= x 10)) '(10 10 10 10 10)) <span class='arw'>→</span> true
</pre>
<p>Use the <a href="#exists">exists</a> function
to check if at least one element in a list
meets a condition.</p>
<br/><br/>
<a name="fork"></a>
<h2><span class="function">fork</span></h2>
<h4>syntax: (fork <em>exp</em>)</h4>
<p>
The expression in <em>exp</em> is launched as a newLISP child process-thread
of the platforms OS. The new process inherits the entire address space,
but runs independently so symbol or variable contents changed in the child process
will not affect the parent process or vice versa. The child process ends
when the evaluation of <em>exp</em> finishes.
</p>
<p>
On success, <tt>fork</tt> returns with the child process ID; on failure,
<tt>nil</tt> is returned. See also the <a href="#wait-pid">wait-pid</a> function,
which waits for a child process to finish.
</p>
<p>
This function is only available on Linux/Unix versions of newLISP
and is based on the <tt>fork()</tt> implementation of the underlying OS. </p>
<p>A much simpler automated method to launch processes and collect
results is available with <a href="#spawn">spawn</a> and the <a href="#cilk">Cilk API</a>.</p>
<!-- example -->
<pre>
> (set 'x 0)
<b>0</b>
> (fork (while (< x 20) (println (inc x)) (sleep 1000)))
<b>176</b>
> <b>1
2
3
4
5
6</b>
</pre>
<p>
The example illustrates how the child process-thread inherits the symbol space
and how it is independent of the parent process. The <tt>fork</tt> statement
returns immediately with the process ID <tt>176</tt>. The child process increments
the variable <tt>x</tt> by one each second and prints it to standard out (boldface).
In the parent process, commands can still be entered. Type <tt>x</tt> to see that
the symbol <tt>x</tt> still has the value <tt>0</tt> (zero) in the parent process.
Although statements entered will mix with the display of the child process output,
they will be correctly input to the parent process.</p>
<p>
The second example illustrates how <a href="#pipe">pipe</a> can be used
to communicate between processes.</p>
<!-- example -->
<pre>
#!/usr/local/bin/newlisp
(define (count-down-proc x channel)
(while (!= x 0)
(write-line channel (string x))
(dec x)))
(define (observer-proc channel)
(do-until (= i "1")
(println "process " (setq i (read-line channel)))))
(map set '(in out) (pipe))
(set 'observer (fork (observer-proc in)))
(set 'counter (fork (count-down-proc 5 out)))
; avoid zombies
(wait-pid observer)
(wait-pid counter)
(exit)
</pre>
<p>The following output is generated by observer-proc</p>
<pre>
<b>process 5
process 4
process 3
process 2
process 1</b>
</pre>
<p>
The <tt>count-down-proc</tt> writes numbers to the communication pipe,
where they are picked up by the <tt>observer-process</tt> and displayed.
</p>
<p>A forked process can either exit by itself or it can be destroyed using
the <a href="#destroy">destroy</a> function.</p>
<pre>
(define (fork-destroy-demo)
(set 'pid (fork (dotimes (i 1000) (println i) (sleep 10))))
(sleep 50)
(destroy pid)
)
> (fork-destroy-demo)
<b>0
1
2
3
4
true</b>
>
</pre>
<p>The process started by <tt>fork-destroy-demo</tt> will not finish but is
destroyed 50 milli-seconds after start by a call to <a href="#destroy">destroy</a>.
</p>
<p>
Use the <a href="#semaphore">semaphore</a> function for synchronizing processes
and <a href="#share">share</a> for sharing memory between processes.
</p>
<p>See <a href="#spawn">spawn</a> for a much simpler and automated way to
synchronize processes and collect results.</p>
<br/><br/>
<a name="format"></a>
<h2><span class="function">format</span></h2>
<h4>syntax: (format <em>str-format exp-data-1</em> [<em>exp-data-2</em> ... ])<br/>
syntax: (format <em>str-format</em> <em>list-data</em>)</h4>
<p>Constructs a formatted string from <em>exp-data-1</em>
using the format specified in the evaluation of <em>str-format</em>.
The format specified is identical to the format used for the <tt>printf()</tt>
function in the ANSI C language. Two or more <em>exp-data</em> arguments
can be specified for more than one format specifier in <em>str-format</em>.</p>
<p>In an alternative syntax, the data to be formatted
can be passed inside a list in <em>list-data</em>.</p>
<p><tt>format</tt> checks for a valid format string,
matching data type, and the correct number of arguments.
Wrong formats or data types result in error messages.
<a href="#int">int</a>, <a href="#float">float</a>,
or <a href="#string">string</a> can be used
to ensure correct data types and to avoid error messages.</p>
<p>The format string has the following general format:</p>
<b>"%w.pf"</b>
<p>The <tt>%</tt> (percent sign) starts a format specification.
To display a <tt>%</tt> inside a format string, double it: <tt>%%</tt></p>
<p>On Linux the percent sign can be followed by a single quote <tt>%'</tt>
to insert thousand's separators in number formats.</p>
<p>The <tt>w</tt> represents the width field. Data is right-aligned, except when
preceded by a minus sign, in which case it is left-aligned. If preceded by a
<tt>+</tt> (plus sign), positive numbers are displayed with a <tt>+</tt>.
When preceded by a <tt>0</tt> (zero), the unused space is filled with leading
zeroes. The width field is optional and serves all data types.</p>
<p>The <tt>p</tt> represents the precision number of decimals (floating point only)
or strings and is separated from the width field by a period. Precision is
optional. When using the precision field on strings, the number of characters
displayed is limited to the number in <tt>p</tt>.</p>
<p>The <tt>f</tt> represents a type flag and is essential;
it cannot be omitted.</p>
<p>Below are the types in <tt>f</tt>:</p>
<table summary="format characters">
<tr align="left"><th>format</th><th>description</th></tr>
<tr><td>s</td><td>text string</td></tr>
<tr><td>c</td><td>character (value 1 - 255)</td></tr>
<tr><td>d</td><td>decimal (32-bit)</td></tr>
<tr><td>u</td><td>unsigned decimal (32-bit)</td></tr>
<tr><td>x</td><td>hexadecimal lowercase</td></tr>
<tr><td>X</td><td>hexadecimal uppercase</td></tr>
<tr><td>o</td><td>octal (32-bits) (not supported on all of newLISP flavors)</td></tr>
<tr><td>f</td><td>floating point</td></tr>
<tr><td>e</td><td>scientific floating point</td></tr>
<tr><td>E</td><td>scientific floating point</td></tr>
<tr><td>g</td><td>general floating point</td></tr>
</table><br/>
<p>Formatting 64-bit numbers using the 32-bit format specifiers from above table
will truncate and format the lower 32 bits of the number on 64-bit systerms and overflow to
<tt>0xFFFFFFFF</tt> on 32-bit systems.</p>
<p>For 32-bit and 64-bit numbers use the following format
strings. 64-bit numbers will be truncated to 32-bit on
32-bit platforms:</p>
<table summary="format characters">
<tr align="left"><th>format</th><th>description</th></tr>
<tr><td>ld</td><td>decimal (32/64-bit)</td></tr>
<tr><td>lu</td><td>unsigned decimal (32/64-bit)</td></tr>
<tr><td>lx</td><td>hexadecimal (32/64-bit)</td></tr>
<tr><td>lX</td><td>hexadecimal uppercase (32/64-bit)</td></tr>
</table><br/>
<p>For 64-bit numbers use the following format strings on Unix-like
operating systems and on MS Windows (not supported on TRU64):</p>
<table summary="format characters">
<tr align="left"><th>format</th><th>description</th></tr>
<tr><td>lld</td><td>decimal (64-bit)</td></tr>
<tr><td>llu</td><td>unsigned decimal (64-bit)</td></tr>
<tr><td>llx</td><td>hexadecimal (64-bit)</td></tr>
<tr><td>llX</td><td>hexadecimal uppercase(64-bit)</td></tr>
</table><br/>
<p>On Windows platforms only the following characters apply
for 64 bit numbers:</p>
<table summary="format characters">
<tr align="left"><th>format</th><th>description</th></tr>
<tr><td>I64d</td><td>decimal (64-bit)</td></tr>
<tr><td>I64u</td><td>unsigned decimal (64-bit)</td></tr>
<tr><td>I64x</td><td>hexadecimal (64-bit)</td></tr>
<tr><td>I64X</td><td>hexadecimal uppercase(64-bit)</td></tr>
</table><br/>
<p>
Other text may occur between,
before, or after the format specs.
</p>
<p>Note that on Tru64 Unix the format character <tt>i</tt> can be used instead
of <tt>d</tt>.
</p>
<br/><br/>
<!-- example -->
<pre>
(format ">>>%6.2f<<<" 1.2345) <span class='arw'>→</span> ">>> 1.23<<<"
(format ">>>%-6.2f<<<" 1.2345) <span class='arw'>→</span> ">>>1.23 <<<"
(format ">>>%+6.2f<<<" 1.2345) <span class='arw'>→</span> ">>> +1.23<<<"
(format ">>>%+6.2f<<<" -1.2345) <span class='arw'>→</span> ">>> -1.23<<<"
(format ">>>%-+6.2f<<<" -1.2345) <span class='arw'>→</span> ">>>-1.23 <<<"
(format "%e" 123456789) <span class='arw'>→</span> "1.234568e+08"
(format "%12.10E" 123456789) <span class='arw'>→</span> "1.2345678900E+08"
(format "%10g" 1.23) <span class='arw'>→</span> " 1.23"
(format "%10g" 1.234) <span class='arw'>→</span> " 1.234"
(format "Result = %05d" 2) <span class='arw'>→</span> "Result = 00002"
(format "%14.2f" 12345678.12) <span class='arw'>→</span> " 12345678.12"
; on UNIX glibc compatible platforms only (Linux, MAC OS X 10.9) on some locales
(format "%'14.2f" 12345678.12) <span class='arw'>→</span> " 12,345,678.12"
(format "%8d" 12345) <span class='arw'>→</span> " 12345"
; on UNIX glibc compatible platforms only (Linux, MAC OS X 10.9) on some locales
(format "%'8d" 12345) <span class='arw'>→</span> " 12,345"
(format "%-15s" "hello") <span class='arw'>→</span> "hello "
(format "%15s %d" "hello" 123) <span class='arw'>→</span> " hello 123"
(format "%5.2s" "hello") <span class='arw'>→</span> " he"
(format "%-5.2s" "hello") <span class='arw'>→</span> "he "
(format "%o" 80) <span class='arw'>→</span> "120"
(format "%x %X" -1 -1) <span class='arw'>→</span> "ffffffff FFFFFFFF"
; 64 bit numbers on Windows
(format "%I64X" 123456789012345678) <span class='arw'>→</span> "1B69B4BA630F34E"
; 64 bit numbers on Unix (except TRU64)
(format "%llX" 123456789012345678) <span class='arw'>→</span> "1B69B4BA630F34E"
(format "%c" 65) <span class='arw'>→</span> "A"
</pre>
<p>
The data to be formatted
can be passed inside a list:
</p>
<pre>
(set 'L '("hello" 123))
(format "%15s %d" L) <span class='arw'>→</span> " hello 123"
</pre>
<p>
If the format string requires it,
newLISP's <tt>format</tt> will
automatically convert integers
into floating points
or floating points into integers:
</p>
<pre>
(format "%f" 123) <span class='arw'>→</span> 123.000000
(format "%d" 123.456) <span class='arw'>→</span> 123
</pre>
<br/><br/>
<a name="fv"></a>
<h2><span class="function">fv</span></h2>
<h4>syntax: (fv <em>num-rate</em> <em>num-nper</em> <em>num-pmt</em> <em>num-pv</em> [<em>int-type</em>])</h4>
<p>Calculates the future value of a loan with constant payment <em>num-pmt</em>
and constant interest rate <em>num-rate</em> after <em>num-nper</em> period of
time and a beginning principal value of <em>num-pv</em>. If payment is at the
end of the period, <em>int-type</em> is <tt>0</tt> (zero) or <em>int-type</em> is
omitted; for payment at the beginning of each period, <em>int-type</em> is 1.
</p>
<!-- example -->
<pre>
(fv (div 0.07 12) 240 775.30 -100000) <span class='arw'>→</span> -0.5544645052
</pre>
<p>
The example illustrates how a loan of $100,000 is paid down to a residual
of $0.55 after 240 monthly payments at a yearly interest rate of 7 percent.
</p>
<p>
See also the functions <a href="#irr">irr</a>,
<a href="#nper">nper</a>, <a href="#npv">npv</a>,
<a href="#pmt">pmt</a>, and <a href="#pv">pv</a>.
</p>
<br/><br/>
<a name="gammai"></a>
<h2><span class="function">gammai</span></h2>
<h4>syntax: (gammai <em>num-a</em> <em>num-b</em>)</h4>
<p>
Calculates the incomplete Gamma function
of values <em>a</em> and <em>b</em> in <em>num-a</em> and <em>num-b</em>,
respectively.
</p>
<!-- example -->
<pre>
(gammai 4 5) <span class='arw'>→</span> 0.7349740847
</pre>
<p>
The incomplete Gamma function is used to derive
the probability of Chi² to exceed a
given value for a degree of freedom, df, as follows:
</p>
<BLOCKQUOTE>
<em><b>Q(Chi²|df) = Q(df/2, Chi²/2) = gammai(df/2, Chi²/2)</b></em>
</BLOCKQUOTE>
<p>
See also the <a href="#prob-chi2">prob-chi2</a> function.
</p>
<br/><br/>
<a name="gammaln"></a>
<h2><span class="function">gammaln</span></h2>
<h4>syntax: (gammaln <em>num-x</em>)</h4>
<p>
Calculates the log Gamma function of the value <em>x</em> in <em>num-x</em>.
</p>
<!-- example -->
<pre>
(exp (gammaln 6)) <span class='arw'>→</span> 120
</pre>
<p>
The example uses the equality of <em>n! = gamma(n + 1)</em>
to calculate the factorial value of 5.
</p>
<p>
The log Gamma function is also related to the Beta function,
which can be derived from it:
</p>
<BLOCKQUOTE>
<em><b>Beta(z,w) = Exp(Gammaln(z) + Gammaln(w) - Gammaln(z+w))</b></em>
</BLOCKQUOTE>
<br/><br/>
<a name="gcd"></a>
<h2><span class="function">gcd</span>
<a href="#big_int"><font size="-1">bigint</font></a></h2>
<h4>syntax: (gcd <em>int-1</em> [<em>int-2</em> ... ])</h4>
<p>
Calculates the greatest common divisor
of a group of integers.
The greatest common divisor of two integers
that are not both zero
is the largest integer that divides both numbers.
<tt>gcd</tt> will calculate the greatest common divisor
for the first two integers in <em>int-i</em>
and then further reduce the argument list
by calculating the greatest common divisor of the result
and the next argument in the parameter list.
</p>
<!-- example -->
<pre>
(gcd 0) <span class='arw'>→</span> 0
(gcd 0 0) <span class='arw'>→</span> 0
(gcd 10) <span class='arw'>→</span> 10
(gcd 12 36) <span class='arw'>→</span> 12
(gcd 15 36 6) <span class='arw'>→</span> 3
</pre>
<p>
See
<a href="http://en.wikipedia.org/wiki/Greatest_common_divisor">Wikipedia</a>
for details and theory about gcd numbers in mathematics.
</p>
<br/><br/>
<a name="get-char"></a>
<h2><span class="function">get-char</span>
<a href="#shared-lib"><font size="+2">⚠</font></a></h2>
<h4>syntax: (get-char <em>int-address</em>)</h4>
<p>
Gets an 8-bit character from an address
specified in <em>int-address</em>.
This function is useful when using
imported shared library functions
with <a href="#import">import</a>.
</p>
<!-- example -->
<pre>
char * foo(void)
{
char * result;
result = "ABCDEFG";
return(result);
}
</pre>
<p>
Consider the above C function
from a shared library, which returns a
character pointer (address to a string).
</p>
<pre>
(import "mylib.so" "foo")
(print (get-char (foo) )) <span class='arw'>→</span> 65 ; ASCII "A"
(print (get-char (+ (foo) 1))) <span class='arw'>→</span> 66 ; ASCII "B"
</pre>
<p>
Note that it is unsafe to use the <tt>get-char</tt> function
with an incorrect address in <em>int-address</em>. Doing so
could result in the system crashing or becoming unstable.
</p>
<p>
See also the <a href="#address">address</a>,
<a href="#get-int">get-int</a>,
<a href="#get-long">get-long</a>,
<a href="#get-float">get-float</a>,
<a href="#get-string">get-string</a>,
<a href="#pack">pack</a>, and <a href="#unpack">unpack</a> functions.
</p>
<br/><br/>
<a name="get-float"></a>
<h2><span class="function">get-float</span>
<a href="#shared-lib"><font size="+2">⚠</font></a></h2>
<h4>syntax: (get-float <em>int-address</em>)</h4>
<p>
Gets a 64-bit double float from an address
specified in <em>int-address</em>.
This function is helpful when using
imported shared library functions (with <tt>import</tt>)
that return an address pointer to a double float
or a pointer to a structure containing double floats.
</p>
<!-- example -->
<pre>
double float * foo(void)
{
double float * result;
…
*result = 123.456;
return(result);
}
</pre>
<p>
The previous C function is compiled
into a shared library.
</p>
<pre>
(import "mylib.so" "foo")
(get-float (foo)) <span class='arw'>→</span> 123.456
</pre>
<p>
<tt>foo</tt> is imported and returns a pointer
to a double float when called.
Note that <tt>get-float</tt> is unsafe when used
with an incorrect address in <em>int-address</em>
and may result in the system crashing or becoming unstable.
</p>
<p>
See also the <a href="#address">address</a>,
<a href="#get-int">get-int</a>,
<a href="#get-long">get-long</a>,
<a href="#get-char">get-char</a>,
<a href="#get-string">get-string</a>,
<a href="#pack">pack</a>,
and <a href="#unpack">unpack</a> functions.
</p>
<br/><br/>
<a name="get-int"></a>
<h2><span class="function">get-int</span>
<a href="#shared-lib"><font size="+2">⚠</font></a></h2>
<h4>syntax: (get-int <em>int-address</em>)</h4>
<p>
Gets a 32-bit integer from
the address specified in <em>int-address</em>.
This function is handy when using
imported shared library functions with <tt>import</tt>,
a function returning an address pointer
to an integer, or a pointer to a structure containing integers.
</p>
<!-- example -->
<pre>
int * foo(void)
{
int * result;
…
*result = 123;
return(result);
}
int foo-b(void)
{
int result;
…
result = 456;
return(result);
}
</pre>
<p>
Consider the C function <tt>foo</tt> (from a shared library),
which returns an integer pointer (address of an integer).
</p>
<pre>
(import "mylib.so" "foo")
(get-int (foo)) <span class='arw'>→</span> 123
(foo-b) <span class='arw'>→</span> 456
</pre>
<p>
Note that using <tt>get-int</tt> with an incorrect address
in <em>int-address</em> is unsafe and could result
in the system crashing or becoming unstable.
</p>
<p>
See also the <a href="#address">address</a>,
<a href="#get-char">get-char</a>,
<a href="#get-float">get-float</a>,
<a href="#get-long">get-long</a>,
<a href="#get-string">get-string</a>,
<a href="#pack">pack</a>,
and <a href="#unpack">unpack</a> functions.
</p>
<br/><br/>
<a name="get-long"></a>
<h2><span class="function">get-long</span>
<a href="#shared-lib"><font size="+2">⚠</font></a></h2>
<h4>syntax: (get-long <em>int-address</em>)</h4>
<p>
Gets a 64-bit integer from
the address specified in <em>int-address</em>.
This function is handy when using <tt>import</tt>
to import shared library functions,
a function returning an address pointer to a long integer,
or a pointer to a structure containing long integers.
</p>
<!-- example -->
<pre>
long long int * foo(void)
{
int * result;
…
*result = 123;
return(result);
}
long long int foo-b(void)
{
int result;
…
result = 456;
return(result);
}
</pre>
<p>
Consider the C function <tt>foo</tt> (from a shared library),
which returns an integer pointer (address of an integer).
</p>
<pre>
(import "mylib.so" "foo")
(get-int (foo)) <span class='arw'>→</span> 123
(foo-b) <span class='arw'>→</span> 456
</pre>
<p>
Note that using <tt>get-long</tt> with an incorrect address
in <em>int-address</em> is unsafe and could result
in the system crashing or becoming unstable.
</p>
<p>
See also the <a href="#address">address</a>,
<a href="#get-char">get-char</a>,
<a href="#get-float">get-float</a>,
<a href="#get-int">get-int</a>,
<a href="#get-string">get-string</a>,
<a href="#pack">pack</a>,
and <a href="#unpack">unpack</a> functions.
</p>
<br/><br/>
<a name="get-string"></a>
<h2><span class="function">get-string</span>
<a href="#shared-lib"><font size="+2">⚠</font></a></h2>
<h4>syntax: (get-string <em>int-address</em> [<em>int-bytes</em> [<em>str-limit</em>])</h4>
<p>Copies a character string from the address specified in <em>int-address</em>.
This function is helpful when using imported shared library functions with
<a href="#import">import</a> and a C-function returns the address to a memory buffer.</p>
<!-- example -->
<pre>
char * foo(void)
{
char * result;
result = "ABCDEFG";
return(result);
}
</pre>
<p>
Consider the above C function from a shared library,
which returns a character pointer (address to a string).
</p>
<pre>
(import "mylib.so" "foo")
(print (get-string (foo))) <span class='arw'>→</span> "ABCDEFG"
</pre>
<p>
When a string is passed as an argument,
<tt>get-string</tt> will take its address as the argument.
Without the optional <em>int-bytes</em> argument <tt>get-string</tt> breaks off
at the first first <tt>\000</tt> (null character) it encounters. This works for
retrieving ASCII strings from raw memory addresses:</p>
<!-- example -->
<pre>
(set 'buff "ABC\000\000\000DEF") <span class='arw'>→</span> "ABC\000\000\000DEF"
(length buff) <span class='arw'>→</span> 9
(get-string buff) <span class='arw'>→</span> "ABC"
(length (get-string buff)) <span class='arw'>→</span> 3
; get a string from offset into a buffer
(get-string (+ (address buff) 6)) <span class='arw'>→</span> "DEF"
</pre>
<p>When specifyung the number of bytes in the optional <em>int-bytes</em>
parameter, reading does not stpop at the first zero byte found, but
copies exactly <em>int-bytes</em> number of bytes from the address or string
buffer:</p>
<pre>
(set 'buff "ABC\000\000\000DEF") <span class='arw'>→</span> "ABC\000\000\000DEF"
; without specifying the number of bytes
; buff is equivalent to (address buff)
(get-string buff) <span class='arw'>→</span> "ABC"
; specifying the number of bytes to get
(get-string buff 9) <span class='arw'>→</span> "ABC\000\000\000DEF"
</pre>
<p>The addtional <em>str-limit</em> parameter can be used to limit reading
the buffer at a certain string. If <em>int-bytes</em> are read before
<em>str-limit</em> is found, only <em>int-bytes</em> are read:</p>
<pre>
(set 'buff "ABC\000\000EFG\000DQW") <span class='arw'>→</span> "ABC\000\000EFG\000DQW"
; buff is eqivalent to (address buff)
(get-string buff 4 "FG") <span class='arw'>→</span> "ABC\000"
(get-string buff 10) <span class='arw'>→</span> "ABC\000\000EFG\000D"
(get-string buff 10 "FG") <span class='arw'>→</span> "ABC\000\000E"
</pre>
<p>Although UTF-16 and UTF-32 encoding does not specify string termination characters,
the sequences "\000\000" and "\000\000\000\000" are used often to terminate UTF-16
and UTF-32 encodings. The additional optional <em>str-limit</em> can be used to limit
the string when reading from the buffer address:</p>
<pre>
(set 'utf32 (unicode "我能吞下玻璃而不伤身体。"))
(set 'addr (address utf32)) <span class='arw'>→</span> 140592856255712
; get-string automatically takes the address when a buffer is passed
; utf32 is equivalent to (address utf32) for get-string
(get-string utf32 80 "\000\000\000\000")
<span class='arw'>→</span> "\017b\000\000??\000\000\030T\000\000\011N\ 000\000?s\
000\000?t\000\000\f?\000\000\rN\000\000$O\000\000??\000\000SO\000\000\0020\000\000"
</pre>
<p>When using "\000\000" or "\000\000\000\000" as limit strings, the search for these
limits is aligned to a 2-byte or 4-byte border.</p>
<p>
See also the <a href="#get-char">get-char</a>,
<a href="#get-int">get-int</a>,
<a href="#get-float">get-float</a>,
<a href="#pack">pack</a>,
and <a href="#unpack">unpack</a> functions.
</p>
<p>
Note that <tt>get-string</tt> can crash the system
or make it unstable if the wrong address is specified.
</p>
<br/><br/>
<a name="get-url"></a>
<h2><span class="function">get-url</span></h2>
<h4>syntax: (get-url <em>str-url</em> [<em>str-option</em>] [<em>int-timeout</em> [<em>str-header</em>]])</h4>
<p>Reads a web page or file specified by the URL in <em>str-url</em> using
the HTTP GET protocol. Both <tt>http://</tt> and <tt>file://</tt>
URLs are handled. <tt>"header"</tt> can be specified in the optional argument
<em>str-option</em> to retrieve only the header. The option <tt>"list"</tt>
causes header and page information to be returned as separate strings in a list
and also includes the server status code as the third list member (since 10.6.4).
The <tt>"raw"</tt> option (since 10.6.4), which can be used alone or combined
with other options, suppresses header location redirection.</p>
<p>A <tt>"debug"</tt> option can be specified either alone or after the
<tt>"header"</tt> or <tt>"list"</tt> option separated by one character,
i.e. <tt>"header debug"</tt> or <tt>"list debug"</tt>. Including "debug"
outputs all outgoing information to the console window.</p>
<p>The optional argument <em>int-timeout</em> can specify a value in milliseconds.
If no data is available from the host after the specified timeout, <tt>get-url</tt>
returns the string <tt>ERR: timeout</tt>. When other error conditions occur,
<tt>get-url</tt> returns a string starting with <tt>ERR:</tt> and the description
of the error.</p>
<p><tt>get-url</tt> handles redirection if it detects a <tt>Location:</tt> spec
in the received header and automatically does a second request.
<tt>get-url</tt> also understands the <tt>Transfer-Encoding: chunked</tt>
format and will unpack data into an unchunked format.</p>
<p><tt>get-url</tt> requests are also understood by newLISP server nodes.
</p>
<!-- example -->
<pre>
(get-url "http://www.nuevatec.com")
(get-url "http://www.nuevatec.com" 3000)
(get-url "http://www.nuevatec.com" "header")
(get-url "http://www.nuevatec.com" "header" 5000)
(get-url "http://www.nuevatec.com" "list")
(get-url "file:///home/db/data.txt") ; access local file system
(env "HTTP_PROXY" "http://ourproxy:8080")
(get-url "http://www.nuevatec.com/newlisp/")
</pre>
<p>
The index page from the site specified
in <em>str-url</em> is returned as a string.
In the third line,
only the HTTP header
is returned in a string.
Lines 2 and 4 show a
timeout value being used.
</p>
<p> The second example shows usage of a <tt>file://</tt> URL
to access <tt>/home/db/data.txt</tt> on the local file system.</p>
<p>
The third example illustrates
the use of a proxy server.
The proxy server's URL must be
in the operating system's environment.
As shown in the example,
this can be added using
the <a href="#env">env</a>
function.
</p>
<p>
The <em>int-timeout</em> can be followed
by an optional custom header in <em>str-header</em>:
</p>
<h3>Custom header</h3>
<p>The custom header may contain options
for browser cookies or other directives to the server.
When no <em>str-header</em> is specified,
newLISP sends certain header information by default.
After the following request:
</p>
<pre>
(get-url "http://somehost.com" 5000)
</pre>
<p>
newLISP will configure and send
the request and header below:
</p>
<pre>
GET / HTTP/1.1
Host: somehost.com
User-Agent: newLISP v10603
Connection: close
</pre>
<p>
As an alternative, the <em>str-header</em>
option could be used:
</p>
<pre>
(get-url "http://somehost.com" 5000
"User-Agent: Mozilla/4.0\r\nCookie: name=fred\r\n")
</pre>
<p>
newLISP will now send the
following request and header:
</p>
<pre>
GET / HTTP/1.1
Host: somehost.com
User-Agent: Mozilla/4.o
Cookie: name=fred
Connection: close
</pre>
<p>
Note that when using a custom header,
newLISP will only supply the <tt>GET</tt> request line,
as well as the <tt>Host:</tt> and <tt>Connection:</tt> header entries.
newLISP inserts all other entries supplied in the custom header
between the <tt>Host:</tt> and <tt>Connection:</tt> entries.
Each entry must end with a carriage return
line-feed pair: <tt>\r\n</tt>.
</p>
<p>
See an HTTP transactions reference
for valid header entries.
</p>
<p>
Custom headers can also be used
in the <a href="#put-url">put-url</a>
and <a href="#post-url">post-url</a> functions.
</p>
<br/><br/>
<a name="global"></a>
<h2><span class="function">global</span></h2>
<h4>syntax: (global <em>sym-1</em> [<em>sym-2</em> ... ])</h4>
<p>
One or more symbols in <em>sym-1</em> [<em>sym-2</em> ... ]
can be made globally accessible from contexts other than MAIN.
The statement has to be executed in the MAIN context,
and only symbols belonging to MAIN can be made global.
<tt>global</tt> returns the last symbol made global.
</p>
<!-- example -->
<pre>
(global 'aVar 'x 'y 'z) <span class='arw'>→</span> z
(define (foo x)
(…))
(constant (global 'foo))
</pre>
<p>
The second example shows how <a href="#constant">constant</a>
and <tt>global</tt> can be combined into one statement,
protecting and making a previous function definition global.
</p>
<br/><br/>
<a name="globalp"></a>
<h2><span class="function">global?</span></h2>
<h4>syntax: (global? <em>sym</em>)</h4>
<p>Checks if symbol in <em>sym</em> is global. Built-in functions, context
symbols, and all symbols made global using the function <a href="#global">global</a>
are global:</p>
<!-- example -->
<pre>
global? 'print) <span class='arw'>→</span> true
(global 'var) <span class='arw'>→</span> var
(global? 'var) <span class='arw'>→</span> true
(constant (global 'foo))
(global? 'foo) <span class='arw'>→</span> true
</pre>
<br/><br/>
<a name="history"></a>
<h2><span class="function">history</span></h2>
<h4>syntax: (history [<em>bool-params</em>])</h4>
<p><em>history</em> returns a list of the call history of the enclosing function.
Without the optional <em>bool-params</em>, a list of function symbols is returned.
The first symbol is the name of the enclosing function. When the optional
<em>bool-params</em> evaluates to <em>true</em>, the call arguments are included
with the symbol.</p>
<br/><br/>
<pre>
(define (foo x y)
(bar (+ x 1) (* y 2)))
(define (bar a b)
(history))
; history returns names of calling functions
(foo 1 2) <span class='arw'>→</span> (bar foo)
; the addtional 'true' forces inclusion of callpatterns
(define (bar a b)
(history true))
(foo 1 2) <span class='arw'>→</span> ((bar (+ x 1) (* y 2)) (foo 1 2))
</pre>
<br/><br/>
<a name="if"></a>
<h2><span class="function">if</span></h2>
<h4>syntax: (if <em>exp-condition</em> <em>exp-1</em> [<em>exp-2</em>])<br/>
syntax: (if <em>exp-cond-1</em> <em>exp-1</em> <em>exp-cond-2</em> <em>exp-2</em> [ ... ])</h4>
<p>If the value of <em>exp-condition</em> is neither <tt>nil</tt> nor an empty list,
the result of evaluating <em>exp-1</em> is returned; otherwise, the value of
<em>exp-2</em> is returned. If <em>exp-2</em> is absent, the value of
<em>exp-condition</em> is returned.</p>
<p><tt>if</tt> also sets the anaphoric system variable <tt>$it</tt> to the value
of the conditional expression in <tt>if</tt>.</p>
<!-- example -->
<pre>
(set 'x 50) <span class='arw'>→</span> 50
(if (< x 100) "small" "big") <span class='arw'>→</span> "small"
(set 'x 1000) <span class='arw'>→</span> 1000
(if (< x 100) "small" "big") <span class='arw'>→</span> "big"
(if (> x 2000) "big") <span class='arw'>→</span> nil
; more than one statement in the true or false
; part must be blocked with (begin ...)
(if (= x y)
(begin
(some-func x)
(some-func y))
(begin
(do-this x y)
(do-that x y))
)
; if also sets the anaphoric system variable $it
(set 'lst '(A B C))
(if lst (println (last $it))) <span class='arw'>→</span> C
</pre>
<p>
The second form of <tt>if</tt> works similarly
to <a href="#cond">cond</a>, except it does not take
parentheses around the condition-body pair of expressions.
In this form, <tt>if</tt> can have
an unlimited number of arguments.
</p>
<!-- example -->
<pre>
(define (classify x)
(if
(< x 0) "negative"
(< x 10) "small"
(< x 20) "medium"
(>= x 30) "big"
"n/a"))
(classify 15) <span class='arw'>→</span> "medium"
(classify 100) <span class='arw'>→</span> "big"
(classify 22) <span class='arw'>→</span> "n/a"
(classify -10) <span class='arw'>→</span> "negative"
</pre>
<p>The last expression, <tt>"n/a"</tt>, is optional. When this option
is omitted, the evaluation of <tt>(>= x 30)</tt> is returned, behaving
exactly like a traditional <a href="#cond">cond</a> but without requiring
parentheses around the condition-expression pairs.</p>
<p> In any case, the whole <tt>if</tt> expression
always returns the last expression or condition evaluated.</p>
<p>
See also the <a href="#when">when</a> and <a href="#unless">unless</a> functions.
</p>
<br/><br/>
<!--
<a name="if-not"></a>
<h2><span class="function">if-not</span></h2>
<h4>syntax: (if-not <em>exp-condition</em> <em>exp-1</em> [<em>exp-2</em>])</h4>
<p>
<tt>if-not</tt> is equivalent to (<a href="#if">if</a> (<a href="#not">not</a>
<em>exp-condition</em> <em>exp-1</em> [<em>exp-2</em>])).
If the value of <em>exp-condition</em> is <tt>nil</tt>
or the empty list <tt>()</tt>, <em>exp-1</em> is evaluated;
otherwise, the optional <em>exp-2</em> is evaluated.
</p>
<p>Contrary to the <a href="#if">if</a> function, <tt>if-not</tt> does
not permit multiple consequent and alternative clauses.</p>
<pre>
(set 'x 50) <span class='arw'>→</span> 50
(if-not (< x 100) "big" "small") <span class='arw'>→</span> "small"
(set 'x 1000) <span class='arw'>→</span> 1000
(if-not (< x 100) "big" "small") <span class='arw'>→</span> "big"
</pre>
<br/><br/>
-->
<a name="ifft"></a>
<h2><span class="function">ifft</span></h2>
<h4>syntax: (ifft <em>list-num</em>)</h4>
<p>
Calculates the inverse discrete Fourier transform
on a list of complex numbers in <em>list-num</em>
using the FFT method (Fast Fourier Transform).
Each complex number is specified by its real part,
followed by its imaginary part.
In case only real numbers are used,
the imaginary part is set to <tt>0.0</tt> (zero).
When the number of elements in <em>list-num</em>
is not an integer power of 2,
<tt>ifft</tt> increases the number of elements
by padding the list with zeroes.
When complex numbers are <tt>0</tt> in the imaginary part,
simple numbers can be used.
</p>
<!-- example -->
<pre>
(ifft (fft '((1 0) (2 0) (3 0) (4 0))))
<span class='arw'>→</span> ((1 0) (2 0) (3 0) (4 0))
;; when imaginary part is 0, plain numbers work too
(ifft (fft '(1 2 3 4)))
<span class='arw'>→</span> ((1 0) (2 0) (3 0) (4 0))
</pre>
<p>
The inverse operation of <tt>ifft</tt>
is the <a href="#fft">fft</a> function.
</p>
<br/><br/>
<a name="import"></a>
<h2><span class="function">import</span>
<a href="#shared-lib"><font size="+2">⚠</font></a></h2>
<h4>syntax: (import <em>str-lib-name</em> <em>str-function-name</em> ["cdecl"])<br/>
syntax: (import <em>str-lib-name</em> <em>str-function-name</em> <em>str-return-type</em> [<em>str-param-type</em> . . .])<br/>
syntax: (import <em>str-lib-name</em>)</h4>
<p>Imports the function specified in <em>str-function-name</em>
from a shared library named in <em>str-lib-name</em>. Depending on the syntax used, string
labels for return and parameter types can be specified</p>
<p>If the library in <em>str-lib-name</em> is not in the system's library path, the
full path name should be specified.</p>
<p>A function can be imported only once. A repeated import of the same function
will simply return the same - already allocated - function address.</p>
<p>Note, that the first simple syntax is available on <u>all</u> versions of newLISP, even those compiled without <em>libffi</em> support. On <em>libffi</em> enabled versions - capable of the second extended syntax -
imported symbols are protected against change and can only be modified using
<a href="#constant">constant</a>.</p>
<p>The third syntax - on OSX, Linux and other Unix only - allows pre-loading libraries
without importing functions. This is necessary when other library imports need access
internally to other functions from pre-loaded libraries.</p>
<p>Incorrectly using <tt>import</tt> can cause a system bus error or a segfault can occur
and crash newLISP or leave it in an unstable state.</p>
<h3>The simple <tt>import</tt> syntax</h3>
<p>Most library functions can be imported using the simpler first syntax.
This form is present on <u>all</u> compile flavors of newLISP. The API expects
all function arguments to be passed on the stack in either <em>cdecl</em> or <em>stdcall</em>
conventions. On 32-bit platforms, integers, pointers to strings and buffers sometimes floating
point values can be passed as parameters. On 64-bit platforms only
integers can be passed but no floating point values.
As return values only 32-bit or 64-bit values and pointers are allowed.
No floating point numbers can be returned. Strings must be retrieved with the
<a href="#get-string">get-string</a> helper function. Regardless of these
limitations, most modules included in the distribution use
this simple import API.</p>
<p>If pointers are returned to strings or structures the following helper functions
can be used extract data:
<a href="#get-char">get-char</a>,
<a href="#get-int">get-int</a>,
<a href="#get-float">get-float</a>,
<a href="#get-string">get-string</a>,
<a href="#unpack">unpack</a> </p>
<p>To pass pointers for data structures the following functions help to pack data
and calculate addresses:
<a href="#address">address</a>,
<a href="#pack">pack</a>.</p>
<p>To transform newLISP data types into the data types needed by the
imported function, use the functions
<a href="#float">float</a> for 64-bit double floats,
<a href="#flt">flt</a> for 32-bit floats,
and <a href="#int">int</a> for 32-bit integers.
By default, newLISP passes floating point numbers as 64-bit double floats,
integers as 32-bit integers, and strings as 32-bit integers for string
addresses (pointers in C). Floats can only be used with 32-bit versions
of newLISP and libraries. To use floating point numbers in a 64-bit
environment use the <a href="#extended_import">extended <tt>import</tt> syntax</a>.
</p>
<!-- example -->
<pre>
;; define LIBC platform independent
(define LIBC (lookup ostype '(
("Windows" "msvcrt.dll")
("OSX" "libc.dylib")
(import LIBC "printf")
(printf "%g %s %d %c\n" 1.23 "hello" 999 65)
<b>1.23 hello 999 A</b>
<span class='arw'>→</span> 17 ; return value
;; import MS Windows DLLs in 32-bit versions
(import "kernel32.dll" "GetTickCount") <span class='arw'>→</span> GetTickCount
(import "user32.dll" "MessageBoxA") <span class='arw'>→</span> MessageBoxA
(GetTickCount) <span class='arw'>→</span> 3328896
</pre>
<p>In the first example, the string "1.23 hello 999 A"
is printed as a side effect, and the value 17 (number of
characters printed) is returned. Any C function can be imported
from any shared library in this way.
</p>
<p>The message box example pops up a Windows dialog box, which may be hidden
behind the console window. The console prompt does not return until the
'OK' button is pressed in the message box.</p>
<pre>
;;this pops up a message box
(MessageBoxA 0 "This is the body" "Caption" 1)
</pre>
<p>The other examples show several imports of MS Windows DLL functions and
the details of passing values <em>by value</em> or <em>by reference</em>.
Whenever strings or numbers are passed by reference, space must be
reserved beforehand.</p>
<pre>
(import "kernel32.dll" "GetWindowsDirectoryA")
;; allocating space for a string return value
(set 'str (dup "\000" 64)) ; reserve space and initialize
(GetWindowsDirectoryA str (length str))
str <span class='arw'>→</span> "C:\\WINDOWS\000\000\000 ... "
;; use trim or get-string to cut of trailing binary zeros
(get-string str) <span class='arw'>→</span> "C:\\WINDOWS"
(trim str) <span class='arw'>→</span> "C:\\WINDOWS"
(import "kernel32.dll" "GetComputerNameA")
;; allocate memory and initialize to zeros
(set 'str (dup "\000" 64))
(set 'len (length str)
;; call the function
;; the length of the string is passed as address reference
;; string str is automatically past by address (C pointer)
(GetComputerNameA str (address len))
str <span class='arw'>→</span> "LUTZ-PC\000\000 ... "
(trim str) <span class='arw'>→</span> "LUTZ-PC"
</pre>
<p><tt>import</tt> returns the address of the function, which can be
used to assign a different name to the imported function.</p>
<pre>
(set 'imprime (import "libc.so.6" "printf"))
<span class='arw'>→</span> printf@400862A0
(imprime "%s %d" "hola" 123)
<span class='arw'>→</span> "hola 123"
</pre>
<p>The MS Windows and Cygwin versions of newLISP uses standard call <em>stdcall</em> conventions
to call DLL library routines by default. This is necessary for calling DLLs that belong
to the MS Windows operating system. Most third-party DLLs are compiled for
C declaration <em>cdecl</em> calling conventions and may need to specify the string
<tt>"cdecl"</tt> as an additional last argument when importing functions.
newLISP compiled for macOS, Linux and other Unix systems uses the
<em>cdecl</em> calling conventions by default and ignores any additional string.</p>
<pre>
;; force cdecl calling conventions on MS Windows
(import "sqlite.dll" "sqlite_open" "cdecl") <span class='arw'>→</span> sqlite_open <673D4888>
</pre>
<p>Imported functions may take up to fourteen arguments. Note that
floating point arguments take up two spaces each
(e.g., passing five floats takes up ten of the fourteen parameters).
</p>
<a name="extended_syntax"></a>
<a name="extended_import"></a>
<h3>The extended <tt>import</tt> syntax</h3>
<p>The extended import API works with the second syntax. It is based on the popular
<tt>libffi</tt> library which is pre-installed on most OS platforms. The startup banner
of newLISP should show the word <tt>libffi</tt> indicating the running version
of newLISP is compiled to use the extended <tt>import</tt> API. The function
<a href="#sys-info">sys-info</a> can also be used to check for <tt>libffi</tt>-support.</p>
<p>The API works with all atomic C data types for passed parameters and return values.
The extended API requires that parameter types are specified in the <tt>import</tt>
statement as string type labels. Programs written with extended import API will run
without change on 32-bit and 64-bit newLISP and libraries. Integers, floating point
values and strings can be returned without using helper functions.</p>
<p>The following types can be specified for the return value in <em>str-return-type</em>
and for function parameters in <em>str-param-type</em>:</p>
<table summary="data types">
<tr align="left"><th>label</th><th>C type for return value and arguments</th><th>newLISP return and argument type</th></tr>
<tr><td>"void"</td><td>void</td><td><tt>nil</tt> is returned for return type</td></tr>
<tr><td>"byte"</td><td>byte unsigned 8 bit</td><td>integer</td></tr>
<tr><td>"char"</td><td>char signed 8 bit</td><td>integer</td></tr>
<tr><td>"unsigned short int"</td><td>unsigned short int 16 bit</td><td>integer</td></tr>
<tr><td>"short int"</td><td>short int signed 16 bit</td><td>integer</td></tr>
<tr><td>"unsigned int"</td><td>unsigned int 32 bit</td><td>integer</td></tr>
<tr><td>"int"</td><td>int signed 32 bit</td><td>integer</td></tr>
<tr><td>"long"</td><td>long signed 32 or 64 bit depending on platform</td><td>integer</td></tr>
<tr><td>"long long"</td><td>long long signed 64 bit</td><td>integer</td></tr>
<tr><td>"float"</td><td>float 32 bit</td><td>IEEE-754 64 bit float cut to 32-bit precision</td></tr>
<tr><td>"double"</td><td>double 64 bit</td><td>IEEE-754 64 bit float</td></tr>
<tr><td>"char*"</td><td>char* 32 or 64 bit ptr depending on platform</td><td>displayable string return (zero terminated)<br/>string buffer arg (no addr. since 10.4.2)</td></tr>
<tr><td>"void*"</td><td>void* 32 or 64 bit ptr depending on platform</td><td>integer address return<br/>either string buffer or integer address arg</td></tr>
</table>
<p>The types <tt>"char*"</tt> and <tt>"void*</tt> can be interchanged and are treated
identical inside <tt>libffi</tt>. Depending on the type of arguments passed and the type
of return values, one or the other is used.</p>
<p>Aggregate types can be composed using the <a href="#struct">struct</a> function and
can be used for arguments and return values.</p>
<p>The following examples show how the extended <tt>import</tt> syntax can
handle return values of floating point values and strings:</p>
<pre>
;; return a float value, LIBC was defined earlier
; name return arg
(import LIBC "atof" "double" "char*")
(atof "3.141") <span class='arw'>→</span> 3.141
;; return a copied string
; name return arg-1 arg-2
(import LIBC "strcpy" "char*" "char*" "char*")
(set 'from "Hello World")
(set 'to (dup "\000" (length from))) ; reserve memory
(strcpy to from) <span class='arw'>→</span> "Hello World"
</pre>
<p>The <tt>char*</tt> type takes a string buffer only. The <tt>"void*</tt> type can take either
a string buffer or a memory address number as input. When using <tt>"void*"</tt>
as a return type the address number of the result buffer will be returned. This is
useful when returning pointers to data structures. These pointers can then
be used with <a href="#unpack">unpack</a> and <a href="#struct">struct</a> for destructuring.
In the following example the return type is changed to <tt>void*</tt>:</p>
<pre>
(import LIBC "strcpy" "void*" "char*" "char*")
(set 'from "Hello World")
(set 'to (dup "\000" (length from)))
(strcpy to from) <span class='arw'>→</span> 2449424
(address to) <span class='arw'>→</span> 2449424
(unpack "s11" 2449424) <span class='arw'>→</span> "Hello World"
(get-string 2449424) <span class='arw'>→</span> "Hello World"
to <span class='arw'>→</span> "Hello World"
</pre>
<p>A newLISP string is always passed by it's address reference.</p>
<p>For a more complex example see this
<a href="http://www.newlisp.org/syntax.cgi?code/opengl-demo-ffi-lsp.txt">OpenGL demo</a>.</p>
<h3>Memory management</h3>
<p>Any allocation performed by imported foreign functions has to be
de-allocated manually if there's no call in the imported API to do so.
See the <a href="http://www.newlisp.org/CodePatterns.html">Code Patterns in newLISP</a>
document for an example.</p>
<p>In case of calling foreign functions with passing by reference,
memory for variables needs to be allocated beforehand by newLISP
— see import of <tt>GetWindowsDirectoryA</tt> above —
and hence, memory needs not be deallocated manually, because it is
managed automatically by newLISP.</p>
<br/><br/>
<a name="inc"></a>
<h2><span class="function">inc</span> <a href="#destructive">!</a></h2>
<h4>syntax: (inc <em>place</em> [<em>num</em>])</h4>
<p>
Increments the number in <em>place</em> by <tt>1.0</tt> or by the optional
number <em>num</em> and returns the result. <tt>inc</tt> performs float
arithmetic and converts integer numbers passed into floating point type.</p>
<p><em>place</em> is either a symbol or a place in a list structure holding a
number, or a number returned by an expression.</p>
<!-- example -->
<pre>
(set 'x 0) <span class='arw'>→</span> 0
(inc x) <span class='arw'>→</span> 1
x <span class='arw'>→</span> 1
(inc x 0.25) <span class='arw'>→</span> 1.25
x <span class='arw'>→</span> 1.25
(inc x) <span class='arw'>→</span> 2.25
</pre>
<p>If a symbol for <em>place</em> contains <tt>nil</tt>, it is treated
as if containing <tt>0.0</tt>:</p>
<pre>
z <span class='arw'>→</span> nil
(inc z) <span class='arw'>→</span> 1
(set 'z nil)
(inc z 0.01) <span class='arw'>→</span> 0.01
</pre>
<p>Places in a list structure or a number returned by another expression
can be updated too:</p>
<pre>
(set 'l '(1 2 3 4))
(inc (l 3) 0.1) <span class='arw'>→</span> 4.1
(inc (first l)) <span class='arw'>→</span> 2
l <span class='arw'>→</span> (2 2 3 4.1)
(inc (+ 3 4)) <span class='arw'>→</span> 8
</pre>
<p>Use the <a href="#inci">++</a> function for incrementing numbers in
integer mode. Use <a href="#dec">dec</a> to decrement numbers in floating point mode.</p>
<br/><br/>
<a name="index"></a>
<h2><span class="function">index</span></h2>
<h4>syntax: (index <em>exp-predicate</em> <em>exp-list</em>)</h4>
<p>Applies the predicate <em>exp-predicate</em> to each element of the
list <em>exp-list</em> and returns a list containing the indices of the elements
for which <em>exp-predicate</em> is true.</p>
<!-- example -->
<pre>
(index symbol? '(1 2 d 4 f g 5 h)) <span class='arw'>→</span> (2 4 5 7)
(define (big? x) (> x 5)) <span class='arw'>→</span> (lambda (x) (> x 5))
(index big? '(1 10 3 6 4 5 11)) <span class='arw'>→</span> (1 3 6)
(select '(1 10 3 6 4 5 11) '(1 3 6)) <span class='arw'>→</span> (10 6 11)
</pre>
<p>
The predicate may be a built-in predicate,
a user-defined function, or a lambda expression.
</p>
<p>
Use the <a href="#filter">filter</a> function
to return the elements themselves.
</p>
<br/><br/>
<a name="infp"></a>
<h2><span class="function">inf?</span></h2>
<h4>syntax: (inf? <em>float</em>)</h4>
<p>If the value in <em>float</em> is infinite the function returns
<tt>true</tt> else <tt>nil</tt>.</p>
<!-- example -->
<pre>
(inf? (div 1 0)) <span class='arw'>→</span> true
(div 0 0) <span class='arw'>→</span> NaN
</pre>
<p>Note that an integer division by zero e.g. <tt>(/ 1 0)</tt> will
throw an "division by zero" error and not yield infinity. See also
<a href="#NaNp">NaN?</a> to check if a floating point number is valid.</p>
<br/><br/>
<a name="int"></a>
<h2><span class="function">int</span></h2>
<h4>syntax: (int <em>exp</em> [<em>exp-default</em> [<em>int-base</em>]])</h4>
<p>
If the expression in <em>exp</em> evaluates to a number or a string, the result
is converted to an integer and returned. If <em>exp</em> cannot be converted
to an integer, then <tt>nil</tt> or the evaluation of <em>exp-default</em> will
be returned. This function is mostly used when translating strings from user
input or from parsing text. If <em>exp</em> evaluates to a string, the string
must start with a digit; one or more spaces; or the <tt>+</tt> or <tt>-</tt> sign.
The string must begin with '<tt>0x</tt>' for hexadecimal strings or '<tt>0</tt>'
(zero) for octal strings. If <em>exp</em> is invalid, <tt>int</tt> returns
<tt>nil</tt> as a default value if not otherwise specified.
</p>
<p>A second optional parameter can be used to force the number base
of conversion to a specific value.</p>
<p>Integers larger than 9,223,372,036,854,775,807 are truncated to
9,223,372,036,854,775,807. Integers smaller than -9,223,372,036,854,775,808
are truncated to -9,223,372,036,854,775,808.</p>
<p>When converting from a float (as in the second form of <tt>int</tt>),
floating point values larger or smaller than the integer maximum or minimum
are also truncated. A floating point expression evaluating to <tt>NaN</tt>
is converted to <tt>0</tt> (zero).</p>
<!-- example -->
<pre>
(int "123") <span class='arw'>→</span> 123
(int " 123") <span class='arw'>→</span> 123
(int "a123" 0) <span class='arw'>→</span> 0
(int (trim " 123")) <span class='arw'>→</span> 123
(int "0xFF") <span class='arw'>→</span> 255
(int "0b11111") <span class='arw'>→</span> 31
(int "055") <span class='arw'>→</span> 45
(int "1.567") <span class='arw'>→</span> 1
(int 1.567) <span class='arw'>→</span> 1
(integer? 1.00) <span class='arw'>→</span> nil
(integer? (int 1.00)) <span class='arw'>→</span> true
(int "1111" 0 2) <span class='arw'>→</span> 15 ; base 2 conversion
(int "0FF" 0 16) <span class='arw'>→</span> 255 ; base 16 conversion
(int 'xyz) <span class='arw'>→</span> nil
(int 'xyz 0) <span class='arw'>→</span> 0
(int nil 123) <span class='arw'>→</span> 123
(int "abc" (throw-error "not a number"))
<span class='arw'>→</span> <span class='err'>ERR: user error : not a number</span>
(print "Enter a num:")
(set 'num (int (read-line)))
(int (bits 12345) 0 2) <span class='arw'>→</span> 12345
</pre>
<p>The inverse function to <tt>int</tt> with base <tt>2</tt> is
<a href="#bits">bits</a>.</p>
<p>Use the <a href="#float">float</a> function
to convert arguments to floating point numbers.</p>
<br/><br/>
<a name="integerp"></a>
<h2><span class="function">integer?</span></h2>
<h4>syntax: (integer? <em>exp</em>)</h4>
<p>
Returns <tt>true</tt> only if the value
of <em>exp</em> is an integer;
otherwise, it returns <tt>nil</tt>.
</p>
<!-- example -->
<pre>
(set 'num 123) <span class='arw'>→</span> 123
(integer? num) <span class='arw'>→</span> true
</pre>
<br/><br/>
<a name="intersect"></a>
<h2><span class="function">intersect</span></h2>
<h4>syntax: (intersect <em>list-A</em> <em>list-B</em>)<br/>
syntax: (intersect <em>list-A</em> <em>list-B</em> <em>bool</em>)</h4>
<p>
In the first syntax,
<tt>intersect</tt> returns a list
containing one copy of each element
found both in <em>list-A</em> and <em>list-B</em>.
</p>
<!-- example -->
<pre>
(intersect '(3 0 1 3 2 3 4 2 1) '(1 4 2 5))
<span class='arw'>→</span> (2 4 1)
</pre>
<p>
In the second syntax,
<tt>intersect</tt> returns a list of all elements
in <em>list-A</em> that are also in <em>list-B</em>,
without eliminating duplicates in <em>list-A</em>.
<em>bool</em> is an expression evaluating to <tt>true</tt>
or any other value not <tt>nil</tt>.
</p>
<!-- example -->
<pre>
(intersect '(3 0 1 3 2 3 4 2 1) '(1 4 2 5) true)
<span class='arw'>→</span> (1 2 4 2 1)
</pre>
<p>
See also the set functions
<a href="#difference">difference</a>, <a href="#unique">unique</a>
and <a href="#union">union</a>.
</p>
<br/><br/>
<a name="invert"></a>
<h2><span class="function">invert</span></h2>
<h4>syntax: (invert <em>matrix</em> [<em>float-pivot</em>])</h4>
<p>Returns the inversion of a two-dimensional matrix in <em>matrix</em>.
The matrix must be square, with the same number
of rows and columns, and <em>non-singular</em> (invertible).
Matrix inversion can be used to solve systems of linear equations
(e.g., multiple regression in statistics). newLISP uses LU-decomposition of
the matrix to find the inverse.</p>
<p>Optionally <tt>0.0</tt> or a very small value can be specified
in <em>float-pivot</em>. This value substitutes pivot elements in
the LU-decomposition algorithm, which result in zero when
the algorithm deals with a singular matrix.</p>
<p>The dimensions of a matrix are defined by the number of rows
times the number of elements in the first row. For missing elements
in non-rectangular matrices, <tt>0.0</tt> (zero) is assumed.
A matrix can either be a nested list or an <a href="#array">array</a>.
</p>
<!-- example -->
<pre>
(set 'A '((-1 1 1) (1 4 -5) (1 -2 0)))
(invert A) <span class='arw'>→</span> ((10 2 9) (5 1 4) (6 1 5))
(invert (invert A)) <span class='arw'>→</span> ((-1 1 1) (1 4 -5) (1 -2 0))
; solve Ax = b for x
(multiply (invert A) '((1) (2) (3))) <span class='arw'>→</span> ((41) (19) (23))
; treatment of singular matrices
(invert '((2 -1) (4 -2))) <span class='arw'>→</span> nil
(invert '((2 -1) (4 -2)) 0.0) <span class='arw'>→</span> ((inf -inf) (inf -inf))
(invert '((2 -1) (4 -2)) 1e-20) <span class='arw'>→</span> ((5e+19 -2.5e+19) (1e+20 -5e+19))
</pre>
<p><tt>invert</tt> will return <tt>nil</tt> if the matrix is <i>singular</i>
and cannot be inverted, and <em>float-pivot</em> is not specified. </p>
<p>
All operations shown here on lists
can be performed on arrays, as well.
</p>
<p>
See also the matrix functions <a href="#det">det</a>,
<a href="#mat">mat</a>, <a href="#multiply">multiply</a>
and <a href="#transpose">transpose</a>.
</p>
<br/><br/>
<a name="irr"></a>
<h2><span class="function">irr</span></h2>
<h4>syntax: (irr <em>list-amounts</em> [<em>list-times</em> [<em>num-guess</em>]])</h4>
<p>
Calculates the internal rate of return
of a cash flow per time period.
The internal rate of return is the interest rate
that makes the present value of a cash flow equal to <tt>0.0</tt> (zero).
In-flowing (negative values) and out-flowing (positive values)
amounts are specified in <em>list-amounts</em>.
If no time periods are specified in <em>list-times</em>,
amounts in <em>list-amounts</em> correspond to
consecutive time periods increasing by 1 (1, 2, 3—).
The algorithm used is iterative,
with an initial guess of 0.5 (50 percent).
Optionally, a different
initial guess can be specified.
The algorithm returns when a precision
of 0.000001 (0.0001 percent) is reached.
<tt>nil</tt> is returned if the algorithm
cannot converge after 50 iterations.
</p>
<p>
<em>irr</em> is often used to decide
between different types of investments.
</p>
<!-- example -->
<pre>
(irr '(-1000 500 400 300 200 100))
<span class='arw'>→</span> 0.2027
(npv 0.2027 '(500 400 300 200 100))
<span class='arw'>→</span> 1000.033848 ; ~ 1000
(irr '(-1000 500 400 300 200 100) '(0 3 4 5 6 7))
<span class='arw'>→</span> 0.0998
(irr '(-5000 -2000 5000 6000) '(0 3 12 18))
<span class='arw'>→</span> 0.0321
</pre>
<p>
If an initial investment of 1,000
yields 500 after the first year,
400 after two years, and so on,
finally reaching <tt>0.0</tt> (zero) after five years,
then that corresponds to a yearly return
of about 20.2 percent.
The next line demonstrates the relation
between <tt>irr</tt> and <a href="#npv">npv</a>.
Only 9.9 percent returns are necessary when making
the first withdrawal after three years.
</p>
<p>
In the last example, securities
were initially purchased for 5,000,
then for another 2,000 three months later.
After a year, securities for 5,000 are sold.
Selling the remaining securities
after 18 months renders 6,000.
The internal rate of return is 3.2 percent per month,
or about 57 percent in 18 months.
</p>
<p>
See also the <a href="#fv">fv</a>,
<a href="#nper">nper</a>,
<a href="#npv">npv</a>,
<a href="#pmt">pmt</a>,
and <a href="#pv">pv</a> functions.
</p>
<br/><br/>
<a name="json-error"></a>
<h2><span class="function">json-error</span></h2>
<h4>syntax: (json-error)</h4>
<p>When <a href="#json-parse">json-parse</a> returns <tt>nil</tt> due
to a failed JSON data translation, this function retrieves an error
description and the last scan position of the parser.</p>
<pre>
; failed parse returns nil
(json-parse [text]{"address" "http://example.com"}[/text]) <span class='arw'>→</span> nil
; inspect the error information
(json-error) <span class='arw'>→</span> ("missing : colon" 11)
</pre>
<br/><br/>
<a name="json-parse"></a>
<h2><span class="function">json-parse</span></h2>
<h4>syntax: (json-parse <em>str-json-data</em>)</h4>
<p>This function parses JSON formatted text and translates it to newLISP S-expressions.
All data types conforming to the ECMA-262 standard are translated. The JSON values
<tt>false</tt> and <tt>null</tt> will be represented by the symbols <tt>false</tt>
and <tt>null</tt> in the symbolic newLISP expressions. Arrays in JSON will be represented
by lists in newLISP. The resulting lists from JSON object data can be processed using
<a href="#assoc">assoc</a>, <a href="#lookup">lookup</a> and <a href="#ref">ref</a>.</p>
<p>For JSON attribute values not recognized or wrong JSON syntax, <tt>json-parse</tt>
returns <tt>nil</tt> and <a href="#json-error">json-error</a> can be used to retrieve
the error text.</p>
<p>The following example shows a nested JSON object from a file <tt>person.json</tt>:</p>
<!-- example -->
<pre>
{
"name": "John Smith",
"age": 32,
"employed": true,
"address": {
"street": "701 First Ave.",
"city": "Sunnyvale, CA 95125",
"country": "United States"
},
"children": [
{
"name": "Richard",
"age": 7
},
{
"name": "Susan",
"age": 4
},
{
"name": "James",
"age": 3
}
]
}
</pre>
<p>The file is read, parsed and the resulting S-expression stored in <tt>jsp</tt>:</p>
<pre>
(set 'jsp (json-parse (read-file "person.json")))
<span class='arw'>→</span>
( ("name" "John Smith")
("age" 32)
("employed" true)
("address" ( ("street" "701 First Ave.")
("city" "Sunnyvale, CA 95125")
("country" "United States")) )
("children" (
(("name" "Richard") ("age" 7))
(("name" "Susan") ("age" 4))
(("name" "James") ("age" 3))) )
)
</pre>
<p>Data can be extracted using <a href="#assoc">assoc</a>, <a href="#lookup">lookup</a>
or <a href="#ref">ref</a>:</p>
<pre>
; the address
(lookup "address" jsp)
<span class='arw'>→</span> (("street" "701 First Ave.") ("city" "Sunnyvale, CA 95125") ("country" "United States"))
; the city of the address
(lookup "city" (lookup "address" jsp))
<span class='arw'>→</span> "Sunnyvale, CA 95125"
; a child named Susan
(ref '(( * "Susan") *) jsp match true)
<span class='arw'>→</span> (("name" "Susan") ("age" 4))
; all names
(map last (ref-all '("name" *) jsp match true))
<span class='arw'>→</span> ("John Smith" "Richard" "Susan" "James")
; only names of children
(map last (ref-all '("name" *) (lookup "children" jsp) match true))
<span class='arw'>→</span>
("Richard" "Susan" "James")
; names of children other method
(map last (map first (lookup "children" jsp)))
<span class='arw'>→</span>
("Richard" "Susan" "James")
</pre>
<p>Although most of the time JSON object types are parsed, all JSON data
types can be parsed directly, without occurring as part of a JSON object.
The following examples show parsing of a JSON array:</p>
<pre>
; parse a JSON array data type
(json-parse "[1, 2, 3, 4, 5]") <span class='arw'>→</span> (1 2 3 4 5)
</pre>
<p>When the UTF-8 capable version of newLISP is used, JSON formatted Unicode
gets translated into UTF-8:</p>
<pre>
; parse a JSON object data type ands Unicode
; the outer {,} are newLISP string delimiters [text],[/text] tags could also be used
; the inner {,} are JSON object delimiters
(json-parse { {"greek letters" : "\u03b1\u03b2\u03b3\u03b4"} }) <span class='arw'>→</span> (("greek letters" "αβγδ"))
; strings longer than 2047 bytes should be delimted with [text], [/text] tags
(json-parse [text]{"greek letters" : "\u03b1\u03b2\u03b3\u03b4"}[/text]) <span class='arw'>→</span> (("greek letters" "αβγδ"))
</pre>
<p>The hex-code representation of Unicoder characters in JSON is the same as can be used in
UTF-8 enabled newLISP.</p>
<p>Because JSON objects contain <tt>{,},"</tt> characters, quotes should not be used
to limit JSON data, or all quotes inside the JSON data would need a preceding backslash <tt>\</tt>.
<tt>{,}</tt> braces can be used as long as braces inside the JSON data are balanced.
The safest delimiter are <tt>[text], [/text]</tt> tags — they suppress all special processing
of the string when read by newLISP and are suitable to delimit large data sizes greater
2047 bytes.</p>
<br/><br/>
<a name="join"></a>
<h2><span class="function">join</span></h2>
<h4>syntax: (join <em>list-of-strings</em> [<em>str-joint</em> [<em>bool-trail-joint</em>]])</h4>
<p>
Concatenates the given
list of strings
in <em>list-of-strings</em>.
If <em>str-joint</em> is present,
it is inserted between each string in the join.
If <em>bool-trail-joint</em> is <tt>true</tt>
then a joint string is also appended to the last string.
</p>
<!-- example -->
<pre>
(set 'lst '("this" "is" "a" "sentence"))
(join lst " ") <span class='arw'>→</span> "this is a sentence"
(join (map string (slice (now) 0 3)) "-") <span class='arw'>→</span> "2003-11-26"
(join (explode "keep it together")) <span class='arw'>→</span> "keep it together"
(join '("A" "B" "C") "-") <span class='arw'>→</span> "A-B-C"
(join '("A" "B" "C") "-" true) <span class='arw'>→</span> "A-B-C-"
</pre>
<p>
See also the <a href="#append">append</a>,
<a href="#string">string</a>,
and <a href="#explode">explode</a> functions,
which are the inverse of the <tt>join</tt> operation.
</p>
<br/><br/>
<a name="kmeans-query"></a>
<h2><span class="function">kmeans-query</span></h2>
<h4>syntax: (kmeans-query <em>list-data</em> <em>matrix-centroids</em>)<br/>
syntax: (kmeans-query <em>list-data</em> <em>matrix-data)</em></h4>
<p>In the first usage, <tt>kmeans-query</tt> calculates the Euclidian distances
from the data vector given in <em>list-data</em> to the centroids given in
<em>matrix-centroids</em>. The data vector in <em>list-data</em> has <i>m</i>
elements. The 2-dimensional list in <em>matrix-centroids</em>, result from a previous
<a href="#kmeans-train">kmeans-train</a> clustering, has <i>k</i> rows and <i>m</i>
columns for <i>k</i> centroids measuring <i>m</i> features.</p>
<pre>
; centroids from previous kmeans-train
K:centroids <span class='arw'>→</span>
( (6.39 7.188333333 5.935)
(7.925714286 3.845714286 9.198571429)
(2.207142857 2.881428571 0.8885714286) )
(kmeans-query '(1 2 3) K:centroids) <span class='arw'>→</span>
(8.036487279 9.475994267 2.58693657) ; distances to cluster 1, 2 and 3
</pre>
<p>The data record <tt>(1 2 3)</tt> shows the smallest distance to the 3rd
cluster centroid and would be classified as belonging to that cluster.</p>
<p>In the second application <tt>kmeans-query</tt> calculates Euclidian distances to a list
of other data points which are not centroids. The following example
calculates distances of the <tt>(1 2 3)</tt> data vector to all original points
from the original <a href="#kmeans-train">kmeans-train</a> data analysis.</p>
<p>The data in <em>matrix-data</em> can be either a nested list or a 2-dimensional
array.</p>
<p>This vector could be sorted for a subsequent kNN (k Nearest Neighbor)
analysis:</p>
<pre>
(kmeans-query '(1 2 3) data) <span class='arw'>→</span>
(10.91671196 3.190626898 9.19723328 3.014415366 9.079763213
6.83130295 8.533111976 9.624816881 6.444261013 2.013107051
3.186549858 9.475199206 9.32936761 2.874786949 7.084638311
10.96221237 10.50080473 3.162419959 2.423674896 9.526436899)
; show distances to members in each cluster
; for cluster labeled 1
(select (kmeans-query '(1 2 3) data) (K:clusters 0)) <span class='arw'>→</span>
(9.079763213 6.83130295 9.624816881 6.444261013 7.084638311 10.50080473)
; for cluster labeled 2
(select (kmeans-query '(1 2 3) data) (K:clusters 1)) <span class='arw'>→</span>
(10.91671196 9.19723328 8.533111976 9.475199206 9.32936761 10.96221237 9.526436899)
; for cluster labeled 3
(select (kmeans-query '(1 2 3) data) (K:clusters 2)) <span class='arw'>→</span>
(3.190626898 3.014415366 2.013107051 3.186549858 2.874786949 3.162419959 2.423674896)
</pre>
<p>We see that the smallest distances are shown for the data points in
the 3rd cluster at offset 2.</p>
<p>If the numbers of elements - features - in records of <em>list-data</em>
is different from the number of columns in the data or centroid matrix,
then the smaller is taken for calculating the Euclidian distances. This
is useful when the last column of the data matrix does not contain feature
data, but labels identifying the cluster membership of a data point.</p>
<br/><br/>
<a name="kmeans-train"></a>
<h2><span class="function">kmeans-train</span></h2>
<h4>syntax: (kmeans-train <em>matrix-data</em> <em>int-k</em> <em>context</em> [<em>matrix-centroids</em>])</h4>
<p>The function performs Kmeans cluster analysis on <em>matrix-data</em>.
All <i>n</i> data records in <em>matrix-data</em> are partitioned into a number
of <em>int-k</em> different groups. </p>
<p>Both, the <i>n * m</i> <em>matrix-data</em> and the optional <i>k * m</i>
<em>matrix-centroids</em> can be either nested lists or 2-dimensional arrays.</p>
<p>The Kmeans algorithm tries to minimize the sum of squared inner cluster
distances (SSQ) from the cluster centroid. With each iteration the centroids get
moved closer to their final position. On some data sets, the end result can depend
on the starting centroid points. The right choice of initial centroids can speed
up the process and avoid not wanted local minima.</p>
<p>When no optional <em>matrix-centroids</em> are given, <tt>kmeans-train</tt> will
assign an initial random cluster membership to each data row and calculate starting
centroids. </p>
<p><tt>kmeans-train</tt> returns a vector of total SSQs, the sum of squared inner distances
from the centroid inside the cluster for all clusters. The Iterating algorithm stops when the
change of SSQ from one to the next iteration is less than 1e-10.</p>
<p>Other results of the analysis are stored as lists in variables of <em>context</em>.</p>
<p>The following example analyses 20 data records measuring <i>m = 3</i> features
and tries to partition data into <i>k = 3</i> clusters. Other numbers than <i>k = 3</i>
could be tried. The target is a result with few clusters of high density measured by the
average inner cluster distances.</p>
<pre>
(set 'data '(
(6.57 4.96 11.91)
(2.29 4.18 1.06)
(8.63 2.51 8.11)
(1.85 1.89 0.11)
(7.56 7.93 5.06)
(3.61 7.95 5.11)
(7.18 3.46 8.7)
(8.17 6.59 7.49)
(5.44 5.9 5.57)
(2.43 2.14 1.59)
(2.48 2.26 0.19)
(8.16 3.83 8.93)
(8.49 5.31 7.47)
(3.12 3.1 1.4)
(6.77 6.04 3.76)
(7.01 4.2 11.9)
(6.79 8.72 8.62)
(1.17 4.46 1.02)
(2.11 2.14 0.85)
(9.44 2.65 7.37)))
(kmeans-train data 3 'MAIN:K) <span class='arw'>→</span>
(439.7949357 90.7474276 85.06633163 82.74597619)
; cluster membership
K:labels <span class='arw'>→</span> (2 3 2 3 1 1 2 1 1 3 3 2 2 3 1 2 1 3 3 2)
; the centroid for each cluster
K:centroids <span class='arw'>→</span>
( (6.39 7.188333333 5.935)
(7.925714286 3.845714286 9.198571429)
(2.207142857 2.881428571 0.8885714286) )
</pre>
<p>The returned list of SSQs shows how in each iteration the sum of inner squared
distances decreases. The list in <tt>K:labels</tt> shows the membership fo each
data point in the same order as in the data.</p>
<p>The centroids in <tt>K:centroids</tt> can be used for later classification
of new data records using <a href="#kmeans-query">kmeans-query</a>. When the
number of clusters specified in <em>int-k</em> is too big, <tt>kmeans-train</tt>
will produce unused centroids with <tt>nan</tt> or <tt>NaN</tt> data. When
unused cluster centroids are present, the number in <em>int-k</em> should be
reduced. </p>
<p>The average inner <tt>K:deviations</tt> from cluster members to their centroid
show how dense a cluster is packed. Formally, deviations are calculated similarly
to Euclidian distances and to standard deviations in conventional statistics.
Squaring the deviations and multiplying each with their cluster size
(number of members in the cluster) shows the inner SSQ of each cluster:</p>
<pre>
; average inner deviations of cluster members to the centroid
; deviation = sqrt(ssq-of-cluster / n-of-cluster)
K:deviations <span class='arw'>→</span> (2.457052209 2.260089397 1.240236975)
; calculating inner SSQs from cluster deviations
(map mul '(6 7 7) (map mul K:deviations K:deviations)) <span class='arw'>→</span>
(36.22263333 35.75602857 10.76731429) ; inner SSQs
; SSQ from last iteration as sum of inner SSQs
(apply add '(36.22263333 35.75602857 10.76731429)) <span class='arw'>→</span> 82.74597619
</pre>
<p><tt>K:clusters</tt> gives indices of data records into the original data
for each cluster. With these, individual clusters can be extracted from the
data for further analysis:</p>
<pre>
; ceach of the result clusters with indices into the data set
K:clusters <span class='arw'>→</span>
( (4 5 7 8 14 16)
(0 2 6 11 12 15 19)
(1 3 9 10 13 17 18) )
; cluster of data records labeled 1 at offset 0
(select data (K:clusters 0)) <span class='arw'>→</span>
( (7.56 7.93 5.06)
(3.61 7.95 5.11)
(8.17 6.59 7.49)
(5.44 5.9 5.57)
(6.77 6.04 3.76)
(6.79 8.72 8.62) )
; cluster of data records labeled 2 at offset 1
(select data (K:clusters 1)) <span class='arw'>→</span>
( (6.57 4.96 11.91)
(8.63 2.51 8.11)
(7.18 3.46 8.7)
(8.16 3.83 8.93)
(8.49 5.31 7.47)
(7.01 4.2 11.9)
(9.44 2.65 7.37) )
; cluster of data records labeled 3 at offset 2
(select data (K:clusters 2)) <span class='arw'>→</span>
( (2.29 4.18 1.06)
(1.85 1.89 0.11)
(2.43 2.14 1.59)
(2.48 2.26 0.19)
(3.12 3.1 1.4)
(1.17 4.46 1.02)
(2.11 2.14 0.85) )
</pre>
<p>In the last example the cluster labels (from 1 to 3) are added
to the data:</p>
<pre>
; append a cluster label to each data record
(set 'labeled-data (transpose (push K:labels (transpose data) -1)))
labeled-data: <span class='arw'>→</span>
( (6.57 4.96 11.91 2)
(2.29 4.18 1.06 3)
(8.63 2.51 8.11 2)
(1.85 1.89 0.11 3)
(7.56 7.93 5.06 1)
(3.61 7.95 5.11 1)
... ...
(2.11 2.14 0.85 3)
(9.44 2.65 7.37 2) )
</pre>
<p>The result context should be prefixed with <tt>MAIN</tt> when code is
written in a namespace context. If the context does not exists already, it
will be created.</p>
<p>Results in <tt>K:labels</tt>, <tt>K:clusters</tt>, <tt>K:centroids</tt>
and <tt>K:deviations</tt> will be overwritten, if already present from previous
runs of <tt>kmeans-train</tt>.</p>
<br/><br/>
<a name="lambda"></a>
<h2><span class="function">lambda</span></h2>
<p>See the description of <a href="#fn">fn</a>, which is a shorter form of writing <tt>lambda</tt>.</p>
<br/><br/>
<a name="lambda-macro"></a>
<h2><span class="function">lambda-macro</span></h2>
<p>See the description of <a href="#define-macro">define-macro</a>.</p>
<br/><br/>
<a name="lambdap"></a>
<h2><span class="function">lambda?</span></h2>
<h4>syntax: (lambda? <em>exp</em>)</h4>
<p>Returns <tt>true</tt> only if the value of <em>exp</em> is a lambda expression;
otherwise, returns <tt>nil</tt>.
</p>
<!-- example -->
<pre>
(define (square x) (* x x)) <span class='arw'>→</span> (lambda (x) (* x x))
square <span class='arw'>→</span> (lambda (x) (* x x))
(lambda? square) <span class='arw'>→</span> true
</pre>
<p>See <a href="#define">define</a> and <a href="#define-macro">define-macro</a> for
more information about <em>lambda</em> expressions.
</p>
<br/><br/>
<a name="last"></a>
<h2><span class="function">last</span> <font size="-1"><a href="#utf8_capable">utf8</a></font></h2>
<h4>syntax: (last <em>list</em>)<br/>
syntax: (last <em>array</em>)<br/>
syntax: (last <em>str</em>)</h4>
<p>Returns the last element of a list or a string.
</p>
<!-- example -->
<pre>
(last '(1 2 3 4 5)) <span class='arw'>→</span> 5
(last '(a b (c d))) <span class='arw'>→</span> (c d)
(set 'A (array 3 2 (sequence 1 6)))
<span class='arw'>→</span> ((1 2) (3 4) (5 6))
(last A) <span class='arw'>→</span> (5 6)
(last '()) <span class='arw'>→</span> <span class='err'>ERR: list is empty</span>
</pre>
<p>In the second version the last character in the string <em>str</em> is returned as a
string.
</p>
<!-- example -->
<pre>
(last "newLISP") <span class='arw'>→</span> "P"
</pre>
<p>
Note that <a href="#last">last</a> works on character boundaries
rather than byte boundaries
when the UTF-8–enabled version of newLISP is used.
See also <a href="#first">first</a>, <a href="#rest">rest</a> and <a href="#nth">nth</a>.
</p>
<br/><br/>
<a name="last-error"></a>
<h2><span class="function">last-error</span></h2>
<h4>syntax: (last-error)<br/>
syntax: (last-error <em>int-error</em>)</h4>
<p>Reports the last error generated by newLISP due to syntax errors or exhaustion of
some resource. For a summary of all possible errors see the chapter
<a href="#error_codes">Error codes</a> in the appendix.</p>
<p>If no error has occurred since the newLISP session was started,
<tt>nil</tt> is returned.</p>
<p>When <em>int-error</em> is specified, a list of the number and the error
text is returned.</p>
<!-- example -->
<pre>
(last-error) <span class='arw'>→</span> nil
(abc)
<span class='err'>ERR: invalid function : (abc)</span>
(last-error) <span class='arw'>→</span> (24 "ERR: invalid function : (abc)")
(last-error 24) <span class='arw'>→</span> (24 "invalid function")
(last-error 1) <span class='arw'>→</span> (1 "not enough memory")
(last-error 12345) <span class='arw'>→</span> (12345 "Unknown error")
</pre>
<p>For error numbers out of range the string <tt>"Unknown error"</tt> is
given for the error text.</p>
<p>Errors can be trapped by <a href="#error-event">error-event</a>
and user defined error handlers.</p>
<p>See also <a href="#net-error">net-error</a> for errors generated by
networking conditions and <a href="#sys-error">sys-error</a> for errors
generated by the operating system.</p>
<br/><br/>
<a name="legalp"></a>
<h2><span class="function">legal?</span></h2>
<h4>syntax: (legal? <em>str</em>)</h4>
<p>
The token in <em>str</em> is verified as a legal newLISP symbol.
Non-legal symbols can be created using the <a href="#sym">sym</a> function
(e.g. symbols containing spaces, quotes, or other characters not normally allowed).
Non-legal symbols are created frequently
when using them for associative data access:
</p>
<!-- example -->
<pre>
(symbol? (sym "one two")) <span class='arw'>→</span> true
(legal? "one two") <span class='arw'>→</span> nil ; contains a space
(set (sym "one two") 123) <span class='arw'>→</span> 123
(eval (sym "one two")) <span class='arw'>→</span> 123
</pre>
<p>The example shows that the string <tt>"one two"</tt> does not contain a legal
symbol although a symbol can be created from this string and treated like a
variable.
</p>
<br/><br/>
<a name="length"></a>
<h2><span class="function">length</span>
<a href="#big_int"><font size="-1">bigint</font></a></h2>
<h4>syntax: (length <em>exp</em>)</h4>
<p>Returns the number of elements in a list, the number of rows in
an array and the number of bytes in a string or in a symbol name.</p>
<p>Applied to a number, <tt>length</tt> returns the number of digits for
normal and big integers and the number of digits before the decimal
separator for floats.</p>
<p><tt>length</tt> returns <tt>0</tt> on all other types.</p>
<p>Before version 10.5.6 <tt>length</tt> returned the storage size in bytes
for integers (4 or 8) and floats (8).</p>
<!-- example -->
<pre>
; number of top level elements in a list
(length '(a b (c d) e)) <span class='arw'>→</span> 4
(length '()) <span class='arw'>→</span> 0
(set 'someList '(q w e r t y)) <span class='arw'>→</span> (q w e r t y)
(length someList) <span class='arw'>→</span> 6
; number of top level elements in an array
(set 'ary (array 2 4 '(0))) <span class='arw'>→</span> ((1 2 3 4) (5 6 7 8))
(length ary) <span class='arw'>→</span> 2
; number of bytes in a string or byte buffer
(length "Hello World") <span class='arw'>→</span> 11
(length "") <span class='arw'>→</span> 0
(length "\000\001\003") <span class='arw'>→</span> 3
; number of bytes in a symbol name string
(length 'someVar) <span class='arw'>→</span> 7
; number of int digits in a number
(length 0) <span class='arw'>→</span> 0
(length 123) <span class='arw'>→</span> 3
(length 1.23) <span class='arw'>→</span> 1
(length 1234567890123456789012345L) <span class='arw'>→</span> 25
</pre>
<p>Use <a href="#utf8len">utf8len</a> to calculate the number of UTF-8 characters
in a string.</p>
<br/><br/>
<a name="let"></a>
<h2><span class="function">let</span></h2>
<h4>syntax: (let ((<em>sym1</em> [<em>exp-init1</em>]) [(<em>sym2</em> [<em>exp-init2</em>]) ... ]) <em>body</em>)<br/>
syntax: (let (<em>sym1</em> <em>exp-init1</em> [<em>sym2</em> <em>exp-init2</em> ... ]) <em>body</em>)</h4>
<p>One or more variables <em>sym1</em>, <em>sym2</em>, ... are declared locally and
initialized with expressions in <em>exp-init1</em>, <em>exp-init2</em>, etc.
In the fully parenthesized first syntax, initializers are optional and assumed
<tt>nil</tt> if missing.</p>
<p>When the local variables are initialized, the initializer expressions evaluate
using symbol bindings as before the <tt>let</tt> statement. To incrementally use
symbol bindings as evaluated during the initialization of locals in <tt>let</tt>,
use <a href="#letn">letn</a>.</p>
<p>One or more expressions in <em>exp-body</em> are evaluated using the local
definitions of <em>sym1</em>, <em>sym2</em> etc. <tt>let</tt> is useful for
breaking up complex expressions by defining local variables close to the
place where they are used. The second form omits the parentheses around the
variable expression pairs but functions identically.</p>
<!-- example -->
<pre>
(define (sum-sq a b)
(let ((x (* a a)) (y (* b b)))
(+ x y)))
(sum-sq 3 4) <span class='arw'>→</span> 25
(define (sum-sq a b) ; alternative syntax
(let (x (* a a) y (* b b))
(+ x y)))
</pre>
<p>The variables <tt>x</tt> and <tt>y</tt> are initialized, then the expression
<tt>(+ x y)</tt> is evaluated. The let form is just an optimized version and syntactic
convenience for writing:
</p>
<pre>
((lambda (<em>sym1</em> [<em>sym2</em> ... ]) <em>exp-body</em> ) <em>exp-init1</em> [ <em>exp-init2</em> ])
</pre>
<p>See also <a href="#letn">letn</a> for an incremental or nested form of
<tt>let</tt> and local for initializing to <tt>nil</tt>. See <a href="#local">local</a>
for automatic initialization of variables to <tt>nil</tt>.</p>
<br/><br/>
<a name="letex"></a>
<h2><span class="function">letex</span></h2>
<h4>syntax: (letex ((<em>sym1</em> [<em>exp-init1</em>]) [(<em>sym2</em> [<em>exp-init2</em>]) ... ]) <em>body</em>)<br/>
syntax: (letex (<em>sym1</em> <em>exp-init1</em> [<em>sym2</em> <em>exp-init2</em> ... ]) <em>body</em>)</h4>
<p>This function combines <a href="#let">let</a> and <a href="#expand">expand</a> to
expand local variables into an expression before evaluating it. In the fully parenthesized
first syntax initializers are optional and assumed <tt>nil</tt> if missing.</p>
<p>Both forms provide the same functionality, but in the second form the parentheses
around the initializers can be omitted:
</p>
<!-- example -->
<pre>
(letex (x 1 y 2 z 3) '(x y z)) <span class='arw'>→</span> (1 2 3)
(letex ( (x 1) (y '(a b c)) (z "hello") ) '(x y z))
<span class='arw'>→</span> (1 (a b c) "hello")
</pre>
<p>Before the expression <tt>'(x y z)</tt> gets evaluated, <tt>x, y</tt> and <tt>z</tt>
are literally replaced with the initializers from the <tt>letex</tt> initializer list.
The final expression which gets evaluated is <tt>'(1 2 3)</tt>.
</p>
<p>In the second example a function <tt>make-adder</tt> is defined
for making adder functions:</p>
<pre>
(define (make-adder n)
(letex (c n) (lambda (x) (+ x c))))
(define add3 (make-adder 3)) <span class='arw'>→</span> (lambda (x) (+ x 3))
(add3 10) <span class='arw'>→</span> 13
; letex can expand symbols into themselves
; the following form also works
(define (make-adder n)
(letex (n n) (lambda (x) (+ x n))))
</pre>
<p><tt>letex</tt> evaluates <tt>n</tt> to the constant <tt>3</tt> and replaces <tt>c</tt>
with it in the lambda expression. The second examples shows, how a <tt>letex</tt>
variable can be expanded into itself.</p>
<br/><br/>
<a name="letn"></a>
<h2><span class="function">letn</span></h2>
<h4>syntax: (letn ((<em>sym1</em> [<em>exp-init1</em>]) [(<em>sym2</em> [<em>exp-init2</em>]) ... ]) <em>body</em>)<br/>
syntax: (letn (<em>sym1</em> <em>exp-init1</em> [<em>sym2</em> <em>exp-init2</em> ... ]) <em>body</em>)</h4>
<p><tt>letn</tt> is like a <em>nested let</em> and works similarly to <a href="#let">let</a>,
but will incrementally use the new symbol bindings when evaluating the initializer expressions
as if several <a href="#let">let</a> were nested. In the fully parenthesized first syntax,
initializers are optional and assumed <tt>nil</tt> if missing.</p>
<p>The following comparison
of <a href="#let">let</a> and <tt>letn</tt> show the difference:
</p>
<!-- example -->
<pre>
(set 'x 10)
(let ((x 1) (y (+ x 1)))
(list x y)) <span class='arw'>→</span> (1 11)
(letn ((x 1) (y (+ x 1)))
(list x y)) <span class='arw'>→</span> (1 2)
</pre>
<p>While in the first example using <a href="#let">let</a> the variable <tt>y</tt> is
calculated using the binding of <tt>x</tt> before the <a href="#let">let</a> expression,
in the second example using <tt>letn</tt> the variable <tt>y</tt> is calculated using
the new local binding of <tt>x</tt>.
</p>
<pre>
(letn (x 1 y x)
(+ x y)) <span class='arw'>→</span> 2
;; same as nested let's
(let (x 1)
(let (y x)
(+ x y))) <span class='arw'>→</span> 2
</pre>
<p><tt>letn</tt> works like several <em>nested</em> <a href="#let">let</a>. The parentheses
around the initializer expressions can be omitted.
</p>
<br/><br/>
<a name="list"></a>
<h2><span class="function">list</span></h2>
<h4>syntax: (list <em>exp-1</em> [<em>exp-2</em> ... ])</h4>
<p>The <em>exp</em> are evaluated and the values used to construct a new list.
Note that arguments of array type are converted to lists. See the chapter
<a href="#arrays">Arrays</a> for dealing with multidimensional lists.
</p>
<!-- example -->
<pre>
(list 1 2 3 4 5) <span class='arw'>→</span> (1 2 3 4 5)
(list 'a '(b c) (+ 3 4) '() '*) <span class='arw'>→</span> (a (b c) 7 () *)
</pre>
<p>See also <a href="#cons">cons</a> and <a href="#push">push</a> for other
forms of building lists.
</p>
<br/><br/>
<a name="listp"></a>
<h2><span class="function">list?</span></h2>
<h4>syntax: (list? <em>exp</em>)</h4>
<p>Returns <tt>true</tt> only if the value of <em>exp</em> is a list; otherwise
returns <tt>nil</tt>. Note that lambda and lambda-macro
expressions are also recognized as special instances of a list expression.
</p>
<!-- example -->
<pre>
(set 'var '(1 2 3 4)) <span class='arw'>→</span> (1 2 3 4)
(list? var) <span class='arw'>→</span> true
(define (double x) (+ x x))
(list? double) <span class='arw'>→</span> true
</pre>
<br/><br/>
<a name="load"></a>
<h2><span class="function">load</span></h2>
<h4>syntax: (load <em>str-file-name-1</em> [<em>str-file-name-2</em> ... ] [<em>sym-context</em>])</h4>
<p>Loads and translates newLISP from a source file specified in one or more <em>str-file-name</em>
and evaluates the expressions contained in the file(s). When loading is successful,
<tt>load</tt> returns the result of the last expression in the last file evaluated. If a file
cannot be loaded, <tt>load</tt> throws an error.
</p>
<p>
An optional <em>sym-context</em> can be specified,
which becomes the context of evaluation,
unless such a context switch is already present
in the file being loaded.
By default,
files which do not contain <a href="#context">context</a> switches
will be loaded into the <tt>MAIN</tt> context.
</p>
<p>The <em>str-file-name</em> specs can contain URLs. Both <tt>http://</tt> and <tt> file://</tt>
URLs are supported.
</p>
<!-- example -->
<pre>
(load "myfile.lsp")
(load "a-file.lsp" "b-file.lsp")
(load "file.lsp" "http://mysite.org/mypro")
(load "http://192.168.0.21:6000//home/test/program.lsp")
(load "a-file.lsp" "b-file.lsp" 'MyCTX)
(load "file:///usr/local/share/newlisp/mysql.lsp")
</pre>
<p>In case expressions evaluated during the <tt>load</tt> are changing the
<a href="#context">context</a>, this will not influence the programming
module doing the <tt>load</tt>. </p>
<p>The current context after the <tt>load</tt> statement will always be
the same as before the <tt>load</tt>.</p>
<p>Normal file specs and URLs can be mixed in the same load command.</p>
<p><tt>load</tt> with <tt>HTTP</tt> URLs can also be used to load code
remotely from newLISP server nodes running on a Unix-like operating system.
In this mode, <tt>load</tt> will issue
an HTTP GET request to the target URL. Note that a double backslash is required
when path names are specified relative to the root directory. <tt>load</tt>
in <tt>HTTP</tt> mode will observe a 60-second timeout.</p>
<p>The second to last line causes the files to be loaded into the context <tt>MyCTX</tt>.
The quote forces the context to be created if it did not exist.
</p>
<p>The <tt>file://</tt> URL is followed by a third <tt>/</tt> for the directory spec.
</p>
<br/><br/>
<a name="local"></a>
<h2><span class="function">local</span></h2>
<h4>syntax: (local (<em>sym-1</em> [<em>sym-2</em> ... ]) <em>body</em>)</h4>
<p>
Initializes one or more symbols
in <em>sym-1—</em> to <tt>nil</tt>,
evaluates the expressions in <em>body</em>,
and returns the result of the last evaluation.
</p>
<p>
<tt>local</tt> works similarly to <a href="#let">let</a>,
but local variables are all initialized to <tt>nil</tt>.
</p>
<p>
<tt>local</tt> provides a simple way
to localize variables
without explicit initialization.
</p>
<br/><br/>
<a name="log"></a>
<h2><span class="function">log</span></h2>
<h4>syntax: (log <em>num</em>)<br/>
syntax: (log <em>num</em> <em>num-base</em>)</h4>
<p>In the first syntax, the expression in <em>num</em> is evaluated and the natural
logarithmic function is calculated from the result.
</p>
<!-- example -->
<pre>
(log 1) <span class='arw'>→</span> 0
(log (exp 1)) <span class='arw'>→</span> 1
</pre>
<p>In the second syntax, an arbitrary base can be specified in <em>num-base</em>.
</p>
<!-- example -->
<pre>
(log 1024 2) <span class='arw'>→</span> 10
(log (exp 1) (exp 1)) <span class='arw'>→</span> 1
</pre>
<p>See also <a href="#exp">exp</a>, which is the inverse function to <tt>log</tt> with
base <b><em>e</em></b> (2.718281828).</p>
<br/><br/>
<a name="lookup"></a>
<h2><span class="function">lookup</span></h2>
<h4>syntax: (lookup <em>exp-key</em> <em>list-assoc</em> [<em>int-index</em> [<em>exp-default</em>]])</h4>
<p>Finds in <em>list-assoc</em> an association, the key element of which
has the same value as <em>exp-key</em>, and returns the <em>int-index</em> element of
association (or the last element if <em>int-index</em> is absent).</p>
<p>Optionally, <em>exp-default</em> can be specified, which is returned if an association matching
<em>exp-key</em> cannot be found. If the <em>exp-default</em> is absent and no association
has been found, <tt>nil</tt> is returned.</p>
<p>See also <a href="#indexing">Indexing elements of strings and lists</a>.
</p>
<p><tt>lookup</tt> is similar to <a href="#assoc">assoc</a> but goes one step further
by extracting a specific element found in the list.
</p>
<!-- example -->
<pre>
(set 'params '(
(name "John Doe")
(age 35)
(gender "M")
(balance 12.34)
))
(lookup 'age params) <span class='arw'>→</span> 35
; use together with setf to modify and association list
(setf (lookup 'age params) 42) <span class='arw'>→</span> 42
(lookup 'age params) <span class='arw'>→</span> 42
(set 'persons '(
("John Doe" 35 "M" 12.34)
("Mickey Mouse" 65 "N" 12345678)
))
(lookup "Mickey Mouse" persons 2) <span class='arw'>→</span> "N"
(lookup "Mickey Mouse" persons -3) <span class='arw'>→</span> 65
(lookup "John Doe" persons 1) <span class='arw'>→</span> 35
(lookup "John Doe" persons -2) <span class='arw'>→</span> "M"
(lookup "Jane Doe" persons 1 "N/A") <span class='arw'>→</span> "N/A"
</pre>
<p>See also <a href="#assoc">assoc</a></p>
<br/><br/>
<a name="lower-case"></a>
<h2><span class="function">lower-case</span> <font size="-1"><a href="#utf8_capable">utf8</a></font></h2>
<h4>syntax: (lower-case <em>str</em>)</h4>
<p>
Converts the characters of the string
in <em>str</em> to lowercase.
A new string is created,
and the original is left unaltered.
</p>
<!-- example -->
<pre>
(lower-case "HELLO WORLD") <span class='arw'>→</span> "hello world"
(set 'Str "ABC")
(lower-case Str) <span class='arw'>→</span> "abc"
Str <span class='arw'>→</span> "ABC"
</pre>
<p>
See also the <a href="#upper-case">upper-case</a> and
<a href="#title-case">title-case</a> functions.
</p>
<br/><br/>
<a name="macro"></a>
<h2><span class="function">macro</span></h2>
<h4>syntax: (macro (<em>sym-name</em> [<em>sym-param-1</em> ... ]) [<em>body-1</em> ... ])</h4>
<p>The <tt>macro</tt> function is used to define expansion macros. The syntax
of <tt>macro</tt> is identical to the syntax of <a href="#define-macro">define-macro</a>.
But while <tt>define-macro</tt> defines are <em>fexprs</em> functions to be evaluated
at run-time, <tt>macro</tt> defines a function to be used during the source loading
and reading process to transform certain expression call patterns into different call
patterns.</p>
<p>Symbols defined with <tt>macro</tt> are protected from re-definition.</p>
<pre>
(macro (double X) (+ X X)) <span class='arw'>→</span> (lambda-macro (X) (expand '(+ X X)))
(double 123) <span class='arw'>→</span> 246
(protected? 'double) <span class='arw'>→</span> true
</pre>
<p>Internally all <tt>macro</tt> defined symbol call patterns are translated using
the <a href="#expand">expand</a> expression during source reading. This can be shown using
the <a href="#read-expr">read-expr</a> function:</p>
<pre>
(read-expr "(double 123)") <span class='arw'>→</span> (+ 123 123)
</pre>
<p>All variable names to be expanded must start in upper-case. Macros can be nested containing
other macros defined earlier. But <tt>macro</tt> definitions cannot be repeated for the same
symbol during the same newLISP session. To redefine a macro, e.g. for reading source with a
different definition of an exisiting <tt>macro</tt> definition, use the
<a href="#constant">constant</a> function in the following way:</p>
<pre>
; change existing macro 'double' to allow floating point parameters
; use upper-case for variables for expansion
(constant 'double (lambda-macro (X) (expand '(add X X))))
<span class='arw'>→</span> (lambda-macro (X) (expand '(add X X)))
(double 1.23) <span class='arw'>→</span> 2.46
</pre>
<p>Note, that <a href="#constant">constant</a> can be used only to re-define macros, not
to create new macros. Internally newLISP knows that <tt>macro</tt> defined symbols
are executed during source reading, not evaluation.</p>
<p>The redefinition will only affect future read code, it will not affect
code already load and translated by the reader routines.</p>
<h3>Using <tt>map</tt> and <tt>apply</tt> with <tt>macro</tt></h3>
<p>When mapping macros using <a href="#map">map</a> or <a href="#apply">apply</a>
the expansion function is mapped:</p>
<pre>
<b>></b> (macro (double X) (+ X X))
<b>(lambda-macro (X) (expand '(+ X X)))</b>
<b>></b> (map double '(1 2 3 4 5))
<b>((+ 1 1) (+ 2 2) (+ 3 3) (+ 4 4) (+ 5 5))
></b> (map eval (map double '(1 2 3 4 5)))
<b>(2 4 6 8 10)</b>
<b>></b> (apply double '(10))
<b>(+ 10 10)
></b>
</pre>
<p>This is useful to find out how the expansion mechanism of our <tt>macro</tt>
definition works during source load time.</p>
<h3>Differences between <tt>macro</tt> and <tt>define-macro</tt> and potential problems.</h3>
<p><tt>macro</tt> definitions are not susceptible to <em>variable capture</em> as
are fexprs made with <a href="define-macro">define-macro</a>:</p>
<pre>
(define-macro (fexpr-add A B)
(+ (eval A) (eval B)))
(macro (mac-add A B)
(+ A B))
(set 'A 11 'B 22)
; variable capture when using the same symbols
; used as locals in define-macro for callling
(fexpr-add A B) <span class='arw'>→</span>
; or
(fexpr-add B A) <span class='arw'>→</span>
<span class="err">ERR: value expected : A
called from user defined function fexpr-add</span>
; no variable capture when doing the same with
; expansion macros
(mac-add A B) <span class='arw'>→</span> 33
(mac-add B A) <span class='arw'>→</span> 33
</pre>
<p>But expansion macros using <tt>macro</tt> are susceptible to unwanted double
evaluation, just like <tt>define-macro is</tt>:</p>
<pre>
(define-macro (fexpr-double X)
(+ (eval X) (eval X)))
(macro (mac-double X)
(+ X X))
(set 'a 10)
(fexpr-double (inc a)) <span class='arw'>→</span> 23 ; not 22 as expected
(set 'a 10)
(mac-double (inc a)) <span class='arw'>→</span> 23 ; not 22 as expected
</pre>
<p>In both cases the incoming expression <tt>(inc a)</tt> gets evaulated twice.
This must be considered when writing both, <tt>macro</tt> or <tt>define-macro</tt>
expressions and symbols occur more than once in the body of the definition.</p>
<p>See also <a href="#reader-event">reader-event</a> for general preprocessing
of expressions during reading of source code.</p>
<br/><br/>
<a name="macrop"></a>
<h2><span class="function">macro?</span></h2>
<h4>syntax: (macro? <em>exp</em>)</h4>
<p>Returns <tt>true</tt> if <em>exp</em> evaluates to a lambda-macro expression.
If <em>exp</em> evaluates to a symbol and the symbol contains
a macro-expansion expression made with the <a href="#macro">macro</a> function,
<tt>true</tt> is also returned. In all other cases <tt>nil</tt> is returned.</p>
<!-- example -->
<pre>
(define-macro (mysetq lv rv) (set lv (eval rv)))
(macro? mysetq) <span class='arw'>→</span> true
(macro (my-setq Lv Rv) (set 'Lv Rv))
<span class='arw'>→</span> (lambda-macro (Lv Rv) (expand '(set 'Lv Rv)))
; my-setq contains a lambda-macro expression
(macro? my-setq) <span class='arw'>→</span> true
; my-setq symbol was created with macro function
(macro? 'my-setq) <span class='arw'>→</span> true
</pre>
<br/><br/>
<a name="main-args"></a>
<h2><span class="function">main-args</span></h2>
<h4>syntax: (main-args)<br/>
syntax: (main-args <em>int-index</em>)</h4>
<p>
<tt>main-args</tt> returns a list
with several string members,
one for program invocation
and one for each of
the command-line arguments.
</p>
<!-- example -->
<pre>
newlisp 1 2 3
> (main-args)
<b>("/usr/local/bin/newlisp" "1" "2" "3")</b>
</pre>
<p>
After <tt>newlisp 1 2 3</tt> is executed at the command prompt,
<tt>main-args</tt> returns a list containing the name of
the invoking program and three command-line arguments.
</p>
<p>
Optionally, <tt>main-args</tt> can take
an <em>int-index</em> for indexing into the list.
Note that an index out of range will cause <tt>nil</tt>
to be returned, not the last element of the list like
in list-indexing.
</p>
<pre>
newlisp a b c
> (main-args 0)
<b>"/usr/local/bin/newlisp"</b>
> (main-args -1)
<b>"c"</b>
> (main-args 2)
<b>"b"</b>
> (main-args 10)
<b>nil</b>
</pre>
<p>
Note that when newLISP is executed from a script,
<tt>main-args</tt> also returns the <em>name</em>
of the script as the second argument:
</p>
<pre>
#!/usr/local/bin/newlisp
#
# script to show the effect of 'main-args' in script file
(print (main-args) "\n")
(exit)
# end of script file
;; execute script in the OS shell:
script 1 2 3
<b>("/usr/local/bin/newlisp" "./script" "1" "2" "3")</b>
</pre>
<p>
Try executing this script with different
command-line parameters.
</p>
<br/><br/>
<a name="make-dir"></a>
<h2><span class="function">make-dir</span></h2>
<h4>syntax: (make-dir <em>str-dir-name</em> [<em>int-mode</em>])</h4>
<p>
Creates a directory as specified in <em>str-dir-name</em>,
with the optional access mode <em>int-mode</em>.
Returns <tt>true</tt> or <tt>nil</tt>
depending on the outcome.
If no access mode is specified,
most Unix systems default to <tt>drwxr-xr-x</tt>.
</p>
<p>
On Unix systems, the access mode specified
will also be masked by the OS's <em>user-mask</em>
set by the system administrator.
The <em>user-mask</em> can be retrieved
on Unix systems using the command <tt>umask</tt>
and is usually <tt>0022</tt> (octal),
which masks write (and creation) permission
for non-owners of the file.
</p>
<!-- example -->
<pre>
;; 0 (zero) in front of 750 makes it an octal number
(make-dir "adir" 0750)
</pre>
<p>
This example creates a directory named <tt>adir</tt>
in the current directory with an access mode of
<tt>0750</tt> (octal 750 = <tt>drwxr-x---</tt>).
</p>
<br/><br/>
<a name="map"></a>
<h2><span class="function">map</span></h2>
<h4>syntax: (map <em>exp-functor</em> <em>list-args-1</em> [<em>list-args-2</em> ... ])</h4>
<p>Successively applies the primitive function, defined function, or lambda expression
<em>exp-functor</em> to the arguments specified in <em>list-args-1 list-args-2—</em>,
returning all results in a list. Since version 10.5.5 <em>list-args</em>
can also be array vectors, but the returned result will always be a list.</p>
<!-- example -->
<pre>
(map + '(1 2 3) '(50 60 70)) <span class='arw'>→</span> (51 62 73)
(map if '(true nil true nil true) '(1 2 3 4 5) '(6 7 8 9 10))
<span class='arw'>→</span> '(1 7 3 9 5)
(map (fn (x y) (* x y)) '(3 4) '(20 10))
<span class='arw'>→</span> (60 40)
</pre>
<p>
The second example shows how to dynamically
create a function for <tt>map</tt>:
</p>
<pre>
(define (foo op p)
(append (lambda (x)) (list (list op p 'x))))
</pre>
<p>We can also use the shorter <tt>fn</tt>:</p>
<pre>
(define (foo op p)
(append (fn (x)) (list (list op p 'x))))
</pre>
<p><tt>foo</tt> now works like a function-maker:</p>
<pre>
(foo 'add 2) <span class='arw'>→</span> (lambda (x) (add 2 x))
(map (foo add 2) '(1 2 3 4 5)) <span class='arw'>→</span> (3 4 5 6 7)
(map (foo mul 3) '(1 2 3 4 5)) <span class='arw'>→</span> (3 6 9 12 15)
</pre>
<p>
Note that the quote before the operand can be omitted
because primitives evaluate to themselves in newLISP.
</p>
<p>By incorporating <tt>map</tt> into the function definition,
we can do the following:</p>
<pre>
(define (list-map op p lst)
(map (lambda (x) (op p x)) lst))
(list-map + 2 '(1 2 3 4)) <span class='arw'>→</span> (3 4 5 6)
(list-map mul 1.5 '(1 2 3 4)) <span class='arw'>→</span> (1.5 3 4.5 6)
</pre>
<p><tt>map</tt> also sets the internal list index <tt>$idx</tt>.</p>
<pre>
(map (fn (x) (list $idx x)) '(a b c)) <span class='arw'>→</span> ((0 a) (1 b) (2 c))
</pre>
<p>
The number of arguments used is determined by the length of the first argument list.
Arguments missing in other argument lists cause map to stop collecting parameters
for that level of arguments. This ensures that the nth parameter list gets converted
to the nth column during the transposition occurring. If an argument list contains too
many elements, the extra ones will be ignored.
</p>
<p>
Special forms which use parentheses as syntax cannot be mapped
(i.e. <a href="#case">case</a>).</p>
<br/><br/>
<a name="mat"></a>
<h2><span class="function">mat</span></h2>
<h4>syntax: (mat <em>+</em> | <em>-</em> | <em>*</em> | <em>/</em> <em>matrix-A matrix-B</em>)<br/>
syntax: (mat <em>+</em> | <em>-</em> | <em>*</em> | <em>/</em> <em>matrix-A number</em>)</h4>
<p>Using the first syntax, this function performs fast floating point
scalar operations on two-dimensional matrices in <em>matrix-A</em> or <em>matrix-B</em>.
The type of operation is specified by one of the four arithmetic operators
<tt>+</tt>, <tt>-</tt>, <tt>*</tt>, or <tt>/</tt>.
This type of arithmetic operator is typically used for integer
operations in newLISP. In the case of <tt>mat</tt>, however,
all operations will be performed as floating point operations
(<tt>add</tt>, <tt>sub</tt>, <tt>mul</tt>, <tt>div</tt>).</p>
<p>Matrices in newLISP are two-dimensional lists or arrays.
Internally, newLISP translates lists and arrays into fast, accessible
C-language data objects.
This makes matrix operations in newLISP
as fast as those coded directly in C.
The same is true for the matrix operations
<a href="#multiply">multiply</a> and <a href="#invert">invert</a>.</p>
<!-- example -->
<pre>
(set 'A '((1 2 3) (4 5 6)))
(set 'B A)
(mat + A B) <span class='arw'>→</span> ((2 4 6) (8 10 12))
(mat - A B) <span class='arw'>→</span> ((0 0 0) (0 0 0))
(mat * A B) <span class='arw'>→</span> ((1 4 9) (16 25 36))
(mat / A B) <span class='arw'>→</span> ((1 1 1) (1 1 1))
; specify the operator in a variable
(set 'op +)
(mat op A B) <span class='arw'>→</span> ((2 4 6) (8 10 12))
</pre>
<p>Using the second syntax, all cells in <em>matrix-A</em>
are operated on with a scalar in <em>number</em>:</p>
<pre>
(mat + A 5) <span class='arw'>→</span> ((6 7 8) (9 10 11))
(mat - A 2) <span class='arw'>→</span> ((-1 0 1) (2 3 4))
(mat * A 3) <span class='arw'>→</span> ((3 6 9) (12 15 18))
(mat / A 10) <span class='arw'>→</span> ((.1 .2 .3) (.4 .5 .6))
</pre>
<p>See also the other matrix operations <a href="#det">det</a>,
<a href="#invert">invert</a>, <a href="#multiply">multiply</a>,
and <a href="#transpose">transpose</a>.</p>
<br/><br/>
<a name="match"></a>
<h2><span class="function">match</span></h2>
<h4>syntax: (match <em>list-pattern</em> <em>list-match</em> [<em>bool</em>])</h4>
<p>
The pattern in <em>list-pattern</em> is matched
against the list in <em>list-match</em>,
and the matching expressions are returned in a list.
The three wildcard characters <tt>?</tt>, <tt>+</tt>,
and <tt>*</tt> can be used in <em>list-pattern</em>.
</p>
<p>
Wildcard characters may be nested.
<tt>match</tt> returns a
list of matched expressions.
For each <tt>?</tt> (question mark),
a matching expression element is returned.
For each <tt>+</tt> (plus sign) or
<tt>*</tt> (asterisk), a list containing
the matched elements is returned.
If the pattern cannot be matched
against the list in <em>list-match</em>,
<tt>match</tt> returns <tt>nil</tt>.
If no wildcard characters are present
in the pattern an empty list is returned.
</p>
<p>Optionally, the Boolean value <tt>true</tt> (or any other expression not
evaluating to <tt>nil</tt>) can be supplied as a third argument. This
causes <tt>match</tt> to show all elements in the returned result.</p>
<p>
<tt>match</tt> is frequently employed as a functor parameter
in <a href="#find">find</a>, <a href="#ref">ref</a>,
<a href="#ref-all">ref-all</a> and <a href="#replace">replace</a> and
is internally used by <a href="#find-all">find-all</a> for lists.</p>
<!-- example -->
<pre>
(match '(a ? c) '(a b c)) <span class='arw'>→</span> (b)
(match '(a ? ?) '(a b c)) <span class='arw'>→</span> (b c)
(match '(a ? c) '(a (x y z) c)) <span class='arw'>→</span> ((x y z))
(match '(a ? c) '(a (x y z) c) true) <span class='arw'>→</span> (a (x y z) c)
(match '(a ? c) '(a x y z c)) <span class='arw'>→</span> nil
(match '(a * c) '(a x y z c)) <span class='arw'>→</span> ((x y z))
(match '(a (b c ?) x y z) '(a (b c d) x y z)) <span class='arw'>→</span> (d)
(match '(a (*) x ? z) '(a (b c d) x y z)) <span class='arw'>→</span> ((b c d) y)
(match '(+) '()) <span class='arw'>→</span> nil
(match '(+) '(a)) <span class='arw'>→</span> ((a))
(match '(+) '(a b)) <span class='arw'>→</span> ((a b))
(match '(a (*) x ? z) '(a () x y z)) <span class='arw'>→</span> (() y)
(match '(a (+) x ? z) '(a () x y z)) <span class='arw'>→</span> nil
</pre>
<p>Note that the <tt>*</tt> operator tries to grab the fewest number of
elements possible, but <tt>match</tt> backtracks and grabs more elements
if a match cannot be found.</p>
<p>The <tt>+</tt> operator works similarly to the <tt>*</tt> operator,
but it requires at least one list element.</p>
<p>The following example shows how the matched expressions can be bound
to variables.</p>
<pre>
(map set '(x y) (match '(a (? c) d *) '(a (b c) d e f)))
x <span class='arw'>→</span> b
y <span class='arw'>→</span> (e f)
</pre>
<p>
Note that <tt>match</tt> for strings has been eliminated.
For more powerful string matching, use <a href="#regex">regex</a>,
<a href="#find">find</a>, <a href="#find-all">find-all</a>
or <a href="#parse">parse</a>.
</p>
<p> <a href="#unify">unify</a> is another function for matching
expressions in a PROLOG like manner.</p>
<br/><br/>
<a name="max"></a>
<h2><span class="function">max</span></h2>
<h4>syntax: (max <em>num-1</em> [<em>num-2</em> ... ])</h4>
<p>Evaluates the expressions <em>num-1</em>— and returns
the largest number.</p>
<!-- example -->
<pre>
(max 4 6 2 3.54 7.1) <span class='arw'>→</span> 7.1
</pre>
<p>
See also the <a href="#min">min</a> function.
</p>
<br/><br/>
<a name="member"></a>
<h2><span class="function">member</span></h2>
<h4>syntax: (member <em>exp</em> <em>list</em>)<br/>
syntax: (member <em>str-key</em> <em>str</em> [<em>num-option</em>])</h4>
<p>
In the first syntax,
<tt>member</tt> searches
for the element <em>exp</em>
in the list <em>list</em>.
If the element is a member of the list,
a new list starting with the element found
and the rest of the original list
is constructed and returned.
If nothing is found,
<tt>nil</tt> is returned.
When specifying <em>num-option</em>,
<tt>member</tt> performs a regular expression search.
</p>
<!-- example -->
<pre>
(set 'aList '(a b c d e f g h)) <span class='arw'>→</span> (a b c d e f g h)
(member 'd aList) <span class='arw'>→</span> (d e f g h)
(member 55 aList) <span class='arw'>→</span> nil
</pre>
<p>
In the second syntax,
<tt>member</tt> searches
for <em>str-key</em> in <em>str</em>.
If <em>str-key</em> is found, all of <em>str</em>
(starting with <em>str-key</em>) is returned.
<tt>nil</tt> is returned if nothing is found.
</p>
<!-- example -->
<pre>
(member "LISP" "newLISP") <span class='arw'>→</span> "LISP"
(member "LI" "newLISP") <span class='arw'>→</span> "LISP"
(member "" "newLISP") <span class='arw'>→</span> "newLISP"
(member "xyz" "newLISP") <span class='arw'>→</span> nil
(member "li" "newLISP" 1) <span class='arw'>→</span> "LISP"
</pre>
<p>
See also the related functions
<a href="#slice">slice</a> and
<a href="#find">find</a>.
</p>
<br/><br/>
<a name="min"></a>
<h2><span class="function">min</span></h2>
<h4>syntax: (min <em>num-1</em> [<em>num-2</em> ... ])</h4>
<p>
Evaluates the expressions <em>num-1</em>—
and returns the smallest number.
</p>
<!-- example -->
<pre>
(min 4 6 2 3.54 7.1) <span class='arw'>→</span> 2
</pre>
<p>
See also the <a href="#max">max</a> function.
</p>
<br/><br/>
<a name="mod"></a>
<h2><span class="function">mod</span></h2>
<h4>syntax: (mod <em>num-1</em> <em>num-2</em> [<em>num-3</em> ... ])<br/>
syntax: (mod <em>num-1</em>)</h4>
<p>
Calculates the modular value of the
numbers in <em>num-1</em> and <em>num-2</em>.
<tt>mod</tt> computes the remainder
from the division of the numerator <em>num-i</em>
by the denominator <em>num-i + 1</em>.
Specifically, the return value is
<em>numerator - n * denominator</em>,
where <tt>n</tt> is the quotient
of the numerator divided by the denominator,
rounded towards zero to an integer.
The result has the same sign as
the numerator and its magnitude
is less than the magnitude
of the denominator.</p>
<p>In the second syntax <tt>1</tt> is assumed for <em>num-2</em> and the
result is the fractional part of <em>num-1</em>.</p>
<!-- example -->
<pre>
(mod 10.5 3.3) <span class='arw'>→</span> 0.6
(mod -10.5 3.3) <span class='arw'>→</span> -0.6
(mod -10.5) <span class='arw'>→</span> -0.5
</pre>
<p>
Use the <a href="#arithmetic">%</a> (percent sign)
function when working with integers only.
</p>
<br/><br/>
<a name="mul"></a>
<h2><span class="function">mul</span></h2>
<h4>syntax: (mul <em>num-1</em> <em>num-2</em> [<em>num-3</em> ... ])</h4>
<p>
Evaluates all expressions <em>num-1</em>—,
calculating and returning the product.
<tt>mul</tt> can perform mixed-type arithmetic,
but it always returns floating point numbers.
Any floating point calculation with
<tt>NaN</tt> also returns <tt>NaN</tt>.
</p>
<!-- example -->
<pre>
(mul 1 2 3 4 5 1.1) <span class='arw'>→</span> 132
(mul 0.5 0.5) <span class='arw'>→</span> 0.25
</pre>
<br/><br/>
<a name="multiply"></a>
<h2><span class="function">multiply</span></h2>
<h4>syntax: (multiply <em>matrix-A</em> <em>matrix-B</em>)</h4>
<p>
Returns the matrix multiplication of matrices
in <em>matrix-A</em> and <em>matrix-B</em>.
If <em>matrix-A</em> has the dimensions <em>n</em> by <em>m</em>
and <em>matrix-B</em> the dimensions <em>k</em> by <em>l</em>
(<em>m</em> and <em>k</em> must be equal),
the result is an <em>n</em> by <em>l</em> matrix.
<tt> multiply</tt> can perform mixed-type arithmetic,
but the results are always double precision floating points,
even if all input values are integers.
</p>
<p>
The dimensions of a matrix are determined
by the number of rows and the number
of elements in the first row.
For missing elements
in non-rectangular matrices,
<tt>0.0</tt> is assumed.
A matrix can either be a nested list
or <a href="#array">array</a>.
</p>
<!-- example -->
<pre>
(set 'A '((1 2 3) (4 5 6)))
(set 'B '((1 2) (1 2) (1 2)))
(multiply A B) <span class='arw'>→</span> ((6 12) (15 30))
(set 'v '(10 20 30))
(multiply A (transpose (list v))) <span class='arw'>→</span> ((140) (320))
</pre>
<p>When multiplying a matrix with a vector of <tt>n</tt> elements, the vector
must be transformed into <tt>n</tt> rows by <tt>1</tt> column matrix using
<a href="#transpose">transpose</a>.</p>
<p>
All operations shown here on lists
can be performed on arrays, as well.
</p>
<p>
See also the matrix operations <a href="#det">det</a>,
<a href="#invert">invert</a>, <a href="#mat">mat</a>
and <a href="#transpose">transpose</a>.
</p>
<br/><br/>
<a name="name"></a>
<h2><span class="function">name</span></h2>
<p>This function is deprecated, use <a href="#term">term</a> instead.</p>
<br/><br/>
<a name="NaNp"></a>
<h2><span class="function">NaN?</span></h2>
<h4>syntax: (NaN? <em>float</em>)</h4>
<p>
Tests if the result of a floating point math operation is a <tt>NaN</tt>.
Certain floating point operations return a special IEEE 754 number format
called a <tt>NaN</tt> for 'Not a Number'.</p>
<!-- example -->
<pre>
; floating point operation on NaN yield NaN
(set 'x (sqrt -1)) <span class='arw'>→</span> NaN
(NaN? x) <span class='arw'>→</span> true
(add x 123) <span class='arw'>→</span> NaN
(mul x 123) <span class='arw'>→</span> NaN
; integer operations treat NaN as zero
(+ x 123) <span class='arw'>→</span> 123
(* x 123) <span class='arw'>→</span> 0
; comparisons with NaN values yield nil
(> x 0) <span class='arw'>→</span> nil
(<= x 0) <span class='arw'>→</span> nil
(= x x) <span class='arw'>→</span> nil
(set 'infinity (mul 1.0e200 1.0e200)) <span class='arw'>→</span> inf
(NaN? (sub infinity infinity)) <span class='arw'>→</span> true
</pre>
<p>
Note that all floating point arithmetic operations
with a <tt>NaN</tt> yield a <tt>NaN</tt>.
All comparisons with <tt>NaN</tt> return <tt>nil</tt>,
but <tt>true</tt> when comparing to itself.
Comparison with itself, however,
would result in <em>not</em> <tt>true</tt> when using ANSI C. Integer operations
treat <tt>NaN</tt> as <tt>0</tt> (zero) values.</p>
<p>See also <a href="#infp">inf?</a> for testing a floating point value for infinity.</p>
<br/><br/>
<a name="net-accept"></a>
<h2><span class="function">net-accept</span></h2>
<h4>syntax: (net-accept <em>int-socket</em>)</h4>
<p>
Accepts a connection on a socket
previously put into listening mode.
Returns a newly created socket handle
for receiving and sending data
on this connection.
</p>
<!-- example -->
<pre>
(set 'socket (net-listen 1234))
(net-accept socket)
</pre>
<p>
Note that for ports less than 1024,
newLISP must be started in superuser mode
on Unix-like operating systems.
</p>
<p> See also the files <tt>server</tt> and <tt>client</tt> examples
in the <tt>examples/</tt> directory of the source distribution.</p>
<br/><br/>
<a name="net-close"></a>
<h2><span class="function">net-close</span></h2>
<h4>syntax: (net-close <em>int-socket</em> [<em>true</em>])</h4>
<p>
Closes a network socket in <em>int-socket</em> that
was previously created by a
<a href="#net-connect">net-connect</a>
or <a href="#net-accept">net-accept</a> function.
Returns <tt>true</tt> on success and
<tt>nil</tt> on failure.
</p>
<!-- example -->
<pre>
(net-close aSock)
</pre>
<p>The optional <em>true</em> flag suppresses immediate shutdown
of sockets by waiting for pending data transmissions to finish.</p>
<br/><br/>
<a name="net-connect"></a>
<h2><span class="function">net-connect</span></h2>
<h4>syntax: (net-connect <em>str-remote-host</em> <em>int-port</em> [<em>int-timeout-ms</em>])<br/>
syntax: (net-connect <em>str-remote-host</em> <em>int-port</em> [<em>str-mode</em> [<em>int-ttl</em>]])<br/>
syntax: (net-connect <em>str-file-path</em>)</h4>
<p>In the first syntax, connects to a remote host computer specified in
<em>str-remote-host</em> and a port specified in <em>int-port</em>.
Returns a socket handle after having connected successfully;
otherwise, returns <tt>nil</tt>.</p>
<!-- example -->
<pre>
(set 'socket (net-connect "example.com" 80))
(net-send socket "GET /\r\n\r\n")
(net-receive socket buffer 10000)
(println buffer)
(exit)
</pre>
<p>If successful, the <tt>net-connect</tt> function returns a socket
number which can be used to send and receive information from the host.
In the example a HTTP GET request is sent and subsequently a web page
received. Note that newLISP has already a built-in function
<a href="#get-url">get-url</a> offering the same functionality.</p>
<p>Optionally a timeout value <em>int-timeout</em> in milliseconds
can be specified. Without a timeout value the function will wait up
to 10 seconds for an open port. With a timeout value the function can
be made to return on an unavailable port much earlier or later. The
following example shows a port scanner looking for open ports:</p>
<!-- example -->
<pre>
(set 'host (main-args 2))
(println "Scanning: " host)
(for (port 1 1024)
(if (set 'socket (net-connect host port 500))
(println "open port: " port " " (or (net-service port "tcp") ""))
(print port "\r"))
)
</pre>
<p>The programs takes the host string from the shell command line as
either a domain name or an IP number in dot notation then tries to
open each port from 1 to 1024. For each open port the port number and
the service description string is printed. If no description is available,
an empty string "" is output. For closed ports the function outputs
numbers in the shell window staying on the same line.</p>
<p>On Unix <tt>net-connect</tt> may return with <tt>nil</tt> before
the timeout expires, when the port is not available. On MS Windows
<tt>net-connect</tt> will always wait for the timeout to expire before
failing with <tt>nil</tt>.</p>
<h3>UDP communications</h3>
<p>In the second syntax, a third parameter, the string <tt>"udp"</tt>
or <tt>"u"</tt> can be specified in the optional <em>str-mode</em>
to create a socket suited for UDP (User Datagram Protocol) communications.
In UDP mode, <tt>net-connect</tt> does <em>not</em> try to connect
to the remote host, but creates the socket and binds it to the
remote address, if an address is specified.
A subsequent <a href="#net-send">net-send</a> will send a UDP packet
containing that target address.
When using <a href="#net-send-to">net-send-to</a>, only one of the
two functions <tt>net-connect</tt> or <tt>net-send-to</tt> should
provide a target address. The other function should specify and empty
string <tt>""</tt> as the target address.</p>
<pre>
;; example server
(net-listen 4096 "226.0.0.1" "udp") <span class='arw'>→</span> 5
(net-receive-from 5 20)
;; example client I
(net-connect "226.0.0.1" 4096 "udp") <span class='arw'>→</span> 3
(net-send 3 "hello")
;; example client II
(net-connect "" 4096 "udp") → 3
(net-send-to "226.0.0.1" 4096 "hello" 3)
</pre>
<p>The functions <a href="#net-receive">net-receive</a> and
<a href="#net-receive-from">net-receive-from</a>
can both be used and will perform UDP communications when the <tt>"udp"</tt>
option as been used in <tt>net-listen</tt> or <tt>net-connect</tt>.
<a href="#net-select">net-select</a> and <a href="#net-peek">net-peek</a>
can be used to check for received data in a non-blocking fashion.</p>
<p><a href="#net-listen">net-listen</a> binds a specific
local address and port to the socket. When <tt>net-connect</tt> is used,
the local address and port will be picked by the socket-stack
functions of the host OS.</p>
<h3>UDP multicast communications</h3>
<p>When specifying <tt>"multi"</tt>
or <tt>"m"</tt> as a third parameter for <em>str-mode</em>,
a socket for UDP multicast communications
will be created.
Optionally, the fourth parameter
<tt>int-ttl</tt> can be specified
as a TTL (time to live) value.
If no <em>int-ttl</em> value is specified,
a value of 3 is assumed.
</p>
<p>
Note that specifying UDP multicast mode
in <tt>net-connect</tt> does not actually establish
a connection to the target multicast address
but only puts the socket into UDP multicasting mode.
On the receiving side,
use <a href="#net-listen">net-listen</a>
together with the UDP multicast option.
</p>
<!-- example -->
<pre>
;; example client I
(net-connect "" 4096 "multi") <span class='arw'>→</span> 3
(net-send-to "226.0.0.1" 4096 "hello" 3)
;; example client II
(net-connect "226.0.0.1" 4096 "multi") <span class='arw'>→</span> 3
(net-send 3 "hello")
;; example server
(net-listen 4096 "226.0.0.1" "multi") <span class='arw'>→</span> 5
(net-receive-from 5 20)
<span class='arw'>→</span> ("hello" "192.168.1.94" 32769)
</pre>
<p>
On the server side, <a href="#net-peek">net-peek</a> or <a href="#net-select">net-select</a>
can be used for non-blocking communications. In the above example, the server would block
until a datagram is received.</p>
<p>The address <tt>226.0.0.1</tt> is just one multicast address
in the Class D range of multicast addresses from <tt>224.0.0.0</tt>
to <tt>239.255.255.255</tt>.</p>
<p>
The <a href="#net-send">net-send</a> and
<a href="#net-receive">net-receive</a> functions
can also be used instead of <a href="#net-send-to">net-send-to</a>
and <a href="#net-receive-from">net-receive-from</a>.
</p>
<h3>UDP broadcast communications</h3>
<p>
Specifying the string <tt>"broadcast"</tt> or <tt>"b"</tt>
in the third parameter, <em>str-mode</em>, causes
UDP broadcast communications to be set up.
In this case, the broadcast address
ending in 255 is used.
</p>
<!-- example -->
<pre>
;; example client
(net-connect "192.168.2.255" 3000 "broadcast") <span class='arw'>→</span> 3
(net-send 3 "hello")
;; example server
(net-listen 3000 "" "udp") <span class='arw'>→</span> 5
(net-receive 5 buff 10)
buff <span class='arw'>→</span> "hello"
;; or
(net-receive-from 5 10)
<span class='arw'>→</span> ("hello" "192.168.2.1" 46620)
</pre>
<p>
Note that on the receiving side,
<a href="#net-listen">net-listen</a> should be used
with the default address
specified with an <tt>""</tt> (empty string).
Broadcasts will not be received
when specifying an address.
As with all UDP communications,
<a href="#net-listen">net-listen</a> does not actually put
the receiving side in listen mode,
but rather sets up the sockets
for the specific UDP mode.
</p>
<p>
The <a href="#net-select">net-select</a>
or <a href="#net-peek">net-peek</a> functions
can be used to check for
incoming communications
in a non-blocking fashion.
</p>
<h3>Local domain Unix sockets</h3>
<p>In the third syntax, <tt>net-connect</tt> connects to a server on the
local file system via a <em>local domain Unix socket</em> named using
<em>str-file-path</em>. Returns a socket handle after having connected
successfully; otherwise, returns <tt>nil</tt>.
</p>
<!-- example -->
<pre>
(net-connect "/tmp/mysocket") <span class='arw'>→</span> 3
; on OS/2 use "\\socket\\" prefix
(net-connect "\\socket\\mysocket")
</pre>
<p>A <em>local domain</em> file system socket is created and returned.
On the server side, <em>local domain</em> sockets have been created
using <a href="#net-listen">net-listen</a> and <a href="#net-accept">net-accept</a>.
After the connection has been established the functions <a href="#net-select">net-select</a>,
<a href="#net-send">net-send</a> and <a href="#net-receive">net-receive</a> can be used
as usual for TCP/IP stream communications. This type of connection can be used as a fast
bi-directional communications channel between processes on the same file system.
This type of connection is not available on MS Windows platforms.</p>
<br/><br/>
<a name="net-error"></a>
<h2><span class="function">net-error</span></h2>
<h4>syntax: (net-error)<br/>
syntax: (net-error <em>int-error</em>)</h4>
<p>Retrieves the last error that occurred when calling a any of the
following functions: <a href="#net-accept">net-accept</a>,
<a href="#net-connect">net-connect</a>,
<a href="#net-eval">net-eval</a>,
<a href="#net-listen">net-listen</a>,
<a href="#net-lookup">net-lookup</a>,
<a href="#net-receive">net-receive</a>,
<a href="#net-receive-udp">net-receive-udp</a>,
<a href="#net-select">net-select</a>,
<a href="#net-send">net-send</a>,
<a href="#net-send-udp">net-send-udp</a>,
and <a href="#net-service">net-service</a>.
Whenever one of these functions fails, it returns <tt>nil</tt> and <tt>net-error</tt>
can be used to retrieve more information.</p>
<p>Functions that communicate using sockets close the socket automatically and
remove it from the <a href="#net-sessions">net-sessions</a> list.</p>
<p>Each successful termination of a <a href="#socket_tcpip">net-*</a>
function clears the error number.</p>
<p>The following messages are returned:</p>
<table summary="net-error">
<tr align="left"><th>no</th><th>description</th></tr>
<tr><td>1</td><td>Cannot open socket</td></tr>
<tr><td>2</td><td>DNS resolution failed</td></tr>
<tr><td>3</td><td>Not a valid service</td></tr>
<tr><td>4</td><td>Connection failed</td></tr>
<tr><td>5</td><td>Accept failed</td></tr>
<tr><td>6</td><td>Connection closed</td></tr>
<tr><td>7</td><td>Connection broken</td></tr>
<tr><td>8</td><td>Socket send() failed</td></tr>
<tr><td>9</td><td>Socket recv() failed</td></tr>
<tr><td>10</td><td>Cannot bind socket</td></tr>
<tr><td>11</td><td>Too many sockets in net-select</td></tr>
<tr><td>12</td><td>Listen failed</td></tr>
<tr><td>13</td><td>Badly formed IP</td></tr>
<tr><td>14</td><td>Select failed</td></tr>
<tr><td>15</td><td>Peek failed</td></tr>
<tr><td>16</td><td>Not a valid socket</td></tr>
<tr><td>17</td><td>Cannot unblock socket</td></tr>
<tr><td>18</td><td>Operation timed out</td></tr>
<tr><td>19</td><td>HTTP bad formed URL</td></tr>
<tr><td>20</td><td>HTTP file operation failed</td></tr>
<tr><td>21</td><td>HTTP transfer failed</td></tr>
<tr><td>22</td><td>HTTP invalid response from server</td></tr>
<tr><td>23</td><td>HTTP no response from server</td></tr>
<tr><td>24</td><td>HTTP no content</td></tr>
<tr><td>25</td><td>HTTP error in header</td></tr>
<tr><td>26</td><td>HTTP error in chunked format</td></tr>
</table><br/>
<br/><br/>
<!-- example -->
<pre>
(net-error) <span class='arw'>→</span> nil
(net-connect "jhghjgkjhg" 80) <span class='arw'>→</span> nil
(net-error) <span class='arw'>→</span> (2 "ERR: "DNS resolution failed")
</pre>
<p>When <em>int-error</em> is specified the number and error text for
that error number is returned.</p>
<pre>
(net-error 10) <span class='arw'>→</span> (10 "Cannot bind socket")
</pre>
<p>See also <a href="#last-error">last-error</a> and <a href="#sys-error">sys-error</a>.</p>
<br/><br/>
<a name="net-eval"></a>
<h2><span class="function">net-eval</span></h2>
<h4>syntax: (net-eval <em>str-host</em> <em>int-port</em> <em>exp</em> [<em>int-timeout</em> [<em>func-handler</em>]])<br/>
syntax: (net-eval '((<em>str-host</em> <em>int-port</em> <em>exp</em>) ... ) [<em>int-timeout</em> [<em>func-handler</em>]])</h4>
<p>Can be used to evaluate source remotely on one or more newLISP servers.
This function handles all communications necessary to connect to the remote servers,
send source for evaluation, and wait and collect responses.</p>
<p>The expression in <em>exp</em> will be evaluated remotely in the environment
of the target node. The <em>exp</em> is either a quoted expression, or it is
enclosed in string delimiters. For bigger expressions <tt>[text] ... [/text]</tt>
delimiters can be used instead of double quotes <tt>" ... "</tt>. Only one
expression should be enclosed in the string. When more than one are specified,
all will get evaluated in the target node, but only the result of the first
will be returned.</p>
<p>The remote TCP/IP servers are started in the following way:</p>
<pre>
newlisp -c -d 4711 &
; preloading function definitions
newlisp preload.lsp -c -d 12345 &
; logging connections
newlisp -l -c -d 4711 &
; communicating via Unix local domain sockets
newlisp -c /tmp/mysocket
</pre>
<p>The <tt>-c</tt> option is necessary to suppress newLISP emitting
prompts.</p>
<p>The <tt>-d</tt> daemon mode allows newLISP to maintain state between
connections. When keeping state between connections is not desired,
the <a href="#inetd_daemon">inetd daemon mode</a> offers more advantages.
The Internet <tt>inetd</tt> or <tt>xinetd</tt> services daemon
will start a new newLISP process for each client connection.
This makes for much faster servicing of multiple connections.
In <tt>-d</tt> daemon mode, each new client request
would have to wait for the previous request to be finished.
See the chapter <a href="#inetd_daemon">inetd daemon mode</a>
on how to configure this mode correctly.</p>
<p>Instead of <tt>4711</tt>, any other port number can be used.
Multiple nodes can be started on different hosts and with the same
or different port numbers. The <tt>-l</tt> or <tt>-L</tt> logging options
can be specified to log connections and remote commands.</p>
<p>In the first syntax, <tt>net-eval</tt> talks to only one
remote newLISP server node, sending the host in <em>str-host</em>
on port <em>int-port</em> a request to evaluate the expression
<em>exp</em>. If <em>int-timeout</em> is not given,
<tt>net-eval</tt> will wait up to 60 seconds for a response
after a connection is made.
Otherwise, if the timeout in milliseconds has expired,
<tt>nil</tt> is returned; else, the evaluation result of <em>exp</em>
is returned.</p>
<!-- example -->
<pre>
; the code to be evaluated is given in a quoted expression
(net-eval "192.168.1.94" 4711 '(+ 3 4)) <span class='arw'>→</span> 7
; expression as a string (only one expression should be in the string)
(net-eval "192.168.1.94" 4711 "(+ 3 4)") <span class='arw'>→</span> 7
; with timeout
(net-eval "192.168.1.94" 4711 '(+ 3 4) 1) <span class='arw'>→</span> nil ; 1ms timeout too short
(net-error) <span class='arw'>→</span> (17 "ERR: Operation timed out")
(net-eval "192.168.1.94" 4711 '(+ 3 4) 1000) <span class='arw'>→</span> 7
; program contained in a variable
(set 'prog '(+ 3 4))
(net-eval "192.168.1.94" 4711 prog) <span class='arw'>→</span> 7
; specify a local-domain Unix socket (not available on MS Windows)
(net-eval "/tmp/mysocket" 0 '(+ 3 4)) <span class='arw'>→</span> 7
</pre>
<p>The second syntax of <tt>net-eval</tt> returns a list of the results
after all of the responses are collected or timeout occurs. Responses that
time out return <tt>nil</tt>. The last example line shows how to specify
a local-domain Unix socket specifying the socket path and a port number of
<tt>0</tt>. Connection errors or errors that occur when sending information
to nodes are returned as a list of error numbers and descriptive error
strings. See the function <a href="#net-error">net-error</a> for a list of
potential error messages.</p>
<!-- example -->
<pre>
; two different remote nodes different IPs
(net-eval '(
("192.168.1.94" 4711 '(+ 3 4))
("192.168.1.95" 4711 '(+ 5 6))
) 5000)
<span class='arw'>→</span> (7 11)
; two persistent nodes on the same CPU different ports
(net-eval '(
("localhost" 8081 '(foo "abc"))
("localhost" 8082 '(myfunc 123)')
) 3000)
; inetd or xinetd nodes on the same server and port
; nodes are loaded on demand
(net-eval '(
("localhost" 2000 '(foo "abc"))
("localhost" 2000 '(myfunc 123))
) 3000)
</pre>
<p>The first example shows two expressions evaluated on two different remote
nodes. In the second example, both nodes run on the local computer. This may
be useful when debugging or taking advantage of multiple CPUs on the same
computer. When specifying <tt>0</tt> for the port number , <tt>net-eval</tt>
takes the host name as the file path to the local-domain Unix socket.</p>
<p>Note that definitions of <tt>foo</tt> and <tt>myfunc</tt> must both
exist in the target environment. This can be done using a <tt>net-eval</tt>
sending <tt>define</tt> statements before. It also can be done by
preloading code when starting remote nodes.</p>
<p>When nodes are inetd or xinetd-controlled, several nodes may have the
same IP address and port number. In this case, the Unix
daemon inetd or xinetd will start multiple newLISP servers on demand.
This is useful when testing distributed programs on just one machine.
The last example illustrates this case. It is also useful on multi core
CPUs, where the platform OS can distribute different processes on to different
CPU cores.</p>
<p>The source sent for evaluation can consist of entire multiline programs.
This way, remote nodes can be loaded with programs first, then specific
functions can be called. For large program files, the functions
<a href="#put-url">put-url</a> or <a href="#save">save</a> (with a URL
file name) can be used to transfer programs. The a <tt>net-eval</tt>
statement could load these programs.</p>
<p>Optionally, a handler function can be specified. This function will be
repeatedly called while waiting and once for every remote evaluation completion.</p>
<!-- example -->
<pre>
(define (myhandler param)
(if param
(println param))
)
(set 'Nodes '(
("192.168.1.94" 4711)
("192.168.1.95" 4711)
))
(set 'Progs '(
(+ 3 4)
(+ 5 6)
))
(net-eval (map (fn (n p) (list (n 0) (n 1) p)) Nodes Progs) 5000 myhandler)
<span class='arw'>→</span>
("192.168.1.94" 4711 7)
("192.168.1.95" 4711 11)
</pre>
<p>The example shows how the list of node specs can be assembled from a list
of nodes and sources to evaluate. This may be useful when connecting to a
larger number of remote nodes.</p>
<pre>
(net-eval (list
(list (Nodes 0 0) (Nodes 0 1) (Progs 0))
(list (Nodes 1 0) (Nodes 1 1) (Progs 1))
) 3000 myhandler)
</pre>
<p>While waiting for input from remote hosts, <tt>myhandler</tt> will be called
with <tt>nil</tt> as the argument to <tt>param</tt>. When a remote node result
is completely received, <tt>myhandler</tt> will be called with <tt>param</tt>
set to a list containing the remote host name or IP number, the port, and the
resulting expression. <tt>net-eval</tt> will return <tt>true</tt> before a
timeout or <tt>nil</tt> if the timeout was reached or exceeded. All remote hosts
that exceeded the timeout limit will contain a <tt>nil</tt> in their results list.
</p>
<p>For a longer example see this program:
<a href="http://www.newlisp.org/syntax.cgi?code/mapreduce.txt">mapreduce</a>.
The example shows how a word counting task gets distributed to three remote
nodes. The three nodes count words in different texts and the master node
receives and consolidates the results.</p>
<br/><br/>
<a name="net-interface"></a>
<h2><span class="function">net-interface</span></h2>
<h4>syntax: (net-interface <em>str-ip-addr</em>)<br/>
syntax: (net-interface)</h4>
<p>Sets the default local interface address to be used for network connections.
If not set then network functions will default to an internal default address,
except when overwritten by an optional interface address given in
<a href="#net-listen">net-listen</a>.</p>
<p>When no <em>str-ip-addr</em> is specified, the current default is returned.
If the <tt>net-interface</tt> has not been used yet to specify an IP address,
the address <tt>0.0.0.0</tt> is returned. This means that all network routines
will use the default address preconfigured by the underlying operating system.</p>
<p>This function has only usage on multihomed servers with either multiple network
interface hardware or otherwise supplied multiple IP numbers. On all other machines
network functions will automatically select the single network interface installed.</p>
<p>On error the function returns <tt>nil</tt> and <a href="#net-error">net-error</a>
can be used to report the error.</p>
<!-- example -->
<pre>
(net-interface "192.168.1.95") <span class='arw'>→</span> "192.168.1.95"
(net-interface "localhost") <span class='arw'>→</span> "127.0.0.1"
</pre>
<p>An interface address can be defined as either an IP address or a name. The
return value is the address given in <em>str-ip-addr</em></p>
<br/><br/>
<a name="net-ipv"></a>
<h2><span class="function">net-ipv</span></h2>
<h4>syntax: (net-ipv <em>int-version</em>)<br/>
syntax: (net-ipv)</h4>
<p>Switches between IPv4 and IPv6 internet protocol versions.
<em>int-version</em> contains either a 4 for IPv4 or a 6 for IPv6. When no
parameter is given, <tt>net-ipv</tt> returns the current setting.</p>
<!-- example -->
<pre>
(net-ipv) <span class='arw'>→</span> 4
(net-ipv 6) <span class='arw'>→</span> 6
</pre>
<p>By default newLISP starts up in IPv4 mode. The IPv6 protocol mode can also
be specified from the commandline when starting newlisp:</p>
<pre>
newlisp -6
</pre>
<p>Once a socket is connected with either
<a href="#net-connect">net-connect</a>
or listened on with
<a href="#net-listen">net-listen</a>, the
<a href="#net-accept">net-accept</a>, <a href="#net-select">net-select</a>,
<a href="#net-send">net-send</a>, <a href="#net-receive">net-receive</a> and
<a href="#net-receive-from">net-receive-from</a>
functions automatically adjust to the address protocol used when creating the sockets.
Different connections with different IPv4/6 settings can be open at the same time.</p>
<p>Note, that currently <a href="#net-packet">net-packet</a> does not support IPv6 and will
work in IPv4 mode regardless of settings.</p>
<br/><br/>
<a name="net-listen"></a>
<h2><span class="function">net-listen</span></h2>
<h4>syntax: (net-listen <em>int-port</em> [<em>str-ip-addr</em> [<em>str-mode</em>]])<br/>
syntax: (net-listen <em>str-file-path</em>)</h4>
<p>Listens on a port specified in <em>int-port</em>. A call to <tt>net-listen</tt>
returns immediately with a socket number, which is then used by
the blocking <a href="#net-accept">net-accept</a> function
to wait for a connection. As soon as a connection is accepted,
<a href="#net-accept">net-accept</a> returns a socket number
that can be used to communicate with the connecting client.</p>
<!-- example -->
<pre>
(set 'port 1234)
(set 'listen (net-listen port))
(unless listen (begin
(print "listening failed\n")
(exit)))
(print "Waiting for connection on: " port "\n")
(set 'connection (net-accept listen))
(if connection
(while (net-receive connection buff 1024 "\n")
(print buff)
(if (= buff "\r\n") (exit)))
(print "Could not connect\n"))
</pre>
<p>The example waits for a connection on port 1234, then reads incoming lines
until an empty line is received. Note that listening on ports lower than 1024
may require superuser access on Unix systems.</p>
<p>On computers with more than one interface card, specifying an optional
interface IP address or name in <em>str-ip-addr</em> directs <tt>net-listen</tt>
to listen on the specified address.</p>
<pre>
;; listen on a specific address
(net-listen port "192.168.1.54")
</pre>
<h3>Local domain Unix sockets</h3>
<p>In the second syntax, <tt>net-listen</tt> listens for a client on the
local file system via a <em>local domain Unix socket</em> named using
<em>str-file-path</em>. If successful, returns a socket handle that can be
used with <a href="#net-accept">net-accept</a> to accept a client connection;
otherwise, returns <tt>nil</tt>.</p>
<!-- example -->
<pre>
(net-listen "/tmp/mysocket") <span class='arw'>→</span> 5
; on OS/2 use "\\socket\\" prefix
(net-listen "\\socket\\mysocket")
(net-accept 5)
</pre>
<p>A <em>local domain</em> file system socket is created and listened on.
A client will try to connect using the same <em>str-file-path</em>.
After a connection has been accepted the functions <a href="#net-select">net-select</a>,
<a href="#net-send">net-send</a> and <a href="#net-receive">net-receive</a> can be used
as usual for TCP/IP stream communications. This type of connection can be used as a fast
bi-directional communications channel between processes on the same file system.
This type of connection is not available on MS Windows platforms.</p>
<h3>UDP communications</h3>
<p>
As a third parameter,
the optional string <tt>"udp"</tt> or <tt>"u"</tt>
can be specified in <em>str-mode</em>
to create a socket suited for UDP
(User Datagram Protocol) communications.
A socket created in this way
can be used directly with
<a href="#net-receive-from">net-receive-from</a>
to await incoming UDP data
<em>without</em> using <tt>net-accept</tt>,
which is only used in TCP communications.
The <a href="#net-receive-from">net-receive-from</a> call
will block until a UDP data packet is received.
Alternatively, <a href="#net-select">net-select</a>
or <a href="#net-peek">net-peek</a> can be used
to check for ready data in a non-blocking fashion.
To send data back to the address and port received
with <a href="#net-receive-from">net-receive-from</a>,
use <a href="#net-send-to">net-send-to</a>.
</p>
<p>
Note that <a href="#net-peer">net-peer</a> will not work,
as UDP communications do not maintain
a connected socket with address information.
</p>
<pre>
(net-listen 10002 "192.168.1.120" "udp")
(net-listen 10002 "" "udp")
</pre>
<p>
The first example listens on a specific network adapter,
while the second example listens on the default adapter.
Both calls return a socket number
that can be used in subsequent <a href="#net-receive">net-receive</a>,
<a href="#net-receive-from">net-receive-from</a>,
<a href="#net-send-to">net-send-to</a>,
<a href="#net-select">net-select</a>,
or <a href="#net-peek">net-peek</a> function calls.
</p>
<p>
Both a UDP server <em>and</em> UDP client
can be set up using <tt>net-listen</tt>
with the <tt>"udp"</tt> option.
In this mode, <tt>net-listen</tt>
does not really <em>listen</em>
as in TCP/IP communications;
it just binds the socket
to the local interface address and port.
</p>
<p>
For a working example, see the files
<tt>examples/client</tt> and <tt>examples/server</tt>
in the newLISP source distribution.
</p>
<p>
Instead of <tt>net-listen</tt>
and the <tt>"udp"</tt> option,
the functions <a href="#net-receive-udp">net-receive-udp</a>
and <a href="#net-send-udp">net-send-udp</a>
can be used for short transactions
consisting only of one data packet.
</p>
<p>
<tt>net-listen</tt>, <a href="#net-select">net-select</a>,
and <a href="#net-peek">net-peek</a> can be used
to facilitate non-blocking reading.
The listening/reading socket is not closed
but is used again for subsequent reads.
In contrast, when the
<a href="#net-receive-udp">net-receive-udp</a>
and <a href="#net-send-udp">net-send-udp</a> pair is used,
both sides close the sockets after sending and receiving.
</p>
<h3>UDP multicast communications</h3>
<p>
If the optional string <em>str-mode</em> is specified as
<tt>"multi"</tt> or <tt>"m"</tt>,
<tt>net-listen</tt> returns a socket suitable for multicasting.
In this case, <em>str-ip-addr</em> contains one
of the multicast addresses in the range <tt>224.0.0.0</tt>
to <tt>239.255.255.255</tt>.
<tt>net-listen</tt> will register <em>str-ip-addr</em>
as an address on which to receive multicast transmissions.
This address should not be confused with the IP address
of the server host.
</p>
<!-- example -->
<pre>
;; example client
(net-connect "226.0.0.1" 4096 "multi") <span class='arw'>→</span> 3
(net-send-to "226.0.0.1" 4096 "hello" 3)
;; example server
(net-listen 4096 "226.0.0.1" "multi") <span class='arw'>→</span> 5
(net-receive-from 5 20)
<span class='arw'>→</span> ("hello" "192.168.1.94" 32769)
</pre>
<p>On the server side,
<a href="#net-peek">net-peek</a> or <a href="#net-select">net-select</a>
can be used for non-blocking communications. In the example above,
the server would block until a datagram is received.</p>
<p>
The <a href="#net-send">net-send</a>
and <a href="#net-receive">net-receive</a> functions
can be used instead of <a href="#net-send-to">net-send-to</a>
and <a href="#net-receive-from">net-receive-from</a>.
</p>
<h3>Packet divert sockets and ports</h3>
<p>If <em>str-mode</em> is specified as <tt>"divert"</tt> or <tt>"d"</tt>,
a divert socket can be created for a divert port in <em>int-port</em> on
BSD like platforms. The content of IP address in <em>str-ip-addr</em> is
ignored and can be specified as an empty string. Only the <em>int-port</em>
is relevant and will be bound to the raw socket returned.</p>
<p>To use the divert option in <tt>net-listen</tt>, newLISP must run in
super-user mode. This option is only available on Unix like platforms.</p>
<p>The divert socket will receive all raw packets diverted
to the divert port. Packets may also be written back to a divert socket,
in which case they re-enter OS kernel IP packet processing.</p>
<p>Rules for packet diversion to the divert port must be defined using
either the <em>ipfw</em> BSD or <em>ipchains</em> Linux configuration
utilities.</p>
<p>The <a href="#net-receive-from">net-receive-from</a> and
<a href="#net-send-to">net-send-to</a> functions are used to read
and write raw packets on the divert socket created and returned by the
<tt>net-listen</tt> statement. The same address received by
<a href="#net-receive-from">net-receive-from</a> is used in the
<a href="#net-send-to">net-send-to</a> call when re-injecting the
packet:</p>
<pre>
; rules have been previously configured for a divert port
(set 'divertSocket (net-listen divertPort "" "divert"))
(until (net-error)
(set 'rlist (net-receive-from divertSocket maxBytes))
(set 'buffer (rlist 1))
; buffer can be processed here before reinjecting
(net-send-to (rlist 0) divertPort buffer divertSocket)
)
</pre>
<p>For more information see the Unix man pages for <em>divert</em>
and the <em>ipfw</em> (BSDs) or <em>ipchains</em> (Linux) configuration
utilities.</p>
<br/><br/>
<a name="net-local"></a>
<h2><span class="function">net-local</span></h2>
<h4>syntax: (net-local <em>int-socket</em>)</h4>
<p>Returns the IP number and port of the local computer
for a connection on a specific <em>int-socket</em>.</p>
<!-- example -->
<pre>
(net-local 16) <span class='arw'>→</span> ("204.179.131.73" 1689)
</pre>
<p>
Use the <a href="#net-peer">net-peer</a>
function to access the remote computer's
IP number and port.
</p>
<br/><br/>
<a name="net-lookup"></a>
<h2><span class="function">net-lookup</span></h2>
<h4>syntax: (net-lookup <em>str-ip-number</em>)<br/>
syntax: (net-lookup <em>str-hostname</em> [<em>bool</em>])</h4>
<p>
Returns either a hostname string
from <em>str-ip-number</em>
in IP dot format or the IP number
in dot format from <em>str-hostname</em>:
</p>
<!-- example -->
<pre>
(net-lookup "209.24.120.224") <span class='arw'>→</span> "www.nuevatec.com"
(net-lookup "www.nuevatec.com") <span class='arw'>→</span> "209.24.120.224"
(net-lookup "216.16.84.66.sbl-xbl.spamhaus.org" true)
<span class='arw'>→</span> "216.16.84.66"
</pre>
<p>
Optionally, a <em>bool</em> flag
can be specified in the second syntax.
If the expression in <em>bool</em>
evaluates to anything other than <tt>nil</tt>,
host-by-name lookup will be forced,
even if the name string starts
with an IP number.
</p>
<br/><br/>
<a name="net-packet"></a>
<h2><span class="function">net-packet</span></h2>
<h4>syntax: (net-packet <em>str-packet</em>)</h4>
<p>The function allows custom configured network packets to be sent via
a <em>raw sockets</em> interface. The packet in <em>str-packet</em> must
start with an IP (Internet Protocol) header followed by either
a TCP, UDP or ICMP header and optional data. newLISP must be run with
super user privileges, and this function is only available on macOS,
Linux and other Unix operating systems and only for IPv4.
Currently <tt>net-packet</tt> is IPv4 only and has been tested on
macOS, Linux and OpenBSD.</p>
<p>On success the function returns the number of bytes sent. On failure
the function returns <tt>nil</tt> and both, <a href="#net-error">net-error</a>
and <a href="#sys-error">sys-error</a>, should be inspected.</p>
<p>When custom configured packets contain zeros in the checksum fields,
<tt>net-packet</tt> will calculate and insert the correct checksums.
Already existing checksums stay untouched.</p>
<p>The following example injects a UDP packet for IP number <tt>192.168.1.92</tt>.
The IP header consists of 20 bytes ending with the target IP number. The following
UDP header has a length of 8 bytes and is followed by the data string
<tt>Hello World</tt>. The checksum bytes in both headers are left as
<tt>0x00 0x00</tt> and will be recalculated internally.</p>
<!-- example -->
<pre>
; packet as generated by: (net-send-udp "192.168.1.92" 12345 "Hello World")
(set 'udp-packet (pack (dup "b" 39) '(
0x45 0x00 0x00 0x27 0x4b 0x8f 0x00 0x00 0x40 0x11 0x00 0x00 192 168 1 95
192 168 1 92 0xf2 0xc8 0x30 0x39 0x00 0x13 0x00 0x00 0x48 0x65 0x6c 0x6c
0x6f 0x20 0x57 0x6f 0x72 0x6c 0x64)))
(unless (net-packet udp-packet)
(println "net-error: " (net-error))
(println "sys-error: " (sys-error)))
</pre>
<p>The <tt>net-packet</tt> function is used when testing net security.
Its wrong application can upset the correct functioning of network routers and
other devices connected to a network. For this reason the function should only
be used on well isolated, private intra-nets and only by network professionals.</p>
<p>For other examples of packet configuration, see the file
<tt>qa-specific-tests/qa-packet</tt> in the newLISP source distribution.</p>
<br/><br/>
<a name="net-peek"></a>
<h2><span class="function">net-peek</span></h2>
<h4>syntax: (net-peek <em>int-socket</em>)</h4>
<p>
Returns the number of bytes
ready for reading
on the network socket <em>int-socket</em>.
If an error occurs
or the connection is closed,
<tt>nil</tt> is returned.
</p>
<!-- example -->
<pre>
(set 'aSock (net-connect "aserver.com" 123))
(while ( = (net-peek aSock) 0)
(do-something-else))
(net-receive aSock buff 1024)
</pre>
<p>
After connecting, the program
waits in a while loop
until <tt>aSock</tt> can be read.
</p>
<p>
Use the <a href="#peek">peek</a> function
to check file descriptors and <tt>stdin</tt>.
</p>
<br/><br/>
<a name="net-peer"></a>
<h2><span class="function">net-peer</span></h2>
<h4>syntax: (net-peer <em>int-socket</em>)</h4>
<p>
Returns the IP number and port number
of the remote computer
for a connection on <em>int-socket</em>.
</p>
<!-- example -->
<pre>
(net-peer 16) <span class='arw'>→</span> ("192.100.81.100" 13)
</pre>
<p>
Use the <a href="#net-local">net-local</a> function
to access the local computer's IP number and port number.
</p>
<br/><br/>
<a name="net-ping"></a>
<h2><span class="function">net-ping</span></h2>
<h4>syntax: (net-ping <em>str-address</em> [<em>int-timeout</em> [<em>int-count</em> <em>bool</em>]]])<br/>
syntax: (net-ping <em>list-addresses</em> [<em>int-timeout</em> [<em>int-count</em> <em>bool</em>]]])</h4>
<p> This function is only available on Unix-based systems
and must be run in superuser mode, i.e. using: <tt>sudo newlisp</tt> to
start newLISP on macOS or other BSD's, or as the root user on Linux.
Broadcast mode and specifying ranges with the <tt>-</tt> (hyphen) or
<em>*</em> (star) are not available on IPv6 address mode.</p>
<p>Superuser mode is not required on macOS.</p>
<p> In the first syntax, <tt>net-ping</tt> sends a ping
ICMP 64-byte echo request to the address specified in <em>str-address</em>.
If it is a broadcast address, the ICMP packet will be received
by all addresses on the subnet. Note that for security reasons,
many computers do not answer ICMP broadcast ping (ICMP_ECHO) requests.
An optional timeout parameter can be specified in <em>int-timeout</em>.
If no timeout is specified, a waiting time of 1000 milliseconds
(one second) is assumed.</p>
<p> <tt>net-ping</tt> returns either a list of lists of IP strings
and round-trip time in microseconds for which a response was received
or an empty list if no response was received.</p>
<p>
A return value of <tt>nil</tt>
indicates a failure.
Use the <a href="#net-error">net-error</a> function
to retrieve the error message. If the message reads <tt>Cannot open socket</tt>,
it is probably because newLISP is running without root permissions.
newLISP can be started using:
</p>
<pre>
sudo newlisp
</pre>
<p>
Alternatively, newLISP can be installed
with the set-user-ID bit set to run
in superuser mode.
</p>
<!-- example -->
<pre>
(net-ping "newlisp.org") <span class='arw'>→</span> (("66.235.209.72" 634080))
(net-ping "127.0.0.1") <span class='arw'>→</span> (("127.0.0.1" 115))
(net-ping "yahoo.com" 3000) <span class='arw'>→</span> nil
</pre>
<p>
In the second syntax, <tt>net-ping</tt> is run in <em>batch mode</em>.
Only one socket is opened in this mode, but multiple ICMP packets are sent out—one
each to multiple addresses specified in a list or specified by range.
Packets are sent out as fast as possible. In this case, multiple answers can be received.
If the same address is specified multiple times, the receiving IP address will be flooded
with ICMP packets.</p>
<p>
To limit the number of responses to be waited for in broadcast or batch mode,
an additional argument indicating the maximum number of responses to receive
can be specified in <em>int-count</em>. Usage of this parameter can cause
the function to return sooner than the specified timeout.
When a given number of responses has been received, <tt>net-ping</tt> will return
before the timeout has occurred. Not specifying <em>int-count</em> or specifying <tt>0</tt>
assumes an <em>int-count</em> equal to the number of packets sent out.</p>
<p>As third optional parameter, a <tt>true</tt> value can be specified. This setting will
return an error string instead of the response time, if the host does not answer.</p>
<!-- example -->
<pre>
(net-ping '("newlisp.org" "192.168.1.255") 2000 20)
<span class='arw'>→</span> (("66.235.209.72" 826420) ("192.168.1.1" 124) ("192.168.1.254" 210))
(net-ping "192.168.1.*" 500) ; from 1 to 254
<span class='arw'>→</span> (("192.168.1.1" 120) ("192.168.1.2" 245) ("192.168.2.3" 180) ("192.168.2.254" 234))
(net-ping "192.168.1.*" 500 2) ; returns after 2 responses
<span class='arw'>→</span> (("192.168.1.3" 115) ("192.168.1.1" 145))
(net-ping "192.168.1.1-10" 1000) ; returns after 1 second
<span class='arw'>→</span> (("192.168.1.3" 196) ("192.168.1.1" 205))
(net-ping '("192.168.1.100-120" "192.168.1.124-132") 2000) ; returns after 2 seconds
<span class='arw'>→</span> ()
</pre>
<p>
Broadcast or batch mode—as well as normal addresses
and IP numbers or hostnames— can be mixed in one <tt>net-ping</tt> statement by
putting all of the IP specs into a list.</p>
<p>
The second and third lines show how the batch mode of <tt>net-ping</tt>
can be initiated by specifying the <tt>*</tt> (asterisk)
as a wildcard character for the last subnet octet
in the IP number. The fourth and fifth lines show how an IP
range can be specified for the last subnet octet in the IP number.
<tt>net-ping</tt> will iterate through all numbers
from either 1 to 254 for the star <tt>*</tt> or the range specified,
sending an ICMP packet to each address.
Note that this is different from the <em>broadcast</em> mode
specified with an IP octet of <tt>255</tt>.
While in broadcast mode, <tt>net-ping</tt> sends out only one packet,
which is received by multiple addresses. Batch mode explicitly generates
multiple packets, one for each target address. When specifying broadcast
mode, <em>int-count</em> should be specified, too.</p>
<p>
When sending larger lists of IPs in batch mode over one socket,
a longer timeout may be necessary to allow enough time for all of the packets
to be sent out over one socket. If the timeout is too short,
the function <tt>net-ping</tt> may return an incomplete list or the empty list <tt>()</tt>.
In this case, <a href="#net-error">net-error</a> will return a timeout error.
On error, <tt>nil</tt> is returned and <a href="#net-error">net-error</a>
can be used to retrieve an error message.</p>
<p>
On some systems only lists up to a specific length can be handled
regardless of the timeout specified. In this case, the range should
be broken up into sub-ranges and used with multiple <tt>net-ping</tt>
invocations. In any case, <tt>net-ping</tt> will send out packages
as quickly as possible.
</p>
<br/><br/>
<a name="net-receive"></a>
<h2><span class="function">net-receive</span> <a href="#destructive">!</a></h2>
<h4>syntax: (net-receive <em>int-socket</em> <em>sym-buffer</em> <em>int-max-bytes</em> [<em>wait-string</em>])</h4>
<p>
Receives data on the socket <em>int-socket</em> into a string contained in <em>sym-buffer</em>.
<em>sym-buffer</em> can also be a default functor specified by a context symbol
for reference passing in and out of user-defined functions.</p>
<p> A maximum of
<em>int-max-bytes</em> is received. <tt>net-receive</tt> returns the number of
bytes read. If there is a break in the connection, <tt>nil</tt> is returned.
The space reserved in <em>sym-buffer</em> is exactly the size of bytes read.</p>
<p>
Note that <tt>net-receive</tt> is a blocking call
and does not return until the data arrives at <em>int-socket</em>.
Use <a href="#net-peek">net-peek</a>
or <a href="#net-select">net-select</a> to find out
if a socket is ready for reading.
</p>
<p>
Optionally, a <em>wait-string</em>
can be specified
as a fourth parameter.
<tt>net-receive</tt> then returns after
a character or string of characters
matching <em>wait-string</em>
is received.
The <em>wait-string</em> will be part
of the data contained in <em>sym-buffer</em>.
</p>
<!-- example -->
<pre>
(define (gettime)
(set 'socket (net-connect "netcom.com" 13))
(net-receive socket buf 256)
(print buf "\n")
(net-close socket))
</pre>
<p>
When calling <tt>gettime</tt>,
the program connects to port 13
of the server netcom.com.
Port 13 is a date-time service
on most server installations.
Upon connection, the server sends
a string containing the date and time of day.
</p>
<pre>
(define (net-receive-line socket sBuff)
(net-receive socket sBuff 256 "\n"))
(set 'bytesReceived (net-receive-line socket 'sm))
</pre>
<p>
The second example defines a new function
<tt>net-receive-line</tt>,
which returns after receiving a newline character
(a string containing one character in this example)
or 256 characters.
The "\n" string is part of the contents of sBuff.
</p>
<p>
Note that when the fourth parameter is specified,
<tt>net-receive</tt> is slower than the normal version
because information is read character-by-character.
In most situations, the speed difference can be neglected.
</p>
<br/><br/>
<a name="net-receive-from"></a>
<h2><span class="function">net-receive-from</span></h2>
<h4>syntax: (net-receive-from <em>int-socket</em> <em>int-max-size</em>)</h4>
<p>
<tt>net-receive-from</tt> can be used to set up
non-blocking UDP communications.
The socket in <em>int-socket</em>
must previously have been opened
by either <a href="#net-listen">net-listen</a>
or <a href="#net-connect">net-connect</a>
(both using the <tt>"udp"</tt> option).
<em>int-max-size</em> specifies
the maximum number of bytes that will be received.
On Linux/BSD, if more bytes are received,
those will be discarded; on MS Windows, <tt>net-receive-from</tt>
returns <tt>nil</tt> and closes the socket.
</p>
<p>On success <tt>net-receive</tt> returns a list of the data string, remote
IP number and remote port used. On failure it returns <tt>nil</tt>.</p>
<!-- example -->
<pre>
;; bind port 1001 and the default address
(net-listen 1001 "" "udp") <span class='arw'>→</span> 1980
;; optionally poll for arriving data with 100ms timeout
(while (not (net-select 1980 "r" 100000)) (do-something ... ))
(net-receive-from 1980 20) <span class='arw'>→</span> ("hello" "192.168.0.5" 3240)
;; send answer back to sender
(net-send-to "192.168.0.5" 3240 "hello to you" 1980)
(net-close 1980) ; close socket
</pre>
<p>The second line in this example is optional. Without it, the
<tt>net-receive-from</tt> call would block until data arrives.
A UDP server could be set up by listening and polling several ports,
serving them as they receive data.</p>
<p>Both, the sender and the receiver have to issue
<a href="#net-listen">net-listen</a> commands for UDP mode. Not for listening
as in TCP/IP protocol communications, but to create the socket bound to
the port and address. For a complete example see the files
<tt>udp-server.lsp</tt> and <tt>udp-client.lsp</tt> in the
<tt>newlisp-x.x.x/examples/</tt> directory of the source distribution.</p>
<p>
Note that <tt>net-receive</tt>
could not be used in this case
because it does not return
the sender's address and port information,
which are required to talk back.
In UDP communications,
the data packet itself
contains the address of the sender,
<em>not</em> the socket over which
communication takes place.
<tt>net-receive</tt> can also be used for TCP/IP communications.
</p>
<p>
See also the <a href="#net-connect">net-connect</a> function
with the <tt>"udp"</tt> option and the
<a href="#net-send-to">net-send-to</a> function
for sending UDP data packets over open connections.
</p>
<p>
For blocking short UDP transactions,
see the <a href="#net-send-udp">net-send-udp</a>
and <a href="#net-receive-udp">net-receive-udp</a> functions.
</p>
<br/><br/>
<a name="net-receive-udp"></a>
<h2><span class="function">net-receive-udp</span></h2>
<h4>syntax: (net-receive-udp <em>int-port</em> <em>int-maxsize</em> [<em>int-microsec</em> [<em>str-addr-if</em>]])</h4>
<p>
Receives a User Datagram Protocol (UDP) packet on port <em>int-port</em>,
reading <em>int-maxsize</em> bytes.
If more than <em>int-maxsize</em> bytes are received,
bytes over <em>int-maxsize</em> are discarded on Linux/BSD;
on MS Windows, <tt>net-receive-udp</tt> returns <tt>nil</tt>.
<tt>net-receive-udp</tt> blocks until a datagram arrives
or the optional timeout value in <em>int-microsec</em> expires.
When setting up communications between datagram sender and receiver,
the <tt>net-receive-udp</tt> statement must be set up first.
</p>
<p>
No previous setup using <tt>net-listen</tt>
or <tt>net-connect</tt> is necessary.
</p>
<p>
<tt>net-receive-udp</tt> returns a list
containing a string of the UDP packet
followed by a string containing
the sender's IP number and the port used.
</p>
<!-- example -->
<pre>
;; wait for datagram with maximum 20 bytes
(net-receive-udp 10001 20)
;; or
(net-receive-udp 10001 20 5000000) ; wait for max 5 seconds
;; executed on remote computer
(net-send-udp "nuevatec.com" 1001 "Hello") <span class='arw'>→</span> 4
;; returned from the net-receive-udp statement
<span class='arw'>→</span> ("Hello" "128.121.96.1" 3312)
;; sending binary information
(net-send-udp "ahost.com" 2222 (pack "c c c c" 0 1 2 3))
<span class='arw'>→</span> 4
;; extracting the received info
(set 'buff (first (net-receive-udp 2222 10)))
(print (unpack "c c c c" buff)) <span class='arw'>→</span> (0 1 2 3)
</pre>
<p>
See also the <a href="#net-send-udp">net-send-udp</a>
function for sending datagrams and
the <a href="#pack">pack</a> and <a href="#unpack">unpack</a>
functions for packing and unpacking binary information.
</p>
<p>
To listen on a specified address
on computers with more than one interface card,
an interface IP address or name can be
optionally specified in <em>str-addr-if</em>.
When specifying <em>str-addr-if</em>,
a timeout must also be specified
in <em>int-wait</em>.
</p>
<p>
As an alternative, UDP communication
can be set up using <a href="#net-listen">net-listen</a>,
or <a href="#net-connect">net-connect</a>
together with the <tt>"udp"</tt> option
to make non-blocking data exchange possible
with <a href="#net-receive-from">net-receive-from</a>
and <a href="#net-send-to">net-send-to</a>.
</p>
<br/><br/>
<a name="net-select"></a>
<h2><span class="function">net-select</span></h2>
<h4>syntax: (net-select <em>int-socket</em> <em>str-mode</em> <em>int-micro-seconds</em>)<br/>
syntax: (net-select <em>list-sockets</em> <em>str-mode</em> <em>int-micro-seconds</em>)</h4>
<p>
In the first form,
<tt>net-select</tt> finds out about the status
of one socket specified in <em>int-socket</em>.
Depending on <em>str-mode</em>,
the socket can be checked
if it is ready for reading or writing,
or if the socket has an error condition.
A timeout value is specified in <em>int-micro-seconds</em>.
</p>
<p>
In the second syntax,
<tt>net-select</tt> can check for a list of sockets
in <em>list-sockets</em>.
</p>
<p>
The following value can be given for <em>str-mode</em>:
</p>
<tt>"read"</tt> or <tt>"r"</tt> to check if ready for reading or accepting.<br/>
<tt>"write"</tt> or <tt>"w"</tt> to check if ready for writing.<br/>
<tt>"exception"</tt> or <tt>"e"</tt> to check for an error condition.<br/>
<p>
Read, send, or accept operations
can be handled without blocking
by using the <tt>net-select</tt> function.
<tt>net-select</tt> waits
for a socket to be ready
for the value given in <em>int-micro-seconds</em>,
then returns <tt>true</tt> or <tt>nil</tt>
depending on the readiness of the socket.
During the select loop,
other portions of the program can run.
On error,
<a href="#net-error">net-error</a> is set.
When <tt>-1</tt> is specified for <em>int-micro-seconds</em>,
<tt>net-select</tt> will never time out.
</p>
<!-- example -->
<pre>
(set 'listen-socket (net-listen 1001))
;; wait for connection
(while (not (net-select listen-socket "read" 1000))
(if (net-error) (print (net-error))))
(set 'connection (net-accept listen-socket))
(net-send connection "hello")
;; wait for incoming message
(while (not (net-select connection "read" 1000))
(do-something))
(net-receive connection buff 1024)
</pre>
<p>
When <tt>net-select</tt> is used,
several listen and connection sockets can be watched,
and multiple connections can be handled.
When used with a list of sockets,
<tt>net-select</tt> will return a list of ready sockets.
The following example would listen on two sockets
and continue accepting and servicing connections:
</p>
<!-- example -->
<pre>
(set 'listen-list '(1001 1002))
; accept-connection, read-connection and write-connection
; are user defined functions
(while (not (net-error))
(dolist (conn (net-select listen-list "r" 1000))
(accept-connection conn)) ; build an accept-list
(dolist (conn (net-select accept-list "r" 1000))
(read-connection conn)) ; read on connected sockets
(dolist (conn (net-select accept-list "w" 1000))
(write-connection conn))) ; write on connected sockets
</pre>
<p>
In the second syntax,
a list is returned
containing all the sockets
that passed the test;
if timeout occurred,
an empty list is returned.
An error causes
<a href="#net-error">net-error</a> to be set.
</p>
<p>
Note that supplying a nonexistent socket to <tt>net-select</tt>
will cause an error to be set in <a href="#net-error">net-error</a>.
</p>
<br/><br/>
<a name="net-send"></a>
<h2><span class="function">net-send</span></h2>
<h4>syntax: (net-send <em>int-socket</em> <em>str-buffer</em> [<em>int-num-bytes</em>])</h4>
<p>
Sends the contents of <em>str-buffer</em> on the connection specified by <em>int-socket</em>.
If <em>int-num-bytes</em> is specified, up to <em>int-num-bytes</em> are sent.
If <em>int-num-bytes</em> is not specified, the entire contents will be sent.
<tt>net-send</tt> returns the number of bytes sent or <tt>nil</tt> on failure.
</p>
<p>On failure, use <a href="#net-error">net-error</a> to get more error information.</p>
<!-- example -->
<pre>
(set 'buf "hello there")
(net-send sock buf) <span class='arw'>→</span> 11
(net-send sock buf 5) <span class='arw'>→</span> 5
(net-send sock "bye bye") <span class='arw'>→</span> 7
</pre>
<p>
The first <tt>net-send</tt> sends the string <tt>"hello there"</tt>, while
the second <tt>net-send</tt> sends only the string <tt>"hello"</tt>.
</p>
<br/><br/>
<a name="net-send-to"></a>
<h2><span class="function">net-send-to</span></h2>
<h4>syntax: (net-send-to <em>str-remotehost</em> <em>int-remoteport</em> <em>str-buffer</em> <em>int-socket</em>)</h4>
<p>Can be used for either UDP or TCP/IP communications. The socket in <em>int-socket</em>
must have previously been opened with a <a href="#net-connect">net-connect</a>
or <a href="#net-listen">net-listen</a> function. If the opening functions was used
with the <tt>"udp"</tt> option, <tt>net-listen</tt> or <tt>net-connect</tt>
are not used to listen or to connect but only to create the UDP socket.
The host in <em>str-remotehost</em> can be specified either as
a hostname or as an IP-number string.</p>
<p>When using <tt>net-connect</tt> together with <tt>net-send-to</tt>, then
only one of the functions should specify the remote host. The other should leave
the address as an empty string.</p>
<!-- example -->
<pre>
;;;;;;;;;;;;;;;;;; UDP server
(set 'socket (net-listen 10001 "" "udp"))
(if socket (println "server listening on port " 10001)
(println (net-error)))
(while (not (net-error))
(set 'msg (net-receive-from socket 255))
(println "-> " msg)
(net-send-to (nth 1 msg) (nth 2 msg)
(upper-case (first msg)) socket))
;;;;;;;;;;;;;;;;;; UDP client
(set 'socket (net-listen 10002 "" "udp"))
(if (not socket) (println (net-error)))
(while (not (net-error))
(print "> ")
(net-send-to "127.0.0.1" 10001 (read-line) socket)
(net-receive socket buff 255)
(println "-> " buff))
</pre>
<p>In the examples both, the client and the server use <tt>net-listen</tt> to
create the UDP socket for sending and receiving. The server extracts
the client address and port from the message received and uses it in the
<tt>net-send-to</tt> statement.</p>
<p>See also the <a href="#net-receive-from">net-receive-from</a> function
and the <a href="#net-listen">net-listen</a> function with the
<tt>"udp"</tt> option.</p>
<p>For blocking short UDP transactions use <a href="#net-send-udp">net-send-udp</a>
and <a href="#net-receive-udp">net-receive-udp</a>.</p>
<br/><br/>
<a name="net-send-udp"></a>
<h2><span class="function">net-send-udp</span></h2>
<h4>syntax: (net-send-udp <em>str-remotehost</em> <em>int-remoteport</em> <em>str-buffer</em> [<em>bool</em>])</h4>
<p>
Sends a User Datagram Protocol (UDP)
to the host specified in <em>str-remotehost</em>
and to the port in <em>int-remoteport</em>.
The data sent is in <em>str-buffer</em>.
</p>
<p>The theoretical maximum data size of a UDP packet on an IPv4 system
is 64K minus IP layer overhead, but much smaller on most Unix flavors.
8k seems to be a safe size on macOS, BSDs and Linux.</p>
<p>
No previous setup using <tt>net-connect</tt>
or <tt>net-listen</tt> is necessary.
<tt>net-send-udp</tt> returns immediately
with the number of bytes sent
and closes the socket used.
If no <tt>net-receive-udp</tt> statement
is waiting at the receiving side,
the datagram sent is lost.
When using datagram communications over insecure connections,
setting up a simple protocol between sender and receiver
is recommended for ensuring delivery.
UDP communication by itself
does not guarantee reliable delivery
as TCP/IP does.
</p>
<!-- example -->
<pre>
(net-send-udp "somehost.com" 3333 "Hello") <span class='arw'>→</span> 5
</pre>
<p>
<tt>net-send-udp</tt> is also suitable
for sending binary information
(e.g., the zero character or other non-visible bytes).
For a more comprehensive example,
see <a href="#net-receive-udp">net-receive-udp</a>.
</p>
<p>
Optionally, the sending socket
can be put in broadcast mode
by specifying <tt>true</tt>
or any expression
not evaluating to <tt>nil</tt>
in <em>bool</em>:
</p>
<pre>
(net-send-udp "192.168.1.255" 2000 "Hello" true) <span class='arw'>→</span> 5
</pre>
<p>
The UDP will be sent to all nodes
on the <tt>192.168.1</tt> network.
Note that on some operating systems,
sending the network mask <tt>255</tt>
without the <em>bool</em> <tt>true</tt> option
will enable broadcast mode.
</p>
<p>
As an alternative,
the <a href="#net-connect">net-connect</a> function
using the <tt>"udp"</tt> option—together with
the <a href="#net-send-to">net-send-to</a> function—can
be used to talk to a UDP listener
in a non-blocking fashion.
</p>
<br/><br/>
<a name="net-service"></a>
<h2><span class="function">net-service</span></h2>
<h4>syntax: (net-service <em>str-service</em> <em>str-protocol</em>)<br/>
syntax: (net-service <em>int-port</em> <em>str-protocol</em>)</h4>
<p>In the first syntax <tt>net-service</tt> makes a lookup in the
<em>services</em> database and returns the standard port number for
this service.</p>
<p>In the second syntax a service port is supplied in <em>int-port</em>
to look up the service name.</p>
<p>Returns <tt>nil</tt> on failure.</p>
<!-- example -->
<pre>
; get the port number from the name
(net-service "ftp" "tcp") <span class='arw'>→</span> 21
(net-service "http" "tcp") <span class='arw'>→</span> 80
(net-service "net-eval" "tcp") <span class='arw'>→</span> 4711 ; if configured
; get the service name from the port number
(net-service 22 "tcp") <span class='arw'>→</span> "ssh"
</pre>
<br/><br/>
<a name="net-sessions"></a>
<h2><span class="function">net-sessions</span></h2>
<h4>syntax: (net-sessions)</h4>
<p>
Returns a list of active listening and connection sockets.
</p>
<br/><br/>
<a name="new"></a>
<h2><span class="function">new</span></h2>
<h4>syntax: (new <em>context-source</em> <em>sym-context-target</em> [<em>bool</em>])<br/>
syntax: (new <em>context-source</em>)</h4>
<p>The context <em>context-source</em> is copied to <em>sym-context-target</em>.
If the target context does not exist, a new context with the same variable names
and user-defined functions as in <em>context-source</em> is created.
If the target context already exists, then new symbols and definitions are added.
Existing symbols are only overwritten when the expression in <em>bool</em>
evaluates to anything other than <tt>nil</tt>; otherwise, the content of existing symbols
will remain. This makes <em>mixins</em> of context objects possible.
<tt>new</tt> returns the target context, which cannot be MAIN.</p>
<p>In the second syntax, the existing context in <em>context-source</em> gets
copied into the current context as the target context.</p>
<p>All references to symbols in the originating context
will be translated to references in the target context.
This way, all functions and data structures referring to symbols
in the original context will now refer to symbols in the target context.</p>
<!-- example -->
<pre>
(new CTX 'CTX-2) <span class='arw'>→</span> CTX-2
;; force overwrite of existing symbols
(new CTX MyCTX true) <span class='arw'>→</span> MyCTX
</pre>
<p>
The first line in the example creates a new context
called <tt>CTX-2</tt> that has the exact same structure
as the original one.
Note that <tt>CTX</tt> is not quoted
because contexts evaluate to themselves,
but CTX-2 must be quoted because it does not exist yet.
</p>
<p>
The second line merges the context <tt>CTX</tt> into <tt>MyCTX</tt>.
Any existing symbols of the same name in <tt>MyCTX</tt>
will be overwritten.
Because <tt>MyCTX</tt> already exists,
the quote before the context symbol can be omitted.
</p>
<p>
Context symbols need not be mentioned explicitly,
but they can be contained in variables:
</p>
<!-- example -->
<pre>
(set 'foo:x 123)
(set 'bar:y 999)
(set 'ctxa foo)
(set 'ctxb bar)
(new ctxa ctxb) ; from foo to bar
bar:x <span class='arw'>→</span> 123 ; x has been added to bar
bar:y <span class='arw'>→</span> 999)
</pre>
<p>
The example refers to contexts in variables
and merges context <tt>foo</tt> into <tt>bar</tt>.
</p>
<p>
See also the function <a href="#def-new">def-new</a>
for moving and merging single functions
instead of entire contexts.
See the <a href="#context">context</a> function
for a more comprehensive example of <tt>new</tt>.
</p>
<br/><br/>
<a name="nilp"></a>
<h2><span class="function">nil?</span></h2>
<h4>syntax: (nil? <em>exp</em>)</h4>
<p>
If the expression in <em>exp</em> evaluates to <tt>nil</tt>,
then <tt>nil?</tt> returns <tt>true</tt>;
otherwise, it returns <tt>nil</tt>.
</p>
<!-- example -->
<pre>
(map nil? '(x nil 1 nil "hi" ()))
<span class='arw'>→</span> (nil true nil true nil nil)
(nil? nil) <span class='arw'>→</span> true
(nil? '()) <span class='arw'>→</span> nil
; nil? means strictly nil
(nil? (not '())) <span class='arw'>→</span> nil
</pre>
<p>
The <tt>nil?</tt> predicate
is useful for distinguishing between
<tt>nil</tt> and the empty list <tt>()</tt>.
</p>
<p>Note that <tt>nil?</tt> means <em>strictly</em> <tt>nil</tt>
while <tt>true?</tt> means everything not <tt>nil</tt> or the
empty list <tt>()</tt>.</p>
<br/><br/>
<a name="normal"></a>
<h2><span class="function">normal</span></h2>
<h4>syntax: (normal <em>float-mean</em> <em>float-stdev</em> <em>int-n</em>)<br/>
syntax: (normal <em>float-mean</em> <em>float-stdev</em>)</h4>
<p>
In the first form, <tt>normal</tt> returns a list of length <em>int-n</em>
of random, continuously distributed floating point numbers
with a mean of <em>float-mean</em>
and a standard deviation of <em>float-stdev</em>.
The random generator used internally
can be seeded using the <a href="#seed">seed</a> function.
</p>
<!-- example -->
<pre>
(normal 10 3 10)
<span class='arw'>→</span> (7 6.563476562 11.93945312 6.153320312 9.98828125
7.984375 10.17871094 6.58984375 9.42578125 12.11230469)
</pre>
<p>
In the second form,
<tt>normal</tt> returns a single
normal distributed floating point number:
</p>
<pre>
(normal 1 0.2) <span class='arw'>→</span> 0.646875
</pre>
<p> When no parameters are given, <tt>normal</tt> assumes a mean of <tt>0.0</tt>
and a standard deviation of <tt>1.0</tt>.</p>
<p>
See also the <a href="#random">random</a>
and <a href="#rand">rand</a> functions
for evenly distributed numbers,
<a href="#amb">amb</a> for randomizing evaluation
in a list of expressions,
and <a href="#seed">seed</a> for setting a different start point
for pseudo random number generation.
</p>
<br/><br/>
<a name="not"></a>
<h2><span class="function">not</span></h2>
<h4>syntax: (not <em>exp</em>)</h4>
<p>If <em>exp</em> evaluates to <tt>nil</tt> or the empty list <tt>()</tt>,
then <tt>true</tt> is returned; otherwise, <tt>nil</tt> is returned.</p>
<!-- example -->
<pre>
(not true) <span class='arw'>→</span> nil
(not nil) <span class='arw'>→</span> true
(not '()) <span class='arw'>→</span> true
(not (< 1 10)) <span class='arw'>→</span> nil
(not (not (< 1 10))) <span class='arw'>→</span> true
</pre>
<br/><br/>
<a name="now"></a>
<h2><span class="function">now</span></h2>
<h4>syntax: (now [<em>int-minutes-offset</em> [<em>int-index</em>]])</h4>
<p>Returns information about the current date and time
as a list of integers. An optional time-zone offset
can be specified in minutes in <em>int-minutes-offset</em>.
This causes the time to be shifted forward or backward in time,
before being split into separate date values.</p>
<p>An optional list-index in <em>int-index</em> makes <tt>now</tt>
return a specific member in the result list.</p>
<!-- example -->
<pre>
(now) <span class='arw'>→</span> (2002 2 27 18 21 30 140000 57 3 -300 0)
(now 0 -2) <span class='arw'>→</span> -300 ; minutes west of GMT
(date-value (now)) <span class='arw'>→</span> 1014834090
</pre>
<p>The numbers represent the following date-time fields:</p>
<table width="98%" summary="date formatting">
<tr align="left"><th>format</th><th>description</th></tr>
<tr><td>year</td><td>Gregorian calendar</td></tr>
<tr><td>month</td><td> (1–12)</td></tr>
<tr><td>day</td><td> (1–31)</td></tr>
<tr><td>hour</td><td> (0–23) UTC</td></tr>
<tr><td>minute</td><td> (0–59)</td></tr>
<tr><td>second</td><td> (0–59)</td></tr>
<tr><td>microsecond</td><td> (0–999999)
OS-specific, millisecond resolution</td></tr>
<tr><td>day of current year</td><td>Jan 1st is 1</td></tr>
<tr><td>day of current week</td><td> (1–7) starting Monday</td></tr>
<tr><td>time zone offset in minutes</td><td> west of GMT including daylight savings bias</td></tr>
<tr><td>daylight savings time type </td><td> (0–6) on Linux/Unix
or (0–2) on MS Windows</td></tr>
</table><br/>
<p>The second example returns the Coordinated Universal Time (UTC)
time value of seconds after January 1, 1970.</p>
<p>Ranging from 0 to 23, hours are given in UTC and are not adjusted for
the local time zone. The resolution of the <tt>microseconds</tt> field
depends on the operating system and platform. On some platforms,
the last three digits of the <tt>microseconds</tt> field are always
<tt>0</tt> (zero).</p>
<p>The "day of the week" field starts with 1 on Monday conforming to the
ISO 8601 international standard for date and time representation.</p>
<p>On some platforms, the daylight savings time flag is not active and
returns <tt>0</tt> (zero) even during daylight savings time (dst).</p>
<p>Depending on the geographical area, the daylight savings time type
(dst) has a different value from 1 to 6:</p>
<table width="35%" summary="date formatting">
<tr align="left"><th>UNIX type</th><th>area</th></tr>
<tr><td>0</td><td>not on daylight savings</td></tr>
<tr><td>1</td><td>USA style dst</td></tr>
<tr><td>2</td><td>Australian style daylight savings</td></tr>
<tr><td>3</td><td>Western European daylight savings</td></tr>
<tr><td>4</td><td>Middle European daylight savings</td></tr>
<tr><td>5</td><td>Eastern European daylight savings</td></tr>
<tr><td>6</td><td>Canada dst</td></tr>
</table>
<br />
<table width="35%" summary="date formatting">
<tr align="left"><th>Windows type</th><th></th></tr>
<tr><td>0</td><td>Daylight saving time is not used</td></tr>
<tr><td>1</td><td>Standard date time range is used</td></tr>
<tr><td>2</td><td>Daylight date time range is used (daylight savings active)</td></tr>
</table>
<p>See also the <a href="#date">date</a>,
<a href="#date-list">date-list</a>,
<a href="#date-parse">date-parse</a>,
<a href="#date-value">date-value</a>,
<a href="#time">time</a>, and <a href="#time-of-day">time-of-day</a> functions.
</p>
<br/><br/>
<a name="nper"></a>
<h2><span class="function">nper</span></h2>
<h4>syntax: (nper <em>num-interest</em> <em>num-pmt</em> <em>num-pv</em>
[<em>num-fv</em> [<em>int-type</em>]])</h4>
<p>Calculates the number of payments required to pay a loan of <em>num-pv</em>
with a constant interest rate of <em>num-interest</em> and payment <em>num-pmt</em>.
If payment is at the end of the period, <em>int-type</em> is <tt>0</tt> (zero)
or <em>int-type</em> is omitted; for payment at the beginning of each period,
<em>int-type</em> is 1.</p>
<!-- example -->
<pre>
(nper (div 0.07 12) 775.30 -100000) <span class='arw'>→</span> 239.9992828
</pre>
<p>
The example calculates the number of monthly payments required to pay a loan of
$100,000 at a yearly interest rate of 7 percent with payments of $775.30.
</p>
<p>
See also the <a href="#fv">fv</a>,
<a href="#irr">irr</a>,
<a href="#npv">npv</a>,
<a href="#pmt">pmt</a>,
and <a href="#pv">pv</a> functions.
</p>
<br/><br/>
<a name="npv"></a>
<h2><span class="function">npv</span></h2>
<h4>syntax: (npv <em>num-interest</em> <em>list-values</em>)</h4>
<p>
Calculates the net present value of an investment with a fixed interest rate
<em>num-interest</em> and a series of future payments and income in <em>list-values</em>.
Payments are represented by negative values in <em>list-values</em>,
while income is represented by positive values in <em>list-values</em>.
</p>
<!-- example -->
<pre>
(npv 0.1 '(1000 1000 1000))
<span class='arw'>→</span> 2486.851991
(npv 0.1 '(-2486.851991 1000 1000 1000))
<span class='arw'>→</span> -1.434386832e-08 ; ~ 0.0 (zero)
</pre>
<p>
In the example,
an initial investment of $2,481.85 would allow for an income of $1,000 after the end of the first,
second,
and third years.
</p>
<p>
See also the <a href="#fv">fv</a>,
<a href="#irr">irr</a>,
<a href="#nper">nper</a>,
<a href="#pmt">pmt</a>,
and <a href="#pv">pv</a> functions.
</p>
<br/><br/>
<a name="nth"></a>
<h2><span class="function">nth</span> <font size="-1"><a href="#utf8_capable">utf8</a></font></h2>
<h4>syntax: (nth <em>int-index</em> <em>list</em>)<br/>
syntax: (nth <em>int-index</em> <em>array</em>)<br/>
syntax: (nth <em>int-index</em> <em>str</em>)<br/><br/>
syntax: (nth <em>list-indices</em> <em>list</em>)<br/>
syntax: (nth <em>list-indices</em> <em>array</em>)</h4>
<p>
In the first syntax group <tt>nth</tt> uses <em>int-index</em> an index into the
<em>list</em>, <em>array</em> or <em>str</em> found and returning the element found
at that index. See also <a href="#indexing">Indexing elements of strings and lists</a>.</p>
<p>Multiple indices may be specified to recursively access elements in nested lists
or arrays. If there are more indices than nesting levels, the extra indices are ignored.
When multiple indices are used, they must be put in a list as shown in the second
syntax group.</p>
<!-- example -->
<pre>
(set 'L '(a b c))
(nth 0 L) <span class='arw'>→</span> a
; or simply
(L 0) <span class='arw'>→</span> a
(set 'names '(john martha robert alex))
<span class='arw'>→</span> (john martha robert alex)
(nth 2 names) <span class='arw'>→</span> robert
; or simply
(names 2) <span class='arw'>→</span> robert
(names -1) <span class='arw'>→</span> alex
; multiple indices
(set 'persons '((john 30) (martha 120) ((john doe) 17)))
(persons 1 1) <span class='arw'>→</span> 120
(nth '(2 0 1) persons) <span class='arw'>→</span> doe
; or simply
(persons 2 0 1) <span class='arw'>→</span> doe
; multiple indices in a vector
(set 'v '(2 0 1))
(persons v) <span class='arw'>→</span> doe
(nth v persons) <span class='arw'>→</span> doe
; negative indices
(persons -2 0) <span class='arw'>→</span> martha
; out-of-bounds indices cause error
(persons 10) <span class='arw'>→</span> <span class='err'>ERR: list index out of bounds</span>
(person -5) <span class='arw'>→</span> <span class='err'>ERR: list index out of bounds</span>
</pre>
<p>The list <tt>L</tt> can be the context of the default functor <tt>L:L</tt>.
This allows lists passed by reference:</p>
<pre>
(set 'L:L '(a b c d e f g))
(define (second ctx)
(nth 1 ctx))
(reverse L) <span class='arw'>→</span> (g f e d c b a)
L:L <span class='arw'>→</span> (g f e d c b a)
;; passing the list in L:L by reference
(second L) <span class='arw'>→</span> b
;; passing the list in L:L by value
(second L:L) <span class='arw'>→</span> b
</pre>
<p>Reference passing is faster and uses less memory in big lists and should
be used on lists with more than a few hundred items.</p>
<p>Note that the <i>implicit indexing</i> version of <tt>nth</tt> is not breaking newLISP
syntax rules but should be understood as a logical expansion of newLISP syntax rules to
other data types than built-in functions or lambda expressions. A list in the functor
position of an s-expression assumes self-indexing functionality using the index
arguments following.</p>
<p>
The implicit indexed syntax forms are faster but the other form with an explicit
<tt>nth</tt> may be more readable in some situations.
</p>
<p><tt>nth</tt> works on <a href="#array">arrays</a> just like it does on lists:</p>
<!-- example -->
<pre>
(set 'aArray (array 2 3 '(a b c d e f)))
<span class='arw'>→</span> ((a b c) (d e f))
(nth 1 aArray) <span class='arw'>→</span> (d e f)
(aArray 1) <span class='arw'>→</span> (d e f)
(nth '(1 0) aArray) <span class='arw'>→</span> d
(aArray 1 0) <span class='arw'>→</span> d
(aArray '(1 0)) <span class='arw'>→</span> d
(set 'vec '(1 0))
(aArray vec) <span class='arw'>→</span> d
</pre>
<p>
In the String version, <tt>nth</tt> returns the character found at the position
<em>int-index</em> in <em>str</em> and returns it as a string.</p>
<!-- example -->
<pre>
(nth 0 "newLISP") <span class='arw'>→</span> "n"
("newLISP" 0) <span class='arw'>→</span> "n"
("newLISP" -1) <span class='arw'>→</span> "P"
</pre>
<p>Note that <a href="#nth">nth</a> works on character boundaries rather than byte
boundaries when using the UTF-8–enabled version of newLISP. To access ASCII and
binary string buffers on single byte boundaries use <a href="#slice">slice</a>.</p>
<p>See also <a href="#setf">setf</a> for modifying multidimensional lists and arrays and
<a href="#push">push</a> and <a href="#pop">pop</a> for modifying lists.</p>
<br/><br/>
<a name="nullp"></a>
<h2><span class="function">null?</span></h2>
<h4>syntax: (null? <em>exp</em>)</h4>
<p>
Checks if an expression evaluates to <tt>nil</tt>,
the empty list <tt>()</tt>,
the empty string <tt>""</tt>,
<tt>NaN</tt> (not a number),
or <tt>0</tt> (zero),
in which case it returns <tt>true</tt>.
In all other cases,
<tt>null?</tt> returns <tt>nil</tt>.
The predicate <tt>null?</tt> is useful in conjunction with the functions
<a href="#filter">filter</a> or <a href="#clean">clean</a> to check the outcome of other newLISP operations.
</p>
<!-- example -->
<pre>
(set 'x (sqrt -1)) <span class='arw'>→</span> NaN ; or nan on UNIX
(null? x) <span class='arw'>→</span> true
(map null? '(1 0 0.0 2 "hello" "" (a b c) () true))
<span class='arw'>→</span> (nil true true nil nil true nil true nil)
(filter null? '(1 0 2 0.0 "hello" "" (a b c) () nil true))
<span class='arw'>→</span> (0 0 "" () nil)
(clean null? '(1 0 2 0.0 "hello" "" (a b c) () nil true))
<span class='arw'>→</span> (1 2 "hello" (a b c) true)
</pre>
<p>
See also the predicates <a href="#emptyp">empty?</a>,
<a href="#nilp">nil?</a>
and <a href="#zerop">zero?</a>.
</p>
<br/><br/>
<a name="numberp"></a>
<h2><span class="function">number?</span>
<a href="#big_int"><font size="-1">bigint</font></a></h2>
<h4>syntax: (number? <em>exp</em>)</h4>
<p>
<tt>true</tt> is returned only if <em>exp</em> evaluates to a floating point number or an integer;
otherwise,
<tt>nil</tt> is returned.
</p>
<!-- example -->
<pre>
(set 'x 1.23)
(set 'y 456)
(number? x) <span class='arw'>→</span> true
(number? y) <span class='arw'>→</span> true
(number? "678") <span class='arw'>→</span> nil
</pre>
<p>
See the functions <a href="#floatp">float?</a> and <a href="#integerp">integer?</a> to test for a specific number type.
</p>
<br/><br/>
<a name="oddp"></a>
<h2><span class="function">odd?</span>
<a href="#big_int"><font size="-1">bigint</font></a></h2>
<h4>syntax: (odd? <em>int-number</em>)</h4>
<p>Checks the parity of an integer number. If the number is not <em>even divisible</em> by <tt>2</tt>,
it has <em>odd</em> parity. When a floating point number is passed for <em>int-number</em>,
it will be converted first to an integer by cutting off its fractional part.</p>
<pre>
(odd? 123) <span class='arw'>→</span> true
(odd? 8) <span class='arw'>→</span> nil
(odd? 8.7) <span class='arw'>→</span> nil
</pre>
<p>Use <a href="#evenp">even?</a> to check if an integer is even, divisible by <tt>2</tt>.</p>
<br/><br/>
<a name="open"></a>
<h2><span class="function">open</span></h2>
<h4>syntax: (open <em>str-path-file</em> <em>str-access-mode</em> [<em>str-option</em>])</h4>
<p>
The <em>str-path-file</em> is a file name,
and <em>str-access-mode</em> is a string specifying the file access mode.
<tt>open</tt> returns an integer,
which is a file handle to be used on subsequent read or write operations on the file.
On failure,
<tt>open</tt> returns <tt>nil</tt>.
The access mode <tt>"write"</tt> creates the file if it doesn't exist,
or it truncates an existing file to <tt>0</tt> (zero) bytes in length.
</p>
<p>
The following strings are legal access modes:
</p>
<tt>"read"</tt> or <tt>"r"</tt> for read only access<br/>
<tt>"write"</tt> or <tt>"w"</tt> for write only access<br/>
<tt>"update"</tt> or <tt>"u"</tt> for read/write access<br/>
<tt>"append"</tt> or <tt>"a"</tt> for append read/write access<br/>
<br/>
<!-- example -->
<pre>
(device (open "newfile.data" "write")) <span class='arw'>→</span> 5
(print "hello world\n") <span class='arw'>→</span> "hello world"
(close (device)) <span class='arw'>→</span> 5
(set 'aFile (open "newfile.data" "read"))
(seek aFile 6)
(set 'inChar (read-char aFile))
(print inChar "\n")
(close aFile)
</pre>
<p>
The first example uses <tt>open</tt> to set the device for <a href="#print">print</a>
and writes the word <tt>"hello world"</tt> into the file <tt>newfile.data</tt>.
The second example reads a byte value at offset 6 in the same file (the ASCII value
of <tt>'w'</tt> is 119). Note that using <tt>close</tt> on <a href="#device">(device)</a>
automatically resets <a href="#device">device</a> to <tt>0</tt> (zero).
</p>
<p>
As an additional <em>str-option</em>,
<tt>"non-block"</tt> or <tt>"n"</tt> can be specified after the <tt>"read"</tt> or <tt>"write"</tt> option.
Only available on Unix systems,
non-blocking mode can be useful when opening <em>named pipes</em> but is not required to perform I/O on named pipes.
</p>
<br/><br/>
<a name="or"></a>
<h2><span class="function">or</span></h2>
<h4>syntax: (or <em>exp-1</em> [<em>exp-2</em> ... ])</h4>
<p>
Evaluates expressions <em>exp-x</em> from left to right until finding a result
that does not evaluate to <tt>nil</tt> or the empty list <tt>()</tt>.
The result is the return value of the <tt>or</tt> expression.
</p>
<!-- example -->
<pre>
(set 'x 10)
(or (> x 100) (= x 10)) <span class='arw'>→</span> true
(or "hello" (> x 100) (= x 10)) <span class='arw'>→</span> "hello"
(or '()) <span class='arw'>→</span> ()
(or true) <span class='arw'>→</span> true
(or) <span class='arw'>→</span> nil
</pre>
<br/><br/>
<a name="ostype"></a>
<h2><span class="function">ostype</span></h2>
<h4>syntax: ostype</h4>
<p><tt>ostype</tt> is a built-in system constant
containing the name of the operating system
newLISP is running on.</p>
<!-- example -->
<pre>
ostype <span class='arw'>→</span> "Windows"
</pre>
<p>One of the following strings is returned:
<tt>"Linux", "BSD", "OSX", "Tru64Unix", "Solaris", "SunOS", "Windows", "Cygwin", or "OS/2"</tt>.
</p>
<p><tt>ostype</tt> can be used to write platform-independent code:</p>
<pre>
(if
(= ostype "Linux") (import "libz.so")
(= ostype "BSD") (import "libz.so")
(= ostype "OSX") (import "libz.dylib")
...
(println "cannot import libz on this platform")
)
</pre>
<p>Use <a href="#sys-info">sys-info</a> to learn more
about the current flavor of newLISP running.</p>
<p>For a table of other built-in system variables and symbols see the
chapter <a href="#system_symbols">System Symbols and Constants</a> in the
appendix.</p>
<br/><br/>
<a name="pack"></a>
<h2><span class="function">pack</span></h2>
<h4>syntax: (pack <em>str-format</em> [<em>exp-1</em> [<em>exp-2</em> ... ]])<br/>
syntax: (pack <em>str-format</em> [<em>list</em>])<br/><br/>
syntax: (pack <em>struct</em> [<em>exp-1</em> [<em>exp-2</em> ... ]])<br/>
syntax: (pack <em>struct</em> [<em>list</em>])</h4>
<p>When the first parameter is a string, <tt>pack</tt> packs one or more expressions
(<em>exp-1</em> to <em>exp-n</em>) into a binary format specified in the format
string <em>str-format</em>, and returning the binary structure in a string buffer.
The symmetrical <a href="#unpack">unpack</a> function is used
for unpacking. The expression arguments can also be given in a <em>list</em>.
<tt>pack</tt> and <tt>unpack</tt> are useful when reading and writing binary files
(see <a href="#read">read</a> and <a href="#write">write</a>)
or when unpacking binary structures from return values of imported C functions
using <tt>import</tt>.</p>
<p>When the first parameter is the symbol of a <a href="#struct">struct</a>
definition, <tt>pack</tt> uses the format as specified in <em>struct</em>.
While <tt>pack</tt> with <em>str-format</em> literally packs as specified,
<tt>pack</tt> with <em>struct</em> will insert structure aligning pad-bytes
depending on data type, order of elements and CPU architecture.
Refer to the description of the <a href="#struct">struct</a> function for more detail.</p>
<p>When no data expressions or lists are specified, formats or structures are filled
with <tt>0</tt>s (zeros).</p>
<p>The following characters are used in <em>str-format</em>:</p>
<table summary="format characters">
<tr align="left"><th>format</th><th>description</th></tr>
<tr>
<td WIDTH="20%"><tt>c </tt></td>
<td WIDTH="80%">a signed 8-bit number</td>
</tr>
<tr>
<td><tt>b </tt></td>
<td>an unsigned 8-bit number</td>
</tr>
<tr>
<td><tt>d </tt></td>
<td>a signed 16-bit short number</td>
</tr>
<tr>
<td><tt>u </tt></td>
<td>an unsigned 16-bit short number</td>
</tr>
<tr>
<td><tt>ld</tt></td>
<td>a signed 32-bit long number</td>
</tr>
<tr>
<td><tt>lu</tt></td>
<td>an unsigned 32-bit long number</td>
</tr>
<tr>
<td><tt>Ld</tt></td>
<td>a signed 64-bit long number</td>
</tr>
<tr>
<td><tt>Lu</tt></td>
<td>an unsigned 64-bit long number</td>
</tr>
<tr>
<td><tt>f </tt></td>
<td>a float in 32-bit representation</td>
</tr>
<tr>
<td><tt>lf</tt></td>
<td>a double float in 64-bit representation</td>
</tr>
<tr>
<td><tt>sn</tt></td>
<td>a string of <em>n</em> null padded ASCII characters</td>
</tr>
<tr>
<td><tt>nn</tt></td>
<td><em>n</em> null characters</td>
</tr>
<tr>
<td><tt>></tt></td>
<td>switch to big endian byte order</td>
</tr>
<tr>
<td><tt><</tt></td>
<td>switch to little endian byte order</td>
</tr>
</table><br/>
<p>
<tt>pack</tt> will convert all floats into integers
when passed to <tt>b</tt>, <tt>c</tt>, <tt>d</tt>, <tt>ld</tt>,
or <tt>lu</tt> formats.
It will also convert integers into floats
when passing them to <tt>f</tt> and <tt>lf</tt> formats.
</p>
<!-- example -->
<pre>
(pack "c c c" 65 66 67) <span class='arw'>→</span> "ABC"
(unpack "c c c" "ABC") <span class='arw'>→</span> (65 66 67)
(pack "c c c" 0 1 2) <span class='arw'>→</span> "\000\001\002"
(unpack "c c c" "\000\001\002") <span class='arw'>→</span> (0 1 2)
(set 's (pack "c d u" 10 12345 56789))
(unpack "c d u" s) <span class='arw'>→</span> (10 12345 56789)
(set 's (pack "s10 f" "result" 1.23))
(unpack "s10 f" s)
<span class='arw'>→</span> ("result\000\000\000\000" 1.230000019)
(pack "n10") <span class='arw'>→</span> "\000\000\000\000\000\000\000\000\000\000"
(set 's (pack "s3 lf" "result" 1.23))
(unpack "s3 f" s) <span class='arw'>→</span> ("res" 1.23)
(set 's (pack "c n7 c" 11 22))
(unpack "c n7 c" s) <span class='arw'>→</span> (11 22))
(unpack "b" (pack "b" -1.0)) <span class='arw'>→</span> (255)
(unpack "f" (pack "f" 123)) <span class='arw'>→</span> (123)
</pre>
<p>
The last two statements show
how floating point numbers are converted
into integers when required by the format specification.
</p>
<p>The expressions to pack can also be given in a list:</p>
<pre>
(set 'lst '("A" "B" "C"))
(set 'adr (pack "lululu" lst))
(map get-string (unpack "lululu" adr)) <span class='arw'>→</span> ("A" "B" "C")
</pre>
<p>Note that the list should be referenced directly in <tt>pack</tt>,
so the pointers passed by <tt>adr</tt> are valid. <tt>adr</tt> would be written
as <tt>char * adr[]</tt> in the C-programming language and represents a 32-bit pointer to an
array of 32-bit string pointers or a 64-bit pointers on the 64-bit version of newLISP.
</p>
<p>
The <tt>></tt> and <tt><</tt> specifiers
can be used to switch between <em>little endian</em>
and <em>big endian</em> byte order
when packing or unpacking:
</p>
<pre>
(pack "d" 1) <span class='arw'>→</span> "\001\000" ;; on little endian CPU
(pack ">d" 1) <span class='arw'>→</span> "\000\001" ;; force big endian
(pack "ld" 1) <span class='arw'>→</span> "\001\000\000\000" ;; on little endian CPU
(pack "<ld" 1) <span class='arw'>→</span> "\000\000\000\001" ;; force big endian
(pack ">u <u" 1 1) <span class='arw'>→</span> "\000\001\001\000" ;; switch twice
</pre>
<p>
Switching the byte order will affect all number formats with 16-,
32-, or 64-bit sizes.
</p>
<p>
The pack and unpack format need not be the same:
</p>
<pre>
(set 's (pack "s3" "ABC"))
(unpack "c c c" s) <span class='arw'>→</span> (65 66 67)
</pre>
<p>
The examples show spaces between the format specifiers.
These are not required but can be used to improve readability.
</p>
<p>Using <tt>pack</tt> and <tt>unpack</tt> on UTF-8 strings:</p>
<pre>
(set 'txt "我能吞下玻璃而不伤身体。")
<span class='arw'>→</span> "我能吞下玻璃而不伤身体。"
(set 'lst (unpack (dup "b" (length txt)) txt))
<span class='arw'>→</span> (230 136 145 232 ... 147 227 128 130)
(pack (dup "b" (length lst)) lst)
<span class='arw'>→</span> "我能吞下玻璃而不伤身体。"
</pre>
<p>
See also the <a href="#address">address</a>,
<a href="#get-int">get-int</a>,
<a href="#get-long">get-long</a>,
<a href="#get-char">get-char</a>,
<a href="#get-string">get-string</a>,
and <a href="#unpack">unpack</a> functions.
</p>
<br/><br/>
<a name="parse"></a>
<h2><span class="function">parse</span></h2>
<h4>syntax: (parse <em>str-data</em> [<em>str-break</em> [<em>regex-option</em>]])</h4>
<p>
Breaks the string that results from evaluating <em>str-data</em> into string tokens,
which are then returned in a list.
When no <em>str-break</em> is given,
<tt>parse</tt> tokenizes according to newLISP's internal parsing rules.
A string may be specified in <em>str-break</em> for tokenizing only at the occurrence of a string.
If an <em>regex-option</em> number or string is specified,
a regular expression pattern may be used in <em>str-break</em>.
</p>
<p>
When <em>str-break</em> is not specified,
the maximum token size is 2048 for quoted strings and 256 for identifiers.
In this case,
newLISP uses the same faster tokenizer it uses for parsing newLISP source.
If <em>str-break</em> is specified,
there is no limitation on the length of tokens.
A different algorithm is used that splits the source string <em>str-data</em> at the string in <em>str-break</em>.
</p>
<!-- example -->
<pre>
; no break string specified
(parse "hello how are you") <span class='arw'>→</span> ("hello" "how" "are" "you")
; strings break after spaces, parentheses, commas, colons and numbers.
; Spaces and the colon are swollowed
(parse "weight is 10lbs") <span class='arw'>→</span>
(parse "one:two:three" ":") <span class='arw'>→</span> ("one" "two" "three")
;; specifying a break string
(parse "one--two--three" "--") <span class='arw'>→</span> ("one" "two" "three")
; a regex option causes regex parsing
(parse "one-two--three---four" "-+" 0)
<span class='arw'>→</span> ("one" "two" "three" "four")
(parse "hello regular expression 1, 2, 3" {,\s*|\s+} 0)
<span class='arw'>→</span> ("hello" "regular" "expression" "1" "2" "3")
</pre>
<p>The last two examples show a regular expression as the break string
with the default option <tt>0</tt> (zero). Instead of
<tt>{</tt> and <tt>}</tt> (left and right curly brackets), double
quotes can be used to limit the pattern. In this case, double
backslashes must be used inside the pattern. The last pattern could
be used for parsing CSV (Comma Separated Values) files. For the regular expression option
numbers, see <a href="#regex">regex</a>.</p>
<p>
<tt>parse</tt> will return empty fields
around separators
as empty strings:
</p>
<pre>
; empty fields around separators returned as empty strings
(parse "1,2,3," ",") <span class='arw'>→</span> ("1" "2" "3" "")
(parse "1,,,4" ",") <span class='arw'>→</span> ("1" "" "" "4")
(parse "," ",") <span class='arw'>→</span> ("" "")
(parse "") <span class='arw'>→</span> ()
(parse "" " ") <span class='arw'>→</span> ()
</pre>
<p>
This behavior is needed
when parsing records
with empty fields.
</p>
<p>
Parsing an empty string
will always result
in an empty list.
</p>
<p>
Use the <a href="#regex">regex</a> function
to break strings up
and the <a href="#directory">directory</a>,
<a href="#find">find</a>,
<a href="#find-all">find-all</a>,
<a href="#regex">regex</a>,
<a href="#replace">replace</a>,
and <a href="#search">search</a> functions
for using regular expressions.
</p>
<br/><br/>
<a name="peek"></a>
<h2><span class="function">peek</span></h2>
<h4>syntax: (peek <em>int-handle</em>)</h4>
<p>
Returns the number of bytes ready to be read on a file descriptor;
otherwise,
it returns <tt>nil</tt> if the file descriptor is invalid.
<tt>peek</tt> can also be used to check <tt>stdin</tt>.
This function is only available on Unix-like operating systems.
</p>
<!-- example -->
<pre>
(peek 0) ; check # of bytes ready on stdin
</pre>
<p>
Use the <a href="#net-peek">net-peek</a> function
to check for network sockets,
or for the number of available bytes on them.
On Unix systems,
<a href="#net-peek">net-peek</a> can be used
to check file descriptors.
The difference is that
<a href="#net-peek">net-peek</a> also sets
<a href="#net-error">net-error</a>.
</p>
<br/><br/>
<a name="pipe"></a>
<h2><span class="function">pipe</span></h2>
<h4>syntax: (pipe)</h4>
<p>
Creates an inter-process communications pipe and returns the
<tt>read</tt> and <tt>write</tt> handles to it within a list.
</p>
<!-- example -->
<pre>
(pipe) <span class='arw'>→</span> (3 4) ; 3 for read, 4 for writing
</pre>
<p>
The pipe handles can be passed to a child process launched via
<a href="#process"> process</a> or to <a href="#fork">fork</a> for inter-process communications.
</p>
<p>
Note that the pipe does not block when being written to,
but it does block reading until bytes are available.
A <a href="#read-line">read-line</a> blocks until a newline character is received.
A <a href="#read">read</a> blocks when fewer characters than
specified are available from a pipe that has not had the writing end closed by all processes.
</p>
<p>
More than one pipe can be opened if required.
</p>
<p>
newLISP can also use <em>named pipes</em>.
See the <a href="#open">open</a> function for further information.
</p>
<br/><br/>
<a name="pmt"></a>
<h2><span class="function">pmt</span></h2>
<b>syntax: (pmt <em>num-interest</em> <em>num-periods</em> <em>num-principal</em>
[<em>num-future-value</em> [<em>int-type</em>]])</b>
<p>
Calculates the payment for a loan based on a constant interest of <em>num-interest</em>
and constant payments over <em>num-periods</em> of time.
<em>num-future-value</em> is the value of the loan at the end (typically <tt>0.0</tt>).
If payment is at the end of the period, <em>int-type</em> is <tt>0</tt> (zero)
or <em>int-type</em> is omitted; for payment at the beginning of each period,
<em>int-type</em> is 1.</p>
<!-- example -->
<pre>
(pmt (div 0.07 12) 240 100000) <span class='arw'>→</span> -775.2989356
</pre>
<p>
The above example calculates a payment of $775.30 for a loan of $100,000 at a yearly interest rate of 7 percent.
It is calculated monthly and paid over 20 years (20 * 12 = 240 monthly periods).
This illustrates the typical way payment is calculated for mortgages.
</p>
<p>
See also the <a href="#fv">fv</a>,
<a href="#irr">irr</a>,
<a href="#nper">nper</a>,
<a href="#npv">npv</a>,
and <a href="#pv">pv</a> functions.
</p>
<br/><br/>
<a name="pop"></a>
<h2><span class="function">pop</span> <a href="#destructive">!</a> <font size="-1"><a href="#utf8_capable">utf8</a></font></h2>
<h4>syntax: (pop <em>list</em> [<em>int-index-1</em> [<em>int-index-2</em> ... ]])<br/>
syntax: (pop <em>list</em> [<em>list-indexes</em>])<br/><br/>
syntax: (pop <em>str</em> [<em>int-index</em> [<em>int-length</em>]])</h4>
<p>Using <tt>pop</tt>, elements can be removed from lists and characters from strings.</p>
<p>
In the first syntax, <tt>pop</tt> extracts an element from the list found
by evaluating <em>list</em>.
If a second parameter is present,
the element at <em>int-index</em> is extracted and returned.
See also <a href="#indexing">Indexing elements of strings and lists</a>.
</p>
<p>
In the second version,
indices are specified in the list <em>list-indexes</em>.
This way,
<tt>pop</tt> works easily together with <a href="#ref">ref</a>
and <a href="#ref-all">ref-all</a>,
which return lists of indices.
</p>
<p>
<tt>pop</tt> changes the contents of the target list.
The popped element is returned.
</p>
<!-- example -->
<pre>
(set 'pList '((f g) a b c "hello" d e 10))
(pop pList) <span class='arw'>→</span> (f g)
(pop pList) <span class='arw'>→</span> a
pList <span class='arw'>→</span> (b c "hello" d e 10)
(pop pList 3) <span class='arw'>→</span> d
(pop pList -1) <span class='arw'>→</span> 10
pList <span class='arw'>→</span> (b c "hello" e)
(pop pList -1) <span class='arw'>→</span> e
pList <span class='arw'>→</span> (b c "hello")
(pop pList -2) <span class='arw'>→</span> c
pList <span class='arw'>→</span> (b "hello")
(set 'pList '(a 2 (x y (p q) z)))
(pop pList -1 2 0) <span class='arw'>→</span> p
;; use indices in a list
(set 'pList '(a b (c d () e)))
(push 'x pList '(2 2 0))
<span class='arw'>→</span> (a b (c d (x) e))
pList
<span class='arw'>→</span> (a b (c d (x) e))
(ref 'x pList) <span class='arw'>→</span> (2 2 0)
(pop pList '(2 2 0)) <span class='arw'>→</span> x
</pre>
<p><tt>pop</tt> can also be used on strings with one index:</p>
<!-- example -->
<pre>
;; use pop on strings
(set 'str "newLISP")
(pop str -4 4) <span class='arw'>→</span> "LISP"
str <span class='arw'>→</span> "new"
(pop str 1) <span class='arw'>→</span> "e"
str <span class='arw'>→</span> "nw"
(set 'str "x")
(pop str) <span class='arw'>→</span> "x"
(pop str) <span class='arw'>→</span> ""
</pre>
<p>Popping an empty string will return an empty string.</p>
<p>
See also the <a href="#push">push</a> function, the inverse operation to <tt>pop</tt>.
</p>
<br/><br/>
<a name="pop-assoc"></a>
<h2><span class="function">pop-assoc</span> <a href="#destructive">!</a></h2>
<h4>syntax: (pop-assoc <em>exp-key</em> <em>list-assoc</em>)<br/>
syntax: (pop-assoc <em>list-keys</em> <em>list-assoc</em>)</h4>
<p>Removes an association referred to by the key in <em>exp-key</em> from the association
list in <em>list-assoc</em> and returns the popped expression.</p>
<!-- example -->
<pre>
;; simple associations
(set 'L '((a 1) (b 2) (c 3)))
(pop-assoc 'b L) <span class='arw'>→</span> (b 2)
L <span class='arw'>→</span> ((a 1) (c 3))
;; nested associations
(set 'L '((a (b 1) (c (d 2)))))
(pop-assoc 'a L) <span class='arw'>→</span> (a (b 1) (c (d 2)))
L <span class='arw'>→</span> ()
(set 'L '((a (b 1) (c (d 2)))))
(pop-assoc '(a b) L) <span class='arw'>→</span> (b 1)
L <span class='arw'>→</span> ((a (c (d 2))))
(set 'L '((a (b 1) (c (d 2)))))
(pop-assoc '(a c) L) <span class='arw'>→</span> (c (d 2))
L <span class='arw'>→</span> ((a (b 1))))
</pre>
<p>See also <a href="#assoc">assoc</a> for retrieving associations and <a href="#setf">setf</a>
for modifying association lists.</p>
<br/><br/>
<a name="post-url"></a>
<h2><span class="function">post-url</span></h2>
<h4>syntax: (post-url <em>str-url</em> <em>str-content</em> [<em>str-content-type</em> [<em>str-option</em>] [<em>int-timeout</em> [ <em>str-header</em>]]])</h4>
<p>
Sends an HTTP POST request to the URL in <em>str-url</em>.
POST requests are used to post information collected from web entry forms to a web site.
Most of the time,
the function <tt>post-url</tt> mimics what a web browser would do when sending information
collected in an HTML form to a server,
but it can also be used to upload files (see an HTTP reference).
The function returns the page returned from the server in a string.
</p>
<p>
When <tt>post-url</tt> encounters an error,
it returns a string description of the error beginning with <tt>ERR:</tt>.
</p>
<p>
The last parameter,
<em>int-timeout</em>,
is for an optional timeout value,
which is specified in milliseconds.
When no response from the host is received before the timeout has expired,
the string <tt>ERR:
timeout</tt> is returned.
</p>
<!-- example -->
<pre>
;; specify content type
(post-url "http://somesite.com/form.pl"
"name=johnDoe&city=New%20York"
"application/x-www-form-urlencoded")
;; specify content type and timeout
(post-url "http://somesite.com/form.pl"
"name=johnDoe&city=New%20York"
"application/x-www-form-urlencoded" 8000)
;; assumes default content type and no timeout
(post-url "http://somesite.com/form.pl"
"name=johnDoe&city=New%20York"
</pre>
<p>
The above example uploads a user name and city using a special format called
<tt>application/x-www-form-urlencoded</tt>.
<tt>post-url</tt> can be used to post other content types such as files or binary data.
See an HTTP reference for other content-type specifications and data encoding formats.
When the content-type parameter is omitted,
<tt>post-url</tt> assumes <tt>application/x-www-form-urlencoded</tt> as the default content type.
</p>
<h3>Additional parameters</h3>
<p>
When <em>str-content-type</em> is specified, the optional <em>str-option</em>
can take the same options as <a href="#get-url">get-url</a> for the returned
content. If the <em>int-timeout</em> option is specified, the custom header
option <em>str-header</em> can be specified, as well. See the function
<a href="#get-url">get-url</a> for details on all options.
</p>
<p>
See also the <a href="#get-url">get-url</a> and <a href="#put-url">put-url</a> functions.
</p>
<br/><br/>
<a name="pow"></a>
<h2><span class="function">pow</span></h2>
<h4>syntax: (pow <em>num-1</em> <em>num-2 </em> [<em>num-3</em> ... ])<br/>
syntax: (pow <em>num-1</em>)</h4>
<p>
Calculates <em>num-1</em> to the power of <em>num-2</em> and so forth.
</p>
<!-- example -->
<pre>
(pow 100 2) <span class='arw'>→</span> 10000
(pow 100 0.5) <span class='arw'>→</span> 10
(pow 100 0.5 3) <span class='arw'>→</span> 1000
(pow 3) <span class='arw'>→</span> 9
</pre>
<p>
When <em>num-1</em> is the only argument,
<tt>pow</tt> assumes 2 for the exponent.
</p>
<br/><br/>
<a name="prefix"></a>
<h2><span class="function">prefix</span></h2>
<h4>syntax: (prefix <em>sym</em>)</h4>
<p>Returns the context of a symbol in <em>sym</em>:</p>
<!-- example -->
<pre>
(setf s 'Foo:bar) <span class='arw'>→</span> Foo:bar
(prefix s) <span class='arw'>→</span> Foo
(context? (prefix s)) <span class='arw'>→</span> true
(term s) <span class='arw'>→</span> "bar"
(= s (sym (term s) (prefix s))) <span class='arw'>→</span> true
<b>></b>(context (prefix s)) ; switches to context Foo
<b>Foo</b>
<b>Foo></b>
</pre>
<p>See also <a href="#term">term</a> to extract the term part of
a symbol.</p>
<br/><br/>
<a name="pretty-print"></a>
<h2><span class="function">pretty-print</span></h2>
<h4>syntax: (pretty-print [<em>int-length</em> [<em>str-tab</em> [<em>str-fp-format</em>]])</h4>
<p>
Reformats expressions for <a href="#print">print</a>,
<a href="#save">save</a>,
or <a href="#source">source</a> and when printing in an interactive console.
The first parameter, <em>int-length</em>, specifies the maximum line length,
and <em>str-tab</em> specifies the string used to indent lines. The third
parameter <em>str-fp-format</em> describes the default format for printing
floating point numbers. All parameters are optional. <tt>pretty-print</tt>
returns the current settings or the new settings when parameters are specified.
</p>
<!-- example -->
<pre>
(pretty-print) <span class='arw'>→</span> (80 " " "%1.15g") ; default setting
(pretty-print 90 "\t") <span class='arw'>→</span> (90 "\t" "%1.15g")
(pretty-print 100) <span class='arw'>→</span> (100 "\t" "%1.15g")
(sin 1) <span class='arw'>→</span> 0.841470984807897
(pretty-print 80 " " "%1.3f")
(sin 1) <span class='arw'>→</span> 0.841
(set 'x 0.0)
x <span class='arw'>→</span> 0.000
</pre>
<p>
The first example reports the default settings of 80 for the maximum line length and a
<tt>space</tt> character for indenting. The second example changes the line length to
90 and the indent to a TAB character. The third example changes the line length only.
The last example changes the default format for floating point numbers. This is useful
when printing unformatted floating point numbers without fractional parts, and these
numbers should still be recognizable as floating point numbers. Without the custom
format, <tt>x</tt> would be printed as <tt>0</tt> indistinguishable from floating
point number. All situations where unformatted floating point numbers are printed,
are affected.</p>
<p>
Note that <tt>pretty-print</tt> cannot be used to prevent line breaks from being printed.
To completely suppress pretty printing, use the function <a href="#string">string</a>
to convert the expression to a raw unformatted string as follows:</p>
<!-- example -->
<pre>
;; print without formatting
(print (string my-expression))
</pre>
<br/><br/>
<a name="primitivep"></a>
<h2><span class="function">primitive?</span></h2>
<h4>syntax: (primitive? <em>exp</em>)</h4>
<p>
Evaluates and tests if <em>exp</em> is a primitive symbol and returns
<tt>true</tt> or <tt>nil</tt> depending on the result. All built-in
functions and functions created using <a href="#import">import</a>
are primitives.
</p>
<!-- example -->
<pre>
(set 'var define)
(primitive? var) <span class='arw'>→</span> true
</pre>
<br/><br/>
<a name="print"></a>
<h2><span class="function">print</span></h2>
<h4>syntax: (print <em>exp-1</em> [<em>exp-2</em> ... ])</h4>
<p>
Evaluates and prints <em>exp-1</em>—
to the current I/O device,
which defaults to the console window.
See the built-in function <a href="#device">device</a> for details on how to specify a different I/O device.
</p>
<p>
List expressions are indented by the nesting levels of their opening parentheses.
</p>
<p>
Several special characters may be included in strings encoded with the escape character <tt>\</tt>:
</p>
<table summary="escape characters in print">
<tr align="left" valign="bottom"><th>character</th><th>description</th></tr>
<tr>
<td><tt>\n</tt></td>
<td>the line-feed character (ASCII 10)</td>
</tr>
<tr>
<td><tt>\r</tt></td>
<td>the carriage-return character (ASCII 13)</td>
</tr>
<tr>
<td><tt>\t</tt></td>
<td>the tab character (ASCII 9)</td>
</tr>
<tr>
<td><tt>\nnn</tt></td>
<td>where <tt>nnn</tt> is a decimal ASCII code between 000 and 255</td>
</tr>
<tr>
<td><tt>\xnn</tt></td>
<td>where <tt>nn</tt> is a hexadecimal ASCII code between 00 and FF</td>
</tr>
</table><br/>
<br/>
<!-- example -->
<pre>
(print (set 'res (+ 1 2 3)))
(print "the result is" res "\n")
"\065\066\067" <span class='arw'>→</span> "ABC"
</pre>
<p>
To finish printing with a line-feed,
use <a href="#println">println</a>.
</p>
<br/><br/>
<a name="println"></a>
<h2><span class="function">println</span></h2>
<h4>syntax: (println <em>exp-1</em> [<em>exp-2</em> ... ])</h4>
<p>
Evaluates and prints <em>exp-1</em>—
to the current I/O device,
which defaults to the console window.
A line-feed is printed at the end.
See the built-in function <a href="#device">device</a> for details on how to specify a different I/O device.
<tt>println</tt> works exactly like <a href="#print">print</a> but emits a line-feed character at the end.
</p>
<p>
See also the <a href="#write-line">write-line</a> and <a href="#print">print</a> functions.
</p>
<br/><br/>
<a name="prob-chi2"></a>
<h2><span class="function">prob-chi2</span></h2>
<h4>syntax: (prob-chi2 <em>num-chi2</em> <em>int-df</em>)</h4>
<p>Returns the probability of an observed <em>Chi²</em> statistic in <em>num-chi2</em>
with <em>num-df</em> degrees of freedom to be equal or greater under the null hypothesis.
<tt>prob-chi2</tt> is derived from the incomplete Gamma function <a HREF="#gammai">gammai</a>.
</p>
<!-- example -->
<pre>
(prob-chi2 10 6) <span class='arw'>→</span> 0.1246520195
</pre>
<p>
See also the inverse function <a href="#crit-chi2">crit-chi2</a>.
</p>
<br/><br/>
<a name="prob-f"></a>
<h2><span class="function">prob-f</span></h2>
<h4>syntax: (prob-f <em>num-f</em> <em>int-df1</em> <em>int-df2</em>)</h4>
<p>Returns the probability of an observed <em>F</em> statistic in <em>num-f</em>
with <em>int-df1</em> and <em>int-df2</em> degrees of freedom to be equal or greater
under the null hypothesis.</p>
<!-- example -->
<pre>
(prob-f 2.75 10 12) <span class='arw'>→</span> 0.0501990804
</pre>
<p>
See also the inverse function <a href="#crit-f">crit-f</a>.
</p>
<br/><br/>
<a name="prob-t"></a>
<h2><span class="function">prob-t</span></h2>
<h4>syntax: (prob-t <em>num-t</em> <em>int-df1</em>)</h4>
<p>Returns the probability of an observed <em>Student's t</em> statistic in <em>num-t</em>
with <em>int-df</em> degrees of freedom to be equal or greater
under the null hypothesis.</p>
<!-- example -->
<pre>
(prob-t 1.76 14) <span class='arw'>→</span> 0.05011454551
</pre>
<p>
See also the inverse function <a href="#crit-t">crit-t</a>.
</p>
<br/><br/>
<a name="prob-z"></a>
<h2><span class="function">prob-z</span></h2>
<h4>syntax: (prob-z <em>num-z</em>)</h4>
<p>
Returns the probability of <em>num-z</em>,
not to exceed the observed value where <em>num-z</em> is a normal distributed
value with a mean of <tt>0.0</tt> and a standard deviation of <tt>1.0</tt>.
</p>
<!-- example -->
<pre>
(prob-z 0.0) <span class='arw'>→</span> 0.5
</pre>
<p>
See also the inverse function <a href="#crit-z">crit-z</a>.
</p>
<br/><br/>
<a name="process"></a>
<h2><span class="function">process</span></h2>
<h4>syntax: (process <em>str-command</em>)<br/>
syntax: (process <em>str-command</em> <em>int-pipe-in</em> <em>int-pipe-out</em> [<em>int-win-option</em>])<br/>
syntax: (process <em>str-command</em> <em>int-pipe-in</em> <em>int-pipe-out</em> [<em>int-unix-pipe-error</em>])</h4>
<p>
In the first syntax,
<tt>process</tt> launches a process specified in <em>str-command</em> and immediately
returns with a process ID or <tt>nil</tt> if a process could not be created. This
process will execute the program specified or immediately die if <em>str-command</em> could not be executed.
</p>
<p>On macOS and other Unixes, the application or script must be specified with its full path-name.
The new process inherits the OS environment from the parent process.</p>
<p>Command line arguments are parsed out at spaces. Arguments containing spaces must be delimited using
single quotes on macOS and other Unixes. On MS Windows, double quotes are used. The process id returned
can be used to destroy the running process using <a href="#destroy">destroy</a>, if the process does
not exit by itself.</p>
<!-- example -->
<pre>
(process "c:/WINDOWS/system32/notepad.exe") <span class='arw'>→</span> 1894 ; Windows
; or when in executable path
(process "notepad.exe") <span class='arw'>→</span> 1894 ; Windows
; find out the path of the program to start using exec,
; if the path is not known
(process (first (exec "which xclock"))) <span class='arw'>→</span> 22607 ; on Unix
</pre>
<p>If the path of the executable is unknown, <tt>exec</tt> together with the Unix <tt>which</tt>
command can be used to start a program. The pid returned can be used to <a href="#destroy">destroy</a>
the process.</p>
<p>In the second syntax,
standard input and output of the created process can be redirected to pipe handles.
When remapping standard I/O of the launched application to a pipe,
it is possible to communicate with the other application via <a href="#write-line">write-line</a>
and <a href="#read-line">read-line</a> or <a href="#write">write</a> and
<a href="#read">read</a> statements:</p>
<!-- example -->
<pre>
;; Linux/Unix
;; create pipes
(map set '(myin bcout) (pipe))
(map set '(bcin myout) (pipe))
;; launch Unix 'bc' calculator application
(process "/usr/bin/bc" bcin bcout) <span class='arw'>→</span> 7916
(write-line myout "3 + 4") ; bc expects a line-feed
(read-line myin) <span class='arw'>→</span> "7"
;; bc can use bignums with arbitrary precision
(write-line myout "123456789012345 * 123456789012345")
(read-line myin) <span class='arw'>→</span> "15241578753238669120562399025"
;; destroy the process
(destroy 7916)
;; MS Windows
(map set '(myin cmdout) (pipe))
(map set '(cmdin myout) (pipe))
(process "c:/Program Files/newlisp/newlisp.exe -c" cmdin cmdout)
<span class='arw'>→</span> 1284
(write-line myout "(+ 3 4)")
(read-line myin) <span class='arw'>→</span> "7"
;; destroy the process
(destroy 1284)
</pre>
<p>On MS Windows versions of newLISP, a fourth optional parameter of <em>int-win-option</em>
can be specified to control the display status of the application.
This option defaults to <tt>1</tt> for showing the application's window,
<tt>0</tt> for hiding it, and <tt>2</tt> for showing it minimized on the Windows
launch bar.</p>
<p>On both MS Windows and Linux/Unix systems, standard error will be redirected to
standard out by default. On Linux/Unix, an optional pipe handle for standard
error output can be defined in <em>int-unix-pipe-error</em>.</p>
<p>The function <a href="#peek">peek</a> can be used to check for information
on the pipe handles:</p>
<pre>
;; create pipes
(map set '(myin bcout) (pipe))
(map set '(bcin myout) (pipe))
(map set '(errin errout) (pipe))
;; launch Unix 'bc' calculator application
(process "bc" bcin bcout errout)
(write myout command)
;; wait for bc sending result or error info
(while (and (= (peek myin) 0)
(= (peek errin) 0)) (sleep 10))
(if (> (peek errin) 0)
(println (read-line errin)))
(if (> (peek myin) 0)
(println (read-line myin)))
</pre>
<p>
Not all interactive console applications
can have their standard I/O channels remapped.
Sometimes only one channel,
<em>in</em> or <em>out</em>,
can be remapped.
In this case,
specify <tt>0</tt> (zero) for the unused channel.
The following statement uses only the launched application's output:
</p>
<pre>
(process "app" 0 appout)
</pre>
<p>
Normally,
two pipes are used:
one for communications to the child process and the other one for communications from the child process.
</p>
<p>
See also the <a href="#pipe">pipe</a> and <a href="#share">share</a> functions for inter-process
communications and the <a href="#semaphore">semaphore</a> function for synchronization of several processes.
See the <a href="#fork">fork</a> and <a href="#spawn">spawn</a> functions for other ways of starting
newLISP processes. Both are only available on macOS, Linux and other Unix like operating systems.
</p>
<br/><br/>
<a name="prompt-event"></a>
<h2><span class="function">prompt-event</span></h2>
<h4>syntax: (prompt-event <em>sym-event-handler</em> | <em>func-event-handler</em>)<br/>
syntax: (prompt-event nil)</h4>
<p>Refines the prompt as shown in the interactive newLISP shell.
The <em>sym-event-handler</em> or <em>func-event-handler</em>
is either a symbol of a user-defined function or a lambda expression:</p>
<p>To reset <tt>prompt-event</tt> to the original state, use the second syntax.</p>
<pre>
<b>></b> (prompt-event (fn (ctx) (string ctx ":" (real-path) "$ ")))
<b>$prompt-event</b>
<b>MAIN:/Users/newlisp$</b> (+ 3 4)
<b>7</b>
<b>MAIN:/Users/newlisp$</b>
</pre>
<p>The current context before calling the <tt>prompt-event</tt> code is passed as a
parameter to the function. Computer output is shown in bold.</p>
<p>The example redefines the <tt>></tt> prompt to be the current context followed
by a colon <tt>:</tt>, followed by the directory name, followed by the dollar symbol.
Together with the <a href="#command-event">command-event</a> function this can be
used to create fully customized shells or custom command interpreters.</p>
<p>The function in <tt>prompt-event</tt> must return a string of 63 characters maximum.
Not returning a string will leave the prompt unchanged.</p>
<br/><br/>
<a name="protectedp"></a>
<h2><span class="function">protected?</span></h2>
<h4>syntax: (protected? <em>sym</em>)</h4>
<p>Checks if a symbol in <em>sym</em> is protected. Protected symbols are built-in
functions, context symbols, and all symbols made constant using the <a href="#constant">constant</a>
function:</p>
<pre>
(protected? 'println) <span class='arw'>→</span> true
(constant 'aVar 123)
(protected? 'aVar) <span class='arw'>→</span> true
</pre>
<br/><br/>
<a name="push"></a>
<h2><span class="function">push</span> <a href="#destructive">!</a> <font size="-1"><a href="#utf8_capable">utf8</a></font></h2>
<h4>syntax: (push <em>exp</em> <em>list</em> [<em>int-index-1</em> [<em>int-index-2</em> ... ]])<br/>
syntax: (push <em>exp</em> <em>list</em> [<em>list-indexes</em>])<br/><br/>
syntax: (push <em>str-1</em> <em>str-2</em> [<em>int-index</em>])</h4>
<p>
Inserts the value of <em>exp</em> into the list <em>list</em>.
If <em>int-index</em> is present, the element is inserted at that index.
If the index is absent, the element is inserted at index <tt>0</tt> (zero),
the first element. <tt>push</tt> is a destructive operation that changes the
contents of the target list.</p>
<p>The list changed is returned as a reference on which other built-in
functions can work. See also <a href="#indexing">Indexing elements of
strings and lists</a>.</p>
<p>
If more than one <em>int-index</em> is present, the indices are used to
access a nested list structure. Improper indices (those not matching list
elements) are discarded.</p>
<p>
The second version takes a list of <em>list-indexes</em> but is otherwise
identical to the first. In this way, <tt>push</tt> works easily together
with <a href="#ref">ref</a> and <a href="#ref-all">ref-all</a>,
which return lists of indices.
</p>
<p>
If <em>list</em> does not contain a list, <em>list</em> must contain a
<tt>nil</tt> and will be initialized to the empty list.
</p>
<p>
Repeatedly using <tt>push</tt> to the end of a list using <tt>-1</tt> as
the <em>int-index</em> is optimized and as fast as pushing
to the front of a list with no index at all. This can be used to efficiently
grow a list.
</p>
<!-- example -->
<pre>
; inserting in front
(set 'pList '(b c)) <span class='arw'>→</span> (b c)
(push 'a pList) <span class='arw'>→</span> (a b c)
pList <span class='arw'>→</span> (a b c)
; insert at index
(push "hello" pList 2) <span class='arw'>→</span> (a b "hello" c)
; optimized appending at the end
(push 'z pList -1) <span class='arw'>→</span> (a b "hello" c z)
; inserting lists in lists
(push '(f g) pList) <span class='arw'>→</span> ((f g) a b "hello" c z)
; inserting at negative index
(push 'x pList -3) <span class='arw'>→</span> ((f g) a b "hello" x c z)
; using multiple indices
(push 'h pList 0 -1) <span class='arw'>→</span> ((f g h) a b "hello" x c z)
; use indices in a list
(set 'pList '(a b (c d () e)))
(push 'x pList '(2 2 0)) <span class='arw'>→</span> (a b (c d (x) e))
(ref 'x pList) <span class='arw'>→</span> (2 2 0)
(pop pList '(2 2 0)) <span class='arw'>→</span> x
; the target list is a place reference
(set 'lst '((a 1) (b 2) (c 3) (d)))
(push 4 (assoc 'd lst) -1) <span class='arw'>→</span> (d 4)
lst <span class='arw'>→</span> ((a 1) (b 2) (c 3) (d 4))
; push on un-initialized symbol
aVar <span class='arw'>→</span> nil
(push 999 aVar) <span class='arw'>→</span> (999)
aVar <span class='arw'>→</span> (999)
</pre>
<p><tt>push</tt> and pop can be combined to model a queue:</p>
<pre>
; pop and push a as a queue
(set 'Q '(a b c d e))
(pop (push 'f Q -1)) <span class='arw'>→</span> a
(pop (push 'g Q -1)) <span class='arw'>→</span> b
Q <span class='arw'>→</span> (c d e f g)
</pre>
<p>Because <tt>push</tt> returns a reference to the modified list,
<tt>pop</tt> can work on it directly.</p>
<p>In the third syntax <tt>push</tt> can be used to change strings. When
<em>int-index</em> is used, it refers to character positions rather than
byte positions. UTF-8 characters may be multi-byte characters.</p>
<pre>
;; push on strings
(set 'str "abcdefg")
(push "hijk" str -1) <span class='arw'>→</span> "abcdefghijk"
str <span class='arw'>→</span> "abcdefghijk"
(push "123" str) <span class='arw'>→</span> "123abcdefghijk"
(push "4" str 3) <span class='arw'>→</span> "1234abcdefghijk"
(set 'str "\u03b1\u03b2\u03b3") <span class='arw'>→</span> "αβγ"
(push "*" str 1) <span class='arw'>→</span> "α*βγ"
;; push on a string reference
(set 'lst '("abc" "xyz"))
(push x (lst 0)) <span class='arw'>→</span> "xabc"
lst <span class='arw'>→</span> ("xabc" "xyz")
</pre>
<p>See also the <a href="#pop">pop</a> function, which is the inverse operation to <tt>push</tt>.
</p>
<br/><br/>
<a name="put-url"></a>
<h2><span class="function">put-url</span></h2>
<h4>syntax: (put-url <em>str-url</em> <em>str-content</em> [<em>str-option</em>] [<em>int-timeout</em> [<em>str-header</em>]])</h4>
<p>
The HTTP PUT protocol is used to transfer information in <em>str-content</em>
to a file specified in <em>str-url</em>. The lesser-known HTTP PUT mode is
frequently used for transferring web pages from HTML editors to Web servers.
In order to use PUT mode, the web server's software must be configured correctly.
On the Apache web server,
use the <tt>'Script PUT'</tt> directive in the section where directory access rights are configured.
</p>
<p>If <em>str-url</em> starts with <tt>file://</tt> then <em>str-content</em> is written
to the local file system.</p>
<p>
Optionally,
an <em>int-timeout</em> value can be specified in milliseconds as the last parameter.
<tt>put-url</tt> will return <tt>ERR:
timeout</tt> when the host gives no response and the timeout expires.
On other error conditions,
<tt>put-url</tt> returns a string starting with <tt>ERR:</tt> and the description of the error.
</p>
<p><tt>put-url</tt> requests are also understood by newLISP server nodes, but will
not be served when the server is started in <tt>-http-safe</tt> mode.</p>
<!-- example -->
<pre>
(put-url "http://asite.com/myFile.txt" "Hi there")
(put-url "http://asite.com/myFile.txt" "Hi there" 2000)
(put-url "http://asite.com/webpage.html"
(read-file "webpage.html"))
; write /home/joe/newfile.txt on the local file system
(puts-url "file:///home/joe/newfile.txt" "Hello World!")
</pre>
<p>
The first example creates a file called <tt>myFile.txt</tt> on the target server
and stores the text string <tt>'Hi there'</tt> in it.
In the second example,
the local file <tt>webpage.html</tt> is transferred to <tt>asite.com</tt>.
</p>
<p>
On an Apache web server,
the following could be configured in <tt>httpd.conf</tt>.
</p>
<!-- example -->
<pre>
<directory /www/htdocs>
Options All
Script PUT /cgi-bin/put.cgi
</directory>
</pre>
<p>
The script <tt>put.cgi</tt> would contain code to receive content from the web server via STDIN.
The following is a working <tt>put.cgi</tt> written in newLISP for the Apache web server:
</p>
<!-- example -->
<pre>
#!/usr/home/johndoe/bin/newlisp
#
#
# get PUT method data from CGI STDIN
# and write data to a file specified
# int the PUT request
#
#
(print "Content-Type: text/html\n\n")
(set 'cnt 0)
(set 'result "")
(if (= "PUT" (env "REQUEST_METHOD"))
(begin
(set 'len (int (env "CONTENT_LENGTH")))
(while (< cnt len)
(set 'n (read (device) buffer len))
(if (not n)
(set 'cnt len)
(begin
(inc cnt n)
(write result buffer))))
(set 'path (append
"/usr/home/johndoe"
(env "PATH_TRANSLATED")))
(write-file path result)
)
)
(exit)
</pre>
<p>
Note that the script appends ".txt" to the path to avoid the CGI execution of uploaded malicious scripts.
Note also that the two lines where the file path is composed may work differently in your web server environment.
Check environment variables passed by your web server for composition of the right file path.
</p>
<p>
<tt>put-url</tt> returns content returned by the <tt>put.cgi</tt> script.
</p>
<h3>Additional parameters</h3>
<p>
In <em>str-option</em> can take the same options as <a href="#get-url">get-url</a>
for the returned content. If the <em>int-timeout</em> option is specified, the
custom header option <em>str-header</em> can be specified, as well. See the
function <a href="#get-url">get-url</a> for details on all options.
</p>
<p>
See also the functions <a href="#get-url">get-url</a> and <a href="#post-url">post-url</a>,
which can be used to upload files when formatting form data as <tt>multipart/form-data</tt>.
</p>
<br/><br/>
<a name="pv"></a>
<h2><span class="function">pv</span></h2>
<h4>syntax: (pv <em>num-int</em> <em>num-nper</em> <em>num-pmt</em>
[<em>num-fv</em> [<em>int-type</em>]])</h4>
<p>Calculates the present value of a loan with the constant interest rate
<em>num-interest</em> and the constant payment <em>num-pmt</em> after
<em>num-nper</em> number of payments. The future value <em>num-fv</em>
is assumed to be <tt>0.0</tt> if omitted. If payment is at the end of the
period, <em>int-type</em> is <tt>0</tt> (zero) or <em>int-type</em> is omitted;
for payment at the beginning of each period, <em>int-type</em> is 1.</p>
<!-- example -->
<pre>
(pv (div 0.07 12) 240 775.30) <span class='arw'>→</span> -100000.1373
</pre>
<p>
In the example,
a loan that would be paid off (future value = <tt>0.0</tt>) in 240 payments of $775.30 at a
constant interest rate of 7 percent per year would start out at $100,000.14.
</p>
<p>
See also the <a href="#fv">fv</a>,
<a href="#irr">irr</a>,
<a href="#nper">nper</a>,
<a href="#npv">npv</a>,
and <a href="#pmt">pmt</a> functions.
</p>
<br/><br/>
<a name="quote"></a>
<h2><span class="function">quote</span></h2>
<h4>syntax: (quote <em>exp</em>)</h4>
<p>Returns <em>exp</em> without evaluating it. The same effect can be obtained by
prepending a <tt>'</tt> (single quote) to <em>exp</em>. The function <tt>quote</tt>
is resolved during runtime, the prepended <tt>'</tt> quote is translated into a
protective envelope (quote cell) during code translation.</p>
<!-- example -->
<pre>
(quote x) <span class='arw'>→</span> x
(quote 123) <span class='arw'>→</span> 123
(quote (a b c)) <span class='arw'>→</span> (a b c)
(= (quote x) 'x) <span class='arw'>→</span> true
</pre>
<br/><br/>
<a name="quotep"></a>
<h2><span class="function">quote?</span></h2>
<h4>syntax: (quote? <em>exp</em>)</h4>
<p>
Evaluates and tests whether <em>exp</em> is quoted.
Returns <tt>true</tt> or <tt>nil</tt> depending on the result.
</p>
<!-- example -->
<pre>
(set 'var ''x) <span class='arw'>→</span> 'x
(quote? var) <span class='arw'>→</span> true
</pre>
<p>
Note that in the <tt>set</tt> statement,
<tt> ''x</tt> is quoted twice because the first quote
is lost during the evaluation of the <tt>set</tt> assignment.
</p>
<br/><br/>
<a name="rand"></a>
<h2><span class="function">rand</span></h2>
<h4>syntax: (rand <em>int-range</em> [<em>int-N</em>])</h4>
<p>
Evaluates the expression in <em>int-range</em>
and generates a random number in the range of
<tt>0</tt> (zero) to (<em>int-range</em> - 1).
When <tt>0</tt> (zero) is passed,
the internal random generator
is initialized using
the current value returned by
the C <tt>time()</tt> function.
Optionally, a second parameter
can be specified to return
a list of length <em>int-N</em>
of random numbers.
</p>
<!-- example -->
<pre>
(dotimes (x 100) (print (rand 2))) =>
11100000110100111100111101 ... 10111101011101111101001100001000
(rand 3 100) <span class='arw'>→</span> (2 0 1 1 2 0 …)
</pre>
<p>
The first line in the example
prints equally distributed <tt>0</tt>'s and <tt>1</tt>'s,
while the second line produces a list
of 100 integers with
<tt>0</tt>, <tt>1</tt>, and <tt>2</tt> equally distributed.
Use the <a href="#random">random</a>
and <a href="#normal">normal</a> functions
to generate floating point
random numbers,
and use <a href="#seed">seed</a> to vary
the initial seed
for random number generation.
</p>
<br/><br/>
<a name="random"></a>
<h2><span class="function">random</span></h2>
<h4>syntax: (random <em>float-offset</em> <em>float-scale</em> <em>int-n</em>)<br/>
syntax: (random <em>float-offset</em> <em>float-scale</em>)</h4>
<p>
In the first form,
<tt>random</tt> returns a list of <em>int-n</em>
evenly distributed floating point numbers
scaled (multiplied) by <em>float-scale</em>,
with an added offset of <em>float-offset</em>.
The starting point of the internal random generator
can be seeded using <a href="#seed">seed</a>.
</p>
<!-- example -->
<pre>
(random 0 1 10)
<span class='arw'>→</span> (0.10898973 0.69823783 0.56434872 0.041507289 0.16516733
0.81540917 0.68553784 0.76471068 0.82314585 0.95924564)
</pre>
<p>
When used in the second form,
<tt>random</tt> returns a single
evenly distributed number:
</p>
<pre>
(random 10 5) <span class='arw'>→</span> 11.0971
</pre>
<p> When no parameters are given, <tt>random</tt> assumes a mean of <tt>0.0</tt>
and a standard deviation of <tt>1.0</tt>.</p>
<p>
See also the <a href="#normal">normal</a>
and <a href="#rand">rand</a> functions.
</p>
<br/><br/>
<a name="randomize"></a>
<h2><span class="function">randomize</span></h2>
<h4>syntax: (randomize <em>list</em> [<em>bool</em>])</h4>
<p>
Rearranges the order of elements in <em>list</em>
into a random order.
</p>
<!-- example -->
<pre>
(randomize '(a b c d e f g)) <span class='arw'>→</span> (b a c g d e f)
(randomize (sequence 1 5)) <span class='arw'>→</span> (3 5 4 1 2)
</pre>
<p>
<tt>randomize</tt> will always return
a sequence different from the previous one
without the optional <em>bool</em> flag.
This may require the function to calculate
several sets of reordered elements,
which in turn may lead to different processing times
with different invocations of the function
on the same input list length.
To allow for the output to be equal
to the input, <tt>true</tt>
or any expression evaluating to
not <tt>nil</tt>
must be specified in <em>bool</em>.
</p>
<p>
<tt>randomize</tt> uses
an internal <em>pseudo random sequence</em> generator
that returns the same series of results
each time newLISP is started.
Use the <a href="#seed">seed</a> function to
change this sequence.
</p>
<br/><br/>
<a name="read-buffer"></a>
<a name="read"></a>
<h2><span class="function">read</span> <a href="#destructive">!</a></h2>
<h4>syntax: (read <em>int-file</em> <em>sym-buffer</em> <em>int-size</em> [<em>str-wait</em>])</h4>
<p>
Reads a maximum of <em>int-size</em> bytes from a file specified in <em>int-file</em>
into a buffer in <em>sym-buffer</em>. Any data referenced by the symbol <em>sym-buffer</em>
prior to the reading is deleted. The handle in <em>int-file</em> is obtained from a
previous <a href="#open">open</a> statement. The symbol <em>sym-buffer</em> contains
data of type string after the read operation. <em>sym-buffer</em> can also be a default
functor specified by a context symbol for reference passing in and out of user-defined
functions.</p>
<p><tt>read</tt> is a shorter writing of <tt>read-buffer</tt>. The longer
form still works but is deprecated and should be avoided in new code.</p>
<p>
Optionally,
a string to be waited for
can be specified in <em>str-wait</em>.
<tt>read</tt> will read
a maximum amount of bytes
specified in <em>int-size</em>
or return earlier
if <em>str-wait</em> was found
in the data.
The wait-string is part
of the returned data and must
not contain binary <tt>0</tt> (zero)
characters.
</p>
<p>
Returns the number of bytes read or <tt>nil</tt>
when the wait-string was not found.
In any case,
the bytes read are put into the buffer
pointed to by <em>sym-buffer</em>,
and the file pointer of the file read
is moved forward.
If no new bytes have been read,
<em>sym-buffer</em> will contain <tt>nil</tt>.
</p>
<!-- example -->
<pre>
(set 'handle (open "aFile.ext" "read"))
(read handle buff 200)
</pre>
<p>
Reads 200 bytes into the symbol <tt>buff</tt>
from the file <tt>aFile.ext</tt>.
</p>
<pre>
(read handle buff 1000 "password:")
</pre>
<p>
Reads 1000 bytes or until
the string <tt>password:</tt> is encountered.
The string <tt>password:</tt>
will be part of the data returned.
</p>
<p>
See also the <a href="#write">write</a> function. To start reading at
a specific position in the file, use the <a href="#seek">seek</a> function.
</p>
<br/><br/>
<a name="read-char"></a>
<h2><span class="function">read-char</span></h2>
<h4>syntax: (read-char [<em>int-file</em>])</h4>
<p>
Reads a byte from a file specified by the file handle in <em>int-file</em>
or from the current I/O device - e.g. <em>stdin</em> - when no file handle is specified.
The file handle is obtained from a previous <a href="#open">open</a> operation.
Each <tt>read-char</tt> advances the file pointer by one byte.
Once the end of the file is reached, <tt>nil</tt> is returned.
</p>
<!-- example -->
<pre>
(define (slow-file-copy from-file to-file)
(set 'in-file (open from-file "read"))
(set 'out-file (open to-file "write"))
(while (set 'chr (read-char in-file))
(write-char out-file chr))
(close in-file)
(close out-file)
"finished")
</pre>
<p>
Use <a href="#read-line">read-line</a>
and <a href="#device">device</a> to read
whole text lines at a time.
Note that newLISP supplies
a fast built-in function
called <a href="#copy-file">copy-file</a>
for copying files.
</p>
<p>
See also the <a href="#write-char">write-char</a> function.
</p>
<br/><br/>
<a name="read-expr"></a>
<h2><span class="function">read-expr</span></h2>
<h4>syntax: (read-expr <em>str-source</em> [<em>sym-context</em> [<em>exp-error</em> [<em>int-offset</em>]]])</h4>
<p><tt>read-expr</tt> parses the first expressions it finds in <em>str-source</em> and
returns the translated expression without evaluating it. An optional context in
<em>sym-context</em> specifies a namespace for the translated expression.</p>
<p>After a call to <tt>read-expr</tt> the system variable <tt>$count</tt> contains the
number of characters scanned.</p>
<p>If an error occurs when translating <em>str-source</em> the expression in
<em>exp-error</em> is evaluated and the result returned.</p>
<p><em>int-offset</em> specifies an optional offset into <em>str-source</em> where
processing should start. When calling <tt>read-expr</tt> repeatedly this number
can be updated using <tt>$count</tt>, the number of characters processed.</p>
<!-- example -->
<pre>
(set 'code "; a statement\n(define (double x) (+ x x))")
(read-expr code) <span class='arw'>→</span> (define (double x) (+ x x))
$count <span class='arw'>→</span> 41
</pre>
<p><tt>read-expr</tt> behaves similar to <a href="#eval-string">eval-string</a>
but without the evaluation step:</p>
<pre>
(read-expr "(+ 3 4)") <span class='arw'>→</span> (+ 3 4)
(eval-string "(+ 3 4)") <span class='arw'>→</span> 7
</pre>
<p>Using <tt>read-expr</tt> a customized code reader can be programmed
preprocessing expressions before evaluation.</p>
<p>See also <a href="#reader-event">reader-event</a> for preprocessing
expressions event-driven.</p>
<br/><br/>
<a name="read-file"></a>
<h2><span class="function">read-file</span></h2>
<h4>syntax: (read-file <em>str-file-name</em>)</h4>
<p>Reads a file in <em>str-file-name</em> in one swoop and returns a string buffer
containing the data.</p>
<p>On failure the function returns <tt>nil</tt>. For error information,
use <a href="#sys-error">sys-error</a> when used on files. When used
on URLs <a href="#net-error">net-error</a> gives more error
information.</p>
<!-- example -->
<pre>
(write-file "myfile.enc"
(encrypt (read-file "/home/lisp/myFile") "secret"))
</pre>
<p>
The file <tt>myfile</tt> is read, then encrypted using the password <tt>"secret"</tt>
before being written back into a new file titled <tt>"myfile.enc"</tt>
in the current directory.</p>
<p>
<tt>read-file</tt> can take an <tt>http://</tt>
or <tt>file://</tt> URL in <em>str-file-name</em>.
When the prefix is <tt>http://</tt>, <tt>read-file</tt> works exactly like
<a href="#get-url">get-url</a> and can take the same additional parameters.</p>
<!-- example -->
<pre>
(read-file "http://asite.com/somefile.tgz" 10000)
</pre>
<p>
The file <tt>somefile.tgz</tt> is retrieved from
the remote location <tt>http://asite.com</tt>.
The file transfer will time out after 10 seconds
if it is not finished.
In this mode, <tt>read-file</tt> can also be used
to transfer files from remote newLISP server nodes.</p>
<p>See also the <a href="#write-file">write-file</a> and
<a href="#append-file">append-file</a> functions.
</p>
<br/><br/>
<a name="read-key"></a>
<h2><span class="function">read-key</span></h2>
<h4>syntax: (read-key [true])</h4>
<p>
Reads a key from the keyboard and returns an integer value.
For navigation keys, more than one <tt>read-key</tt> call
must be made depending of the platform OS. For keys representing
ASCII characters, the return value is the same on all OSes, except
for navigation keys and other control sequences like function keys,
in which case the return values may vary on different OSes and
configurations.
</p>
<p>When using the <tt>true</tt> flag the <tt>read-key</tt> is non-blocking
and a <tt>0</tt> (zero) is returned when no key has been pressed.
When not using the extra flag, the call to <tt>read-key</tt> is blocking
until a key is pressed.</p>
<!-- example -->
<pre>
(read-key) <span class='arw'>→</span> 97 ; after hitting the A key
(read-key) <span class='arw'>→</span> 65 ; after hitting the shifted A key
(read-key) <span class='arw'>→</span> 10 ; after hitting [enter] on Linux
(read-key) <span class='arw'>→</span> 13 ; after hitting [enter] on Windows
(read-key true) <span class='arw'>→</span> 0 ; when no key has been pressed
(while (!= (set 'c (read-key)) 1) (println c))
</pre>
<p>
The last example can be used to check return sequences
from navigation and function keys. To break out of the loop,
press <tt>Ctrl-A</tt>.
</p>
<p>Note that <tt>read-key</tt> will only work when newLISP is running in a
Unix shell or Windows command shell. It will not work when executed by
newLISP Unix shared library or newLISP MS Windows DLL (Dynamic Link Library).
These libraries are not listening to STD input.</p>
<br/><br/>
<a name="read-line"></a>
<h2><span class="function">read-line</span></h2>
<h4>syntax: (read-line [<em>int-file</em>])</h4>
<p>
Reads from the current I/O device a string
delimited by a line-feed character (ASCII 10).
There is no limit
to the length of the string
that can be read.
The line-feed character is not part of the returned string.
The line always breaks on a line-feed,
which is then swallowed.
A line breaks on a carriage return (ASCII 13)
only if followed by a line-feed,
in which case both characters are discarded.
A carriage return alone only breaks and is swallowed
if it is the last character in the stream.
</p>
<p>
By default,
the current <a href="#device">device</a>
is the keyboard (<a href="#device">device</a> <tt>0</tt>).
Use the built-in function <a href="#device">device</a>
to specify a different I/O device (e.g., a file).
Optionally,
a file handle can be specified
in the <em>int-file</em> obtained
from a previous <a href="#open">open</a> statement.
</p>
<p>
The last buffer contents
from a read-line operation
can be retrieved using <a href="#current-line">current-line</a>.
</p>
<p>When <tt>read-line</tt> is reading from a file or from <em>stdin</em>
in a CGI program or pipe, it will return <tt>nil</tt> when input is exhausted.</p>
<p>When using <tt>read-line</tt> on <em>stdin</em>, line length is limited
to 2048 characters and performance is much faster.</p>
<!-- example -->
<pre>
(print "Enter a num:")
(set 'num (int (read-line)))
(set 'in-file (open "afile.dat" "read"))
(while (read-line in-file)
(write-line))
(close in-file)
</pre>
<p>
The first example reads input from the keyboard
and converts it to a number.
In the second example,
a file is read line-by-line
and displayed on the screen.
The <tt>write-line</tt> statement
takes advantage of the fact
that the result from the last
<tt>read-line</tt> operation
is stored in a system internal buffer.
When <a href="#write-line">write-line</a>
is used without argument,
it writes the contents
of the last <tt>read-line</tt> buffer
to the screen.
</p>
<p>
See also the <a href="#current-line">current-line</a> function
for retrieving this buffer.
</p>
<br/><br/>
<a name="read-utf8"></a>
<h2><span class="function">read-utf8</span></h2>
<h4>syntax: (read-utf8 <em>int-file</em>)</h4>
<p>Reads an UTF-8 character from a file specified by the file handle in <em>int-file</em>.
The file handle is obtained from a previous <a href="#open">open</a> operation.
Each <tt>read-utf8</tt> advances the file pointer by the number of bytes contained
in the UTF-8 character. Once the end of the file is reached, <tt>nil</tt> is returned. </p>
<p>The function returns an integer value which can be converted to a displayable UTF-8
character string using the <a href="#char">char</a> function.</p>
<!-- example -->
<pre>
(set 'fle (open "utf8text.txt" "read"))
(while (setq chr (read-utf8 fle))
(print (char chr)))
</pre>
<p>The example reads a file containing UTF-8 encoded text and displays it to the
terminal screen.</p>
<br/><br/>
<a name="reader-event"></a>
<h2><span class="function">reader-event</span></h2>
<h4>syntax: (reader-event [<em>sym-event-handler | func-event-handler</em>])<br/>
syntax: (reader-event nil)</h4>
<p>An event handler can be specified to hook between newLISP's reader,
translation and evaluation process. The function specified in
<em>sym-event-handler</em> or <em>func-event-handler</em> gets called after
newLISP translates an expression and before evaluating it. The event handler can do
transformation on the expression before it gets evaluated.</p>
<p>Specifying <tt>nil</tt> for the event will reset it to the initial default state.</p>
<p>The following one-liner <tt>reader-event</tt> could be used to enhance
the interactive shell with a tracer:</p>
<!-- example -->
<pre>
<b>></b>(reader-event (lambda (ex) (print " => " ex)))
$reader-event
<b>> (+ 1 2 3)
=> (+ 1 2 3)
6
></b>
</pre>
<p>The expression intercepted passes through unchanged, but output
is enhanced.</p>
<p>The reader event function will be called after each reading of an s-expression
by the <a href="#load">load</a> or <a href="#eval-string">eval-string</a> function.</p>
<p>In versions previous to 10.5.8 <tt>reader-event</tt> was used to define a
<tt>macro</tt> expansion function in the module file <tt>macro.lsp</tt>. Starting
version 10.5.8, newLISP has <a href="#macro">macro</a> as a built-in function
behaving the same, but much faster when loading files and reading source.</p>
<br/><br/>
<a name="real-path"></a>
<h2><span class="function">real-path</span></h2>
<h4>syntax: (real-path [<em>str-path</em>])<br/>
syntax: (real-path <em>str-exec-name</em> true)
</h4>
<p>
In the first syntax <tt>real-path</tt> returns the full path from the relative
file path given in <em>str-path</em>. If a path is not given, <tt>"."</tt>
(the current directory) is assumed.</p>
<!-- example -->
<pre>
(real-path) <span class='arw'>→</span> "/usr/home/fred" ; current directory
(real-path "./somefile.txt")
<span class='arw'>→</span> "/usr/home/fred/somefile.txt"
</pre>
<p>In the second syntax <tt>real-path</tt> returns the full path for an
executable found given in <em>str-exe-name</em>. This syntax relies on an
environment variable PATH defined on UNIX and Windows systems.</p>
<pre>
(real-path "make" true) <span class='arw'>→</span> "/usr/bin/make"
</pre>
<p>The output length is limited by the OS's maximum allowed path length.
If <tt>real-path</tt> fails (e.g., because of a nonexistent path),
<tt>nil</tt> is returned.</p>
<br/><br/>
<a name="receive"></a>
<h2><span class="function">receive</span> <a href="#destructive">!</a></h2>
<h4>syntax: (receive <em>int-pid</em> <em>sym-message</em>)<br/>
syntax: (receive)</h4>
<p>In the first syntax, the function is used for message exchange between
child processes launched with <a href="#spawn">spawn</a> and their parent
process. The message received replaces the contents in <em>sym-message.</em></p>
<p>The function reads one message from the receiver queue of <em>int-pid</em>
for each invocation. When the queue is empty, <tt>nil</tt> is returned.</p>
<!-- example -->
<pre>
; sending process
(send spid "hello") <span class='arw'>→</span> true
; receiving process
(receive pid msg) <span class='arw'>→</span> true
msg <span class='arw'>→</span> "hello"
</pre>
<p>To make <tt>receive</tt> blocking and wait for arriving messages,
use the following form:</p>
<pre>
; wait until a message can be read
(until (receive pid msg))
</pre>
<p>The function will loop until a message can be read from the queue.</p>
<p>In the second syntax, the function returns a list of all child processes
with pending messages for the parent process:</p>
<!-- example -->
<pre>
; read pending messages from child processes
(dolist (pid (receive))
(receive pid msg)
(println "received message: " msg " from:" pid)
)
</pre>
<p>The list of child process IDs returned by <tt>(receive)</tt> only
contains PIDs of processes which have unread messages in their
send queues. The <tt>(receive pid msg)</tt> statement now can
be issued non-blocking, because it always is guaranteed to find
a pending message in a child's message queue.</p>
<p>The <tt>receive</tt> function is not available on MS Windows.</p>
<p>For a more detailed discussion of this function and examples, see the
<a href="#send">send</a> function.</p>
<br/><br/>
<a name="ref"></a>
<h2><span class="function">ref</span></h2>
<h4>syntax: (ref <em>exp-key</em> <em>list</em> [<em>func-compare</em> [true]])</h4>
<p><tt>ref</tt> searches for the key expression <em>exp-key</em> in <em>list</em> and
returns a list of integer indices or an empty list if <em>exp-key</em> cannot be
found. <tt>ref</tt> can work together with <a href="#push">push</a> and
<a href="pop">pop</a>, both of which can also take lists of indices.</p>
<p>By default, <tt>ref</tt> checks if expressions are equal. With <em>func-compare</em>,
more complex comparison functions can be used. The comparison function can be a
previously defined function. Note that this function always takes two arguments,
even if only the second argument is used inside the function.</p>
<p>When the optional <tt>true</tt> parameter is present, the element found
is returned instead of the index vector.</p>
<!-- example -->
<pre>
; get index vectors for list elements
(set 'pList '(a b (c d (x) e)))
(ref 'x pList) <span class='arw'>→</span> (2 2 0)
(ref '(x) pList) <span class='arw'>→</span> (2 2)
; the key expression is in a variable
(set 'p '(c d (x) e))
(ref p pList) <span class='arw'>→</span> (2)
; indexing using the vector returned from ref
(set 'v (ref '(x) pList)) <span class='arw'>→</span> (2 2)
(pList v) <span class='arw'>→</span> (x)
; if nothing is found, nil is returned
(ref 'foo plist) <span class='arw'>→</span> nil
; not specifying a comparison functor assumes =
(set 'L '(a b (c d (e) f)))
(ref 'e L) <span class='arw'>→</span> (2 2 0)
(ref 'e L =) <span class='arw'>→</span> (2 2 0)
; a is the first symbol where e is greater
(ref 'e L >) <span class='arw'>→</span> (0)
; return the element instead of the index
(ref 'e L > true) <span class='arw'>→</span> a
; use an anonymous comparison function
(ref 'e L (fn (x y) (or (= x y) (= y 'd)))) <span class='arw'>→</span> (2 1)
(ref 'e L (fn (x y) (or (= x y) (= y 'd))) true) <span class='arw'>→</span> d
</pre>
<p>
The following example shows the use of
<a href="#match">match</a> and <a href="#unify">unify</a>
to formulate searches that are as powerful as regular expressions are
for strings:
</p>
<pre>
(set 'L '((l 3) (a 12) (k 5) (a 10) (z 22)))
; use match as a comparison function
(ref '(a ?) L match) <span class='arw'>→</span> (1)
; use unify as a comparison function
(set 'L '( ((a b) (c d)) ((e e) (f g)) ))
(ref '(X X) L unify) <span class='arw'>→</span> (1 0)
(ref '(X g) L unify) <span class='arw'>→</span> (1 1)
(ref '(X g) L unify true) <span class='arw'>→</span> (f g)
</pre>
<p> The <tt>'(X X)</tt> pattern with <a href="#unify">unify</a> searches for a list pair
where the two elements are equal. The <tt>unify</tt> pattern <tt>'(X g)</tt>
searches for a list pair with the symbol <tt>g</tt> as the second member.
The patterns are quoted to protect them from evaluation.</p>
<p>Pass the list as a default functor:</p>
<pre>
(set 'C:C '(a b (c d) e f))
(ref 'd C) <span class='arw'>→</span> (2 1)
</pre>
<p>This is suitable when passing lists by reference using a context. See also
the chapter <a href="#pass_big">Passing data by reference</a>.</p>
<p> See also the <a href="#ref-all">ref-all</a> function, which searches for all occurrences
of a key expression in a nested list. </p>
<br/><br/>
<a name="ref-all"></a>
<h2><span class="function">ref-all</span></h2>
<h4>syntax: (ref-all <em>exp-key</em> <em>list</em> [<em>func-compare</em> [true]])</h4>
<p> Works similarly to <a href="#ref">ref</a>, but returns a list of all index vectors found
for <em>exp-key</em> in <em>list</em>. </p>
<p>When the optional <tt>true</tt> parameter is present, the elements found
is returned of the index vectors.</p>
<p>By default, <tt>ref-all</tt> checks if expressions are equal.
With <em>func-compare</em>, more complex comparison functions can be used.
</p>
<p>The system variable <tt>$count</tt> counts the number of elements found.</p>
<!-- example -->
<pre>
(set 'L '(a b c (d a f (a h a)) (k a (m n a) (x))))
(ref-all 'a L) <span class='arw'>→</span> ((0) (3 1) (3 3 0) (3 3 2) (4 1) (4 2 2))
$count <span class='arw'>→</span> 6
; the index vector returned by ref-all can be used to index the list
(L '(3 1)) <span class='arw'>→</span> a
; mapped implicit indexing of L
(map 'L (ref-all 'a L)) <span class='arw'>→</span> (a a a a a a)
; with comparison operator
(set 'L '(a b c (d f (h l a)) (k a (m n) (x))))
; not specifying a comparison functor assumes =
(ref-all 'c L) <span class='arw'>→</span> ((2))
(ref-all 'c L =) <span class='arw'>→</span> ((2))
; look for all elements where c is greater
(ref-all 'c L >) <span class='arw'>→</span> ((0) (1) (3 2 2) (4 1))
(ref-all 'c L > true) <span class='arw'>→</span> (a b a a)
; use an anonymous function to compare
(ref-all 'a L (fn (x y) (or (= x y) (= y 'k))))
<span class='arw'>→</span> ((0) (3 2 2) (4 0) (4 1))
; the key is nil because the comparison function only looks at the second argument
(ref-all nil L (fn (x y) (> (length y) 2)))
<span class='arw'>→</span> ((3) (3 2) (4))
; define the comparison functions first
(define (is-long? x y) (> (length y) 2)) ; the x gets occupied by 'nil
(ref-all nil L is-long?) <span class='arw'>→</span> ((3) (3 2) (4))
(define (is-it-or-d x y) (or (= x y) (= y 'd)))
(set 'L '(a b (c d (e) f)) )
(ref-all 'e L is-it-or-d) <span class='arw'>→</span> ((2 1) (2 2 0))
</pre>
<p>
The comparison function can be a previously defined function.
Note that the comparison function always takes two arguments,
even if only the second argument is used
inside the function (as in the example using <tt>is-long?</tt>).
</p>
<p>
Using the <a href="#match">match</a> and <a href="#unify">unify</a> functions, list
searches can be formulated that are as powerful as regular expression searches are
for strings.
</p>
<pre>
(set 'L '((l 3) (a 12) (k 5) (a 10) (z 22)) )
; look for all pairs staring with the symbol a
(ref-all '(a ?) L match) <span class='arw'>→</span> ((1) (3))
(ref-all '(a ?) L match true) <span class='arw'>→</span> ((a 12) (a 10))
; look for all pairs where elements are equal
(set 'L '( ((a b) (c d)) ((e e) (f g)) ((z) (z))))
(ref-all '(X X) L unify) <span class='arw'>→</span> ((1 0) (2))
(ref-all '(X X) L unify true) <span class='arw'>→</span> ((e e) ((z) (z)))
; look for all pairs where the second element is the symbol g
(set 'L '( ((x y z) g) ((a b) (c d)) ((e e) (f g)) ))
(ref-all '(X g) L unify) <span class='arw'>→</span> ((0) (2 1))
(ref-all '(X g) L unify true) <span class='arw'>→</span> (((x y z) g) (f g))
</pre>
<p> See also the <a href="#ref">ref</a> function. </p>
<br/><br/>
<a name="regex"></a>
<h2><span class="function">regex</span></h2>
<h4>syntax: (regex <em>str-pattern</em> <em>str-text</em> [<em>regex-option</em> [<em>int-offset</em>]])</h4>
<p>Performs a Perl Compatible Regular Expression (PCRE) search
on <em>str-text</em> with the pattern specified in <em>str-pattern</em>.
The same regular expression pattern matching
is also supported in the functions <a href="#directory">directory</a>,
<a href="#find">find</a>, <a href="#find-all">find-all</a>,
<a href="#parse">parse</a>, <a href="#replace">replace</a>,
and <a href="#search">search</a> when using these functions on strings.
</p>
<p>
<tt>regex</tt> returns a list with the matched strings and substrings
and the beginning and length of each string inside the text.
If no match is found, it returns <tt>nil</tt>.
The offset numbers can be used for subsequent processing.
</p>
<p>Additionally a <em>regex-option</em> can be specified to control certain
regular expression options explained later. Options can be given either by
numbers or letters in a string.</p>
<p>The additional <em>int-offset</em>
parameter tells <tt>regex</tt> to start searching for a match not at the
beginning of the string but at an offset.</p>
<p>When no <em>regex-option</em> is present, the offset and length numbers in
the <tt>regex</tt> results are given based bytes even when running the UTF-8
enabled version of newLISP. When specifying the PCRE_UTF8 option in <em>regex-option</em>
only offset and length are reported in UTF8 characters.</p>
<p>
<tt>regex</tt> also sets the variables <tt>$0, $1,</tt>
and <tt>$2—</tt>
to the expression and subexpressions found.
Just like any other symbol in newLISP,
these variables or their equivalent expressions
<tt>($ 0), ($ 1),</tt> and <tt>($ 2)—</tt> can be used in other
newLISP expressions for further processing.
</p>
<p>Functions using regular expressions will not reset the <tt>$0, $1 ... $15</tt>
variables to <tt>nil</tt> when no match is found.</p>
<!-- example -->
<pre>
(regex "b+" "aaaabbbaaaa") <span class='arw'>→</span> ("bbb" 4 3)
; case-insensitive search option 1
(regex "b+" "AAAABBBAAAA" 1) <span class='arw'>→</span> ("BBB" 4 3)
; same option given as a string
(regex "b+" "AAAABBBAAAA" "i") <span class='arw'>→</span> ("BBB" 4 3)
(regex "[bB]+" "AAAABbBAAAA" ) <span class='arw'>→</span> ("BbB" 4 3)
(regex "http://(.*):(.*)" "http://nuevatec.com:80")
<span class='arw'>→</span> ("http://nuevatec.com:80" 0 22 "nuevatec.com" 7 12 "80" 20 2)
$0 <span class='arw'>→</span> "http://nuevatec.com:80"
$1 <span class='arw'>→</span> "nuevatec.com"
$2 <span class='arw'>→</span> "80"
(dotimes (i 3) (println ($ i)))
<b>http://nuevatec.com:80
nuevatec.com
80</b>
<span class='arw'>→</span> "80"
</pre>
<p>
The second example shows the usage of extra options,
while the third example demonstrates more complex parsing of two subexpressions
that were marked by parentheses in the search pattern.
In the last example,
the expression and subexpressions are retrieved using the system variables
<tt>$0</tt> to <tt>$2</tt> or their equivalent expression <tt>($ 0)</tt> to <tt>($ 2)</tt>.
</p>
<p>
When <tt>""</tt> (quotes) are used
to delimit strings
that include literal backslashes,
the backslash must be doubled in the regular expression pattern.
As an alternative, <tt>{ }</tt> (curly brackets)
or <tt>[text]</tt> and <tt>[/text]</tt> (text tags)
can be used to delimit text strings.
In these cases, no extra backslashes are required.
</p>
<p>
Characters escaped by a backslash in newLISP
(e.g., the quote <tt>\"</tt> or <tt>\n</tt>)
need not to be doubled in a regular expression pattern,
which itself is delimited by quotes.
</p>
<pre>
;; double backslash for parentheses and other special char in regex
(regex "\\(abc\\)" "xyz(abc)xyz") <span class='arw'>→</span> ("(abc)" 3 5)
;; double backslash for backslash (special char in regex)
(regex "\\d{1,3}" "qwerty567asdfg") <span class='arw'>→</span> ("567" 6 3)
;; one backslash for quotes (special char in newLISP)
(regex "\"" "abc\"def") <span class='arw'>→</span> ("\"" 3 1)
;; brackets as delimiters
(regex {\(abc\)} "xyz(abc)xyz") <span class='arw'>→</span> ("(abc)" 3 5)
;; brackets as delimiters and quote in pattern
(regex {"} "abc\"def") <span class='arw'>→</span> ("\"" 3 1)
;; text tags as delimiters, good for multiline text in CGI
(regex [text]\(abc\)[/text] "xyz(abc)xyz") <span class='arw'>→</span> ("(abc)" 3 5)
(regex [text]"[/text] "abc\"def") <span class='arw'>→</span> ("\"" 3 1)
</pre>
<p>
When curly brackets or text tags
are used to delimit the pattern string
instead of quotes,
a simple backslash is sufficient.
The pattern and string are then passed in raw form
to the regular expression routines.
When curly brackets are used inside a pattern
itself delimited by curly brackets,
the inner brackets must be balanced, as follows:
</p>
<pre>
;; brackets inside brackets are balanced
(regex {\d{1,3}} "qwerty567asdfg") <span class='arw'>→</span> ("567" 6 3)
</pre>
<p>
The following constants can be used for <em>regex-option</em>.
Several options can be combined using a binary or <tt>|</tt> (pipe) operator.
E.g. <tt>(| 1 4)</tt> would combine options <tt>1</tt> and <tt>4</tt> or <tt>"is"</tt>
when using letters for the two options.</p>
<p>The last two options are specific for newLISP. The REPLACE_ONCE option is only
to be used in <a href="#replace">replace</a>; it can be combined with other PCRE options.</p>
<p>Multiple options can be combined using a <tt>+</tt> (plus) or <tt>|</tt> (or) operator,
e.g.: <tt>(| PCRE_CASELESS PCRE_DOTALL)</tt> or <tt>"is"</tt> when using letters as options.
</p>
<table width="98%" summary="regex options">
<tr align="left"><th>PCRE name</th><th>no</th><th>description</th></tr>
<tr><td>PCRE_CASELESS</td><td>1 or i</td><td>treat uppercase like lowercase</td></tr>
<tr><td>PCRE_MULTILINE</td><td>2 or m</td><td>limit search at a newline like Perl's /m</td></tr>
<tr><td>PCRE_DOTALL</td><td>4 or s</td><td>. (dot) also matches newline</td></tr>
<tr><td>PCRE_EXTENDED</td><td>8 or x</td><td>ignore whitespace except inside char class</td></tr>
<tr><td>PCRE_ANCHORED</td><td>16 or A</td><td>anchor at the start</td></tr>
<tr><td>PCRE_DOLLAR_ENDONLY</td><td>32 or D</td><td>$ matches at end of string, not before newline</td></tr>
<tr><td>PCRE_EXTRA</td><td>64</td><td>additional functionality currently not used</td></tr>
<tr><td>PCRE_NOTBOL</td><td>128</td><td>first ch, not start of line; ^ shouldn't match</td></tr>
<tr><td>PCRE_NOTEOL</td><td>256</td><td>last char, not end of line; $ shouldn't match</td></tr>
<tr><td>PCRE_UNGREEDY</td><td>512i or U</td><td>invert greediness of quantifiers</td></tr>
<tr><td>PCRE_NOTEMPTY</td><td>1024</td><td>empty string considered invalid</td></tr>
<tr><td>PCRE_UTF8</td><td>2048 or u</td><td>pattern and strings as UTF-8 characters</td></tr>
<tr><td>REPLACE_ONCE</td><td>0x8000</td><td>replace only one occurrence only for use in <a href="#replace">replace</a></td></tr>
<tr><td>PRECOMPILED</td><td>0x10000 or p</td><td>pattern is pre-compiled, can only be combined with RREPLACE_ONCE 0x8000</td></tr>
</table><br/>
<p>The settings of the PCRE_CASELESS, PCRE_MULTILINE, PCRE_DOTALL, and PCRE_EXTENDED
options can be changed from within the pattern by a sequence of option letters enclosed
between "(?" and ")". The option letters are:</p>
<table summary="regex inline options">
<tr><td>i</td><td>for PCRE_CASELESS</td></tr>
<tr><td>m</td><td>for PCRE_MULTILINE</td></tr>
<tr><td>s</td><td>for PCRE_DOTALL</td></tr>
<tr><td>x</td><td>for PCRE_EXTENDED</td></tr>
</table><br/>
<p> Note that regular expression syntax is very complex
and feature-rich with many special characters and forms.
Please consult a book or the PCRE manual pages for more detail.
Most PERL books or introductions to Linux or Unix
also contain chapters about regular expressions.
See also <a href="http://www.pcre.org">http://www.pcre.org</a>
for further references and manual pages. </p>
<p>Regular expression patterns can be precompiled for higher speed when using
changing repetitive patterns with <a href="#regex-comp">regex-comp</a>.</p>
<br/><br/>
<a name="regex-comp"></a>
<h2><span class="function">regex-comp</span></h2>
<h4>syntax: (regex-comp <em>str-pattern</em> [<em>int-option</em>])</h4>
<p>newLISP automatically compiles regular expression patterns and caches
the last compilation to speed up repetitive pattern searches. If patterns
change from one to the next, but are repeated over and over again, then
the caching of the last pattern is not sufficient. <tt>regex-comp</tt>
can be used to pre-compile repetitive patterns to speed up regular
expression searches:</p>
<!-- example -->
<pre>
; slower without pre-compilation
(dolist (line page)
(replace pattern-str1 line repl1 0)
(replace pattern-str2 line repl2 512)
)
; fast with pre-compilation and option 0x10000
(set 'p1 (regex-comp pattern-str1))
(set 'p2 (regex-comp pattern-str2 512))
(dolist (line page)
(replace p1 line repl1 0x10000)
(replace p2 line repl2 0x10000)
)
</pre>
<p>When using pre-compiled patterns in any of the functions using regular
expressions, the option number is set to <tt>0x10000</tt> to signal
that pre-compiled patterns are used. Normal pattern options are specified
during pre-compilation with <tt>regex-comp</tt> . The <tt>0x10000</tt> option
can only be combined with <tt>0x8000</tt>, the option used to specify that only
one replacement should be made when using <a href="#replace">replace</a>.</p>
<p>The function <a href="#ends-with">ends-with</a> should not be used with compiled
patterns, as it tries to append to an un-compiled pattern internally.</p>
<br/><br/>
<a name="remove-dir"></a>
<h2><span class="function">remove-dir</span></h2>
<h4>syntax: (remove-dir <em>str-path</em>)</h4>
<p>
Removes the directory
whose path name is specified in <em>str-path</em>.
The directory must be empty for <tt>remove-dir</tt> to succeed.
Returns <tt>nil</tt> on failure.
</p>
<!-- example -->
<pre>
(remove-dir "temp")
</pre>
<p>
Removes the directory <tt>temp</tt>
in the current directory.
</p>
<br/><br/>
<a name="rename-file"></a>
<h2><span class="function">rename-file</span></h2>
<h4>syntax: (rename-file <em>str-path-old</em> <em>str-path-new</em>)</h4>
<p>
Renames a file or directory entry given in the path name <em>str-path-old</em>
to the name given in <em>str-path-new</em>. Returns <tt>nil</tt> or <tt>true</tt>
depending on the operation's success.
</p>
<!-- example -->
<pre>
(rename-file "data.lisp" "data.backup")
</pre>
<br/><br/>
<a name="replace"></a>
<h2><span class="function">replace</span> <a href="#destructive">!</a></h2>
<h4>syntax: (replace <em>exp-key</em> <em>list</em> <em>exp-replacement</em> [<em>func-compare</em>])<br/>
syntax: (replace <em>exp-key</em> <em>list</em>)<br/><br/>
syntax: (replace <em>str-key</em> <em>str-data</em> <em>exp-replacement</em>)<br/>
syntax: (replace <em>str-pattern</em> <em>str-data</em> <em>exp-replacement</em> <em>regex-option</em>)</h4>
<h3>List replacement</h3>
<p>If the second argument is a list, <tt>replace</tt> replaces all elements in
the list <em>list</em> that are equal to the expression in <em>exp-key</em>. The
element is replaced with <em>exp-replacement</em>. If <em>exp-replacement</em>
is missing, all instances of <em>exp-key</em> will be deleted from <em>list</em>.
</p>
<p>Note that <tt>replace</tt> is
destructive. It changes the list passed to it and returns the changed list. The
number of replacements made is contained in the system variable <tt>$count</tt>
when the function returns. During executions of the replacement expression, the
anaphoric system variable <tt>$it</tt> is set to the expression to be replaced.
</p>
<p>Optionally, <em>func-compare</em> can specify a comparison operator
or user-defined function. By default, <em>func-compare</em> is the <tt>=</tt>
(equals sign).</p>
<!-- example -->
<pre>
;; list replacement
(set 'aList '(a b c d e a b c d))
(replace 'b aList 'B) <span class='arw'>→</span> (a B c d e a B c d)
aList <span class='arw'>→</span> (a B c d e a B c d)
$count <span class='arw'>→</span> 2 ; number of replacements
;; list replacement with special compare functor/function
; replace all numbers where 10 < number
(set 'L '(1 4 22 5 6 89 2 3 24))
(replace 10 L 10 <) <span class='arw'>→</span> (1 4 10 5 6 10 2 3 10)
$count <span class='arw'>→</span> 3
; same as:
(replace 10 L 10 (fn (x y) (< x y))) <span class='arw'>→</span> (1 4 10 5 6 10 2 3 10)
; change name-string to symbol, x is ignored as nil
(set 'AL '((john 5 6 4) ("mary" 3 4 7) (bob 4 2 7 9) ("jane" 3)))
(replace nil AL (cons (sym ($it 0)) (rest $it))
(fn (x y) (string? (y 0)))) ; parameter x = nil not used
<span class='arw'>→</span> ((john 5 6 4) (mary 3 4 7) (bob 4 2 7 9) (jane 3))
; use $count in the replacement expression
(replace 'a '(a b a b a b) (list $count $it) =) <span class='arw'>→</span> ((1 a) b (2 a) b (3 a) b)
</pre>
<p>
Using the <a href="#match">match</a> and <a href="#unify">unify</a> functions,
list searches can be formulated that are as powerful as regular expression string
searches:</p>
<pre>
; calculate the sum in all associations with 'mary
(set 'AL '((john 5 6 4) (mary 3 4 7) (bob 4 2 7 9) (jane 3)))
(replace '(mary *) AL (list 'mary (apply + (rest $it))) match)
<span class='arw'>→</span> ((john 5 6 4) (mary 14) (bob 4 2 7 9) (jane 3))
$count <span class='arw'>→</span> 1
; make sum in all expressions
(set 'AL '((john 5 6 4) (mary 3 4 7) (bob 4 2 7 9) (jane 3)))
(replace '(*) AL (list ($it 0) (apply + (rest $it))) match)
<span class='arw'>→</span> ((john 15) (mary 14) (bob 22) (jane 3))
$count <span class='arw'>→</span> 4
; using unify, replace only if elements are equal
(replace '(X X) '((3 10) (2 5) (4 4) (6 7) (8 8)) (list ($it 0) 'double ($it 1)) unify)
<span class='arw'>→</span> ((3 10) (2 5) (4 double 4) (6 7) (8 double 8))
</pre>
<h3>List removal</h3>
<p>
The last form of <tt>replace</tt> has only two arguments: the expression <em>exp</em>
and <em>list</em>. This form removes all <em>exp</em>s found in <em>list</em>.
</p>
<!-- example -->
<pre>
;; removing elements from a list
(set 'lst '(a b a a c d a f g))
(replace 'a lst) <span class='arw'>→</span> (b c d f g)
lst <span class='arw'>→</span> (b c d f g)
$count <span class='arw'>→</span> 4
</pre>
<h3>String replacement without regular expression</h3>
<p>If all arguments are strings, <tt>replace</tt> replaces all occurrences
of <em>str-key</em> in <em>str-data</em> with the evaluated
<em>exp-replacement</em>, returning the changed string. The expression in
<em>exp-replacement</em> is evaluated for every replacement. The number of
replacements made is contained in the system variable <tt>$count</tt>. This
form of <tt>replace</tt> can also process binary <tt>0</tt>s (zeros).</p>
<!-- example -->
<pre>
;; string replacement
(set 'str "this isa sentence")
(replace "isa" str "is a") <span class='arw'>→</span> "this is a sentence"
$count <span class='arw'>→</span> 1
</pre>
<h3>Regular expression replacement</h3>
<p>
The presence of a fourth parameter indicates that a regular expression search
should be performed with a regular expression pattern specified in <em>str-pattern</em>
and an option number specified in <em>regex-option</em> (e.g., <tt>1</tt> (one) or "i" for
case-insensitive searching or <tt>0</tt> (zero) for a standard Perl Compatible Regular
Expression (PCRE) search without options). See <a href="#regex">regex</a> above for details.
</p>
<p>
By default, <tt>replace</tt> replaces all occurrences of a search string even if a
beginning-of-line specification is included in the search pattern.
After each replace, a new search is started at a new position in <em>str-data</em>.
Setting the option bit to <tt>0x8000</tt> in <em>regex-option</em> will force
<tt>replace</tt> to replace only the first occurrence. The changed string is returned.
</p>
<p>
<tt>replace</tt> with regular expressions also sets the internal variables
<tt>$0, $1,</tt> and <tt>$2—</tt> with the contents of the expressions
and subexpressions found. The anaphoric system variable <tt>$it</tt> is set to
the same value as <tt>$0</tt>. These can be used to perform replacements
that depend on the content found during replacement. The symbols <tt>$it, $0, $1,</tt>
and <tt>$2—</tt> can be used in expressions just like any other symbols.
If the replacement expression evaluates to something other than a string,
no replacement is made. As an alternative, the contents of these variables can
also be accessed by using <tt>($ 0), ($ 1), ($ 2),</tt> and so forth.
This method allows indexed access (e.g., <tt>($ i)</tt>,
where <tt>i</tt> is an integer).
</p>
<p>After all replacements are made, the number of replacements
is contained in the system variable <tt>$count</tt>.</p>
<!-- example -->
<pre>
;; using the option parameter to employ regular expressions
(set 'str "ZZZZZxZZZZyy") <span class='arw'>→</span> "ZZZZZxZZZZyy"
(replace "x|y" str "PP" 0) <span class='arw'>→</span> "ZZZZZPPZZZZPPPP"
str <span class='arw'>→</span> "ZZZZZPPZZZZPPPP"
;; using system variables for dynamic replacement
(set 'str "---axb---ayb---")
(replace "(a)(.)(b)" str (append $3 $2 $1) 0)
<span class='arw'>→</span> "---bxa---bya---"
str <span class='arw'>→</span> "---bxa---bya---"
;; using the 'replace once' option bit 0x8000
(replace "a" "aaa" "X" 0) <span class='arw'>→</span> "XXX"
(replace "a" "aaa" "X" 0x8000) <span class='arw'>→</span> "Xaa"
;; URL translation of hex codes with dynamic replacement
(set 'str "xxx%41xxx%42")
(replace "%([0-9A-F][0-9A-F])" str
(char (int (append "0x" $1))) 1)
str <span class='arw'>→</span> "xxxAxxxB"
$count <span class='arw'>→</span> 2
</pre>
<p>
The <a href="#setf">setf</a> function together with <a href="#nth">nth</a>,
<a href="#first">first</a> or <a href="#last">last</a> can also
be used to change elements in a list.</p>
<p>
See <a href="#directory">directory</a>,
<a href="#find">find</a>,
<a href="#find-all">find-all</a>,
<a href="#parse">parse</a>,
<a href="#regex">regex</a>,
and <a href="#search">search</a>
for other functions using regular expressions.
</p>
<br/><br/>
<a name="reset"></a>
<h2><span class="function">reset</span></h2>
<h4>syntax: (reset)<br/>
syntax: (reset true)<br/>
syntax: (reset <em>int-max-cells</em>)</h4>
<p>
In the first syntax, <tt>reset</tt> returns to the top level of evaluation,
switches the <a href="#trace">trace</a> mode off, and switches to the MAIN
context/namespace. <tt>reset</tt> restores the top-level variable environment
using the saved variable environments on the stack. It also throws an error
"user reset - no error" which can be reported with user defined error handlers.
Since version 10.5.5 <tt>reset</tt> also interrupts command line parameter
processing.</p>
<p><tt>reset</tt> walks through the entire cell space,
which may take a few seconds in a heavily loaded system.</p>
<p><tt>reset</tt> occurs automatically after an error condition.</p>
<p>In the second syntax, <tt>reset</tt> will stop the current process
and start a new clean newLISP process with the same command-line parameters.
This mode will only work when newLISP was started using its full path-name,
e.g. <tt>/usr/local/bin/newlisp</tt> instead of only <tt>newlisp</tt>. This mode is
not available on MS Windows.</p>
<p>In the third syntax. <tt>reset</tt> will change the maximum cell count allowed
in the system. This number is also reported as the second number in the list
by <a href="#sys-info">sys-info</a>. On 64-bit newLISP one lisp cell occupies
32 bytes, or 16 bytes on the 32-bit version. This does not include
string memory, which may be pointed to by cells.</p>
<p>The minimum cell count is 4095, trying to specify less will set it to 4095.
The program will exit when trying to allocate more.</p>
<pre>
(sys-info) <span class='arw'>→</span> (437 576460752303423488 409 1 0 2048 0 60391 10602 1411)
; allocate about 1 Mbyte of cell memory on 64-bit newlisp
(reset 32768) <span class='arw'>→</span> true
(sys-info) <span class='arw'>→</span> (437 32768 409 1 0 2048 0 60392 10602 1411)
</pre>
<p>Resetting the maximum cell count will not restart the system and can be done at any point
in a program. Cell memory is allocated in blocks of 4095 cells, which is also initial
minimum configuration.</p>
<br/><br/>
<a name="rest"></a>
<h2><span class="function">rest</span> <font size="-1"><a href="#utf8_capable">utf8</a></font></h2>
<h4>syntax: (rest <em>list</em>)<br/>
syntax: (rest <em>array</em>)<br/>
syntax: (rest <em>str</em>)</h4>
<p>Returns all of the items in a list or a string, except for the first.
<tt>rest</tt> is equivalent to <em>cdr</em> or <em>tail</em> in other Lisp dialects.
</p>
<!-- example -->
<pre>
(rest '(1 2 3 4)) <span class='arw'>→</span> (2 3 4)
(rest '((a b) c d)) <span class='arw'>→</span> (c d)
(set 'aList '(a b c d e)) <span class='arw'>→</span> (a b c d e)
(rest aList) <span class='arw'>→</span> (b c d e)
(first (rest aList)) <span class='arw'>→</span> b
(rest (rest aList)) <span class='arw'>→</span> (d e)
(rest (first '((a b) c d))) <span class='arw'>→</span> (b)
(set 'A (array 2 3 (sequence 1 6)))
<span class='arw'>→</span> ((1 2) (3 4) (5 6))
(rest A) <span class='arw'>→</span> ((3 4) (5 6))
(rest '()) <span class='arw'>→</span> ()
</pre>
<p>
In the second version, <tt>rest</tt> returns all but the first character
of the string <em>str</em> in a string.
</p>
<!-- example -->
<pre>
(rest "newLISP") <span class='arw'>→</span> "ewLISP"
(first (rest "newLISP")) <span class='arw'>→</span> "e"
</pre>
<p>
See also the <a href="#first">first</a> and <a href="#last">last</a> functions.
</p>
<p>
Note that an <em>implicit rest</em> is available for lists.
See the chapter <a href="#implicit_rest_slice">Implicit rest and slice</a>.
</p>
<p>Note that <a href="#rest">rest</a> works on character boundaries rather
than byte boundaries when the UTF-8–enabled version of newLISP is used.</p>
<br/><br/>
<a name="reverse"></a>
<h2><span class="function">reverse</span> <a href="#destructive">!</a></h2>
<h4>syntax: (reverse <em>list</em>)<br/>
syntax: (reverse <em>array</em>)<br/>
syntax: (reverse <em>string</em>)</h4>
<p>In the first and second form, <tt>reverse</tt> reverses and returns the
<em>list</em> or <em>array</em>. Note that <tt>reverse</tt> is destructive
and changes the original list or array.</p>
<!-- example -->
<pre>
; reverse a list
(set 'l '(a b c d e f))
(reverse l) <span class='arw'>→</span> (f e d c b a)
l <span class='arw'>→</span> (f e d c b a)
i
; reverse an array
(set 'a (array 3 2 '(1 2 3 4 5 6))) <span class='arw'>→</span> ((1 2) (3 4) (5 6))
(reverse a) <span class='arw'>→</span> ((5 6) (3 4) (1 2))
a <span class='arw'>→</span> ((5 6) (3 4) (1 2))
</pre>
<p>In the third form, <tt>reverse</tt> is used to reverse the order
of characters in a string.</p>
<!-- example -->
<pre>
; reverse byte character string
(set 'str "newLISP")
(reverse str) <span class='arw'>→</span> "PSILwen"
str <span class='arw'>→</span> "PSILwen"
; reverse a multibyte character UTF-8 string, explode is UTF-8 sensitive
(join (reverse (explode "ΑΒΓΔΕΖΗΘ"))) <span class='arw'>→</span> "ΘΗΖΕΔΓΒΑ"
</pre>
<p>See also the <a href="#sort">sort</a> function.</p>
<br/><br/>
<a name="rotate"></a>
<h2><span class="function">rotate</span> <a href="#destructive">!</a></h2>
<h4>syntax: (rotate <em>list</em> [<em>int-count</em>])<br/>
syntax: (rotate <em>str</em> [<em>int-count</em>])</h4>
<p>Rotates and returns the <em>list</em> or string in <em>str</em>.
A count can be optionally specified in <em>int-count</em>
to rotate more than one position. If <em>int-count</em> is positive,
the rotation is to the right; if <em>int-count</em> is negative,
the rotation is to the left. If no <em>int-count</em> is specified,
<tt>rotate</tt> rotates 1 to the right. <tt>rotate</tt> is a destructive function
that changes the contents of the original list or string.</p>
<!-- example -->
<pre>
(set 'l '(1 2 3 4 5 6 7 8 9))
(rotate l) <span class='arw'>→</span> (9 1 2 3 4 5 6 7 8)
(rotate l 2) <span class='arw'>→</span> (7 8 9 1 2 3 4 5 6)
l <span class='arw'>→</span> (7 8 9 1 2 3 4 5 6)
(rotate l -3) <span class='arw'>→</span> (1 2 3 4 5 6 7 8 9)
; rotate a byte character string
(set 'str "newLISP")
(rotate str) <span class='arw'>→</span> "PnewLIS"
(rotate str 3) <span class='arw'>→</span> "LISPnew"
(rotate str -4) <span class='arw'>→</span> "newLISP"
; rotate a multibyte character UTF-8 string on character boundaries
(join (rotate (explode "ΑΒΓΔΕΖΗΘ"))) <span class='arw'>→</span> "ΘΑΒΓΔΕΖΗ"
</pre>
<p>When working on a string, <tt>rotate</tt> works on byte boundaries
rather than character boundaries.</p>
<br/><br/>
<a name="round"></a>
<h2><span class="function">round</span></h2>
<h4>syntax: (round <em>number</em> [<em>int-digits</em>])</h4>
<p>Rounds the number in <em>number</em>
to the number of digits given in <em>int-digits</em>.
When decimals are being rounded, <em>int-digits</em> is negative.
It is positive when the integer part of a number is being rounded.</p>
<p>If <em>int-digits</em> is omitted, the function rounds to <tt>0</tt> decimal
digits.</p>
<!-- example -->
<pre>
(round 123.49 2) <span class='arw'>→</span> 100
(round 123.49 1) <span class='arw'>→</span> 120
(round 123.49 0) <span class='arw'>→</span> 123
(round 123.49) <span class='arw'>→</span> 123
(round 123.49 -1) <span class='arw'>→</span> 123.5
(round 123.49 -2) <span class='arw'>→</span> 123.49
</pre>
<p>Note that rounding for display purposes is better accomplished using
<a href="#format">format</a>.</p>
<br/><br/>
<a name="save"></a>
<h2><span class="function">save</span></h2>
<h4>syntax: (save <em>str-file</em>)<br/>
syntax: (save <em>str-file</em> <em>sym-1</em> [<em>sym-2</em> ... ])</h4>
<p>
In the first syntax,
the <tt>save</tt> function writes
the contents of the newLISP workspace
(in textual form) to the file <em>str-file</em>.
<tt>save</tt> is the inverse function of <tt>load</tt>.
Using <tt>load</tt> on files
created with <tt>save</tt> causes
newLISP to return to the same state
as when <tt>save</tt> was originally invoked.
System symbols starting with the <tt>$</tt> character
(e.g., <tt>$0</tt> from regular expressions
or <tt>$main-args</tt> from the command-line), symbols of built-in
functions and symbols containing <tt>nil</tt> are not saved.
</p>
<p>
In the second syntax,
symbols can be supplied as arguments.
If <em>sym-n</em> is supplied,
only the definition of that symbol is saved.
If <em>sym-n</em> evaluates to a context,
all symbols in that context are saved.
More than one symbol can be specified,
and symbols and context symbols can be mixed.
When contexts are saved,
system variables and symbols starting with the <tt>$</tt> character
are not saved.
Specifying system symbols explicitly
causes them to be saved.
</p>
<p>
Each symbol is saved
by means of a <a href="#set">set</a> statement or—if
the symbol contains a lambda or lambda-macro function—by
means of <a href="#define">define</a>
or <a href="#define-macro">define-macro</a> statements.
</p>
<p>
<tt>save</tt> returns <tt>true</tt> on completion.
</p>
<!-- example -->
<pre>
(save "save.lsp")
(save "/home/myself/myfunc.LSP" 'my-func)
(save "file:///home/myself/myfunc.LSP" 'my-func)
(save "http://asite.com:8080//home/myself/myfunc.LSP" 'my-func)
(save "mycontext.lsp" 'mycontext)
;; multiple args
(save "stuff.lsp" 'aContext 'myFunc '$main-args 'Acontext)
</pre>
<p>
Because all context symbols are part of the context <tt>MAIN</tt>,
saving <tt>MAIN</tt> saves all contexts.
</p>
<p>
Saving to a URL
will cause an HTTP PUT request to be sent to the URL.
In this mode,
<tt>save</tt> can also be used
to push program source
to remote newLISP server nodes.
Note that a double backslash is required
when path names are specified
relative to the root directory.
<tt>save</tt> in <tt>HTTP</tt> mode will
observe a 60-second timeout.</p>
<p>
Symbols made using <a href="#sym">sym</a>
that are incompatible with the normal syntax rules for symbols
are serialized using a <a href="#sym">sym</a> statement
instead of a <a href="#set">set</a> statement.
</p>
<p>
<tt>save</tt> serializes contexts and symbols
as if the current context is <tt>MAIN</tt>.
Regardless of the current context,
<tt>save</tt> will always generate the same output.
</p>
<p>
See also the functions <a href="#load">load</a>
(the inverse operation of <tt>save</tt>)
and <a href="#source">source</a>,
which saves symbols and contexts to a string
instead of a file.
</p>
<br/><br/>
<a name="search"></a>
<h2><span class="function">search</span></h2>
<h4>syntax: (search <em>int-file</em> <em>str-search</em> [<em>bool-flag</em> [<em>regex-option</em>]])</h4>
<p>
Searches a file specified by its handle in <em>int-file</em> for a string in <em>str-search</em>.
<em>int-file</em> can be obtained from a previous <a href="#open">open</a> file. After the search,
the file pointer is positioned at the beginning or the end of the searched string or at the end
of the file if nothing is found.</p>
<p> By default, the file pointer is positioned at the beginning
of the searched string. If <em>bool-flag</em> evaluates to <tt>true</tt>,
then the file pointer is positioned at the end of the searched string.</p>
<p> In <em>regex-option</em>, the options flags can be specified to perform
a PCRE regular expression search. See the function <a href="#regex">regex</a> for details.
If <em>regex-option</em> is not specified a faster, plain string search is performed.
<tt>search</tt> returns the new file position or <tt>nil</tt> if nothing is found.
</p>
<p> When using the regular expression options flag, patterns found are stored in the system variables
<tt>$0</tt> to <tt>$15</tt>. </p>
<!-- example -->
<pre>
(set 'file (open "init.lsp" "read"))
(search file "define")
(print (read-line file) "\n")
(close file)
(set 'file (open "program.c" "r"))
(while (search file "#define (.*)" true 0) (println $1))
(close file)
</pre>
<p> The file <tt>init.lsp</tt> is opened and searched for the string <tt>define</tt> and the
line in which the string occurs is printed. </p>
<p>The second example looks for all lines in the file <tt>program.c</tt> which start with
the string <tt>#define</tt> and prints the rest of the line after the string "#define ".</p>
<p>
For other functions using regular expressions,
see <a href="#directory">directory</a>,
<a href="#find">find</a>,
<a href="#find-all">find-all</a>,
<a href="#parse">parse</a>,
<a href="#regex">regex</a>,
and <a href="#replace">replace</a>.
</p>
<br/><br/>
<a name="seed"></a>
<h2><span class="function">seed</span></h2>
<h4>syntax: (seed <em>int-seed</em>)<br/>
syntax: (seed <em>int-seed</em> <tt>true</tt> [<em>int-pre-N</em>])<br/>
syntax: (seed)</h4>
<p>Seeds the internal random generator that generates numbers for <a href="#amb">amb</a>,
<a href="#normal">normal</a>, <a href="#rand">rand</a>, and <a href="#random">random</a>
with the number specified in <em>int-seed</em>. Note that the first syntax uses a
random generator based on the C-library function <em>rand()</em>. All randomizing functions
in newLISP are based on this function.</p>
<p>When using the second syntax, all randomizing functions are based on a random generator
independent of platforms and compilers used to built newLISP. When seeding with the second
syntax all random functions called subsequently like
<a href="#amb">amb</a>, <a href="#normal">normal</a>, <a href="#rand">rand</a>,
<a href="#random">random</a> and <a href="#randomize">randomize</a> are based on this
platform independent random generator.</p>
<p>The optional <em>int-pre-N</em> specifies the number of random numbers to be pre-
fetched as part of the seeding and initialization procedure. When this parameter is
ommitted <tt>seed</tt> assumes <tt>50</tt>.</p>
<p>Note that the maximum value for <em>int-seed</em> is limited to 16 or 32 bits,
depending on the operating system used. Internally, only the 32 least significant
bits are passed to the random seed function of the OS.</p>
<!-- example -->
<pre>
(seed 12345)
(seed (time-of-day))
</pre>
<p>After using <tt>seed</tt> with the same number, the random generator starts
the same sequence of numbers. This facilitates debugging
when randomized data are involved. Using <tt>seed</tt>,
the same random sequences can be generated over and over again.</p>
<p>The second example is useful for guaranteeing
a different seed any time the program starts.</p>
<p>The following example shows usage of the internal seed state in the built-in
random generator:</p>
<pre>
> (seed 123 true) ; use the true parameter
123
> (random)
0.2788576787704871
> (random)
0.7610070955758016
> (random)
0.2462553424976092
> (random)
0.8135413573186572
> (set 'state (seed)) ; save current state
1747066761
> (random)
0.1895924546707387
> (random)
0.4803856511043318
> (seed state true 0) ; seed with saved state
1747066761
> (random) ; produces old sequence
0.1895924546707387
> (random)
0.4803856511043318
>
</pre>
<p>In the last syntax <tt>seed</tt> returns the current seed state.</p>
<br/><br/>
<a name="self"></a>
<h2><span class="function">self</span></h2>
<h4>syntax: (self [<em>int-index</em> ... ])</h4>
<p>The function <tt>self</tt> accesses the target object of a FOOP method.
One or more <em>int-index</em> are used to access the object members.
<tt>self</tt> is set by the <a href="#colon">: colon</a> operator.</p>
<p>Objects referenced with <tt>self</tt> are mutable:</p>
<!-- example -->
<pre>
(new Class 'Circle)
(define (Circle:move dx dy)
(inc (self 1) dx)
(inc (self 2) dy))
(set 'aCircle (Circle 1 2 3))
(:move aCircle 10 20)
aCircle <span class='arw'>→</span> (Circle 11 22 3)
; objects can be anonymous
(set 'circles '((Circle 1 2 3) (Circle 4 5 6)))
(:move (circles 0) 10 20)
(:move (circles 1) 10 20)
circles <span class='arw'>→</span> ((Circle 11 22 3) (Circle 14 25 6))
</pre>
<p>See also the chapter about programming with FOOP:
<a href="#foop">Functional object-oriented programming</a></p>
<br/><br/>
<a name="seek"></a>
<h2><span class="function">seek</span></h2>
<h4>syntax: (seek <em>int-file</em> [<em>int-position</em>])</h4>
<p>
Sets the file pointer to the new position <em>int-position</em> in the file
specified by <em>int-file</em>.The new position is expressed as an offset from
the beginning of the file, <tt>0</tt> (zero) meaning the beginning of the file.
If no <em>int-position</em> is specified, <tt>seek</tt> returns the current
position in the file. If <em>int-file</em> is <tt>0</tt> (zero),
on BSD, <tt>seek</tt> will return the number of characters printed to STDOUT,
and on Linux and MS Windows, it will return <tt>-1</tt>. On failure, <tt>seek</tt>
returns <tt>nil</tt>. When <em>int-position</em> is set to <tt>-1</tt>,
<tt>seek</tt> sets the file pointer to the end of the file.</p>
<p><tt>seek</tt> can set the file position past the current end of the file. Subsequent
writing to this position will extend the file and fill unused positions with zero's.
The blocks of zeros are not actually allocated on disk, so the file takes up less
space and is called a <em>sparse file</em>.</p>
<!-- example -->
<pre>
(set 'file (open "myfile" "read")) <span class='arw'>→</span> 5
(seek file 100) <span class='arw'>→</span> 100
(seek file) <span class='arw'>→</span> 100
(open "newlisp_manual.html" "read")
(seek file -1) ; seek to EOF
<span class='arw'>→</span> 593816
(set 'fle (open "large-file" "read")
(seek file 30000000000) <span class='arw'>→</span> 30000000000
</pre>
<p>
newLISP supports file position numbers up to
9,223,372,036,854,775,807.
</p>
<br/><br/>
<a name="select"></a>
<h2><span class="function">select</span> <font size="-1"><a href="#utf8_capable">utf8</a></font></h2>
<h4>syntax: (select <em>list</em> <em>list-selection</em>)<br/>
syntax: (select <em>list</em> [<em>int-index_i</em> ... ])<br/><br/>
syntax: (select <em>string</em> <em>list-selection</em>)<br/>
syntax: (select <em>string</em> [<em>int-index_i</em> ... ])</h4>
<p>
In the first two forms,
<tt>select</tt> picks one or more elements
from <em>list</em> using one or more indices
specified in <em>list-selection</em> or the <em>int-index_i</em>.
</p>
<!-- example -->
<pre>
(set 'lst '(a b c d e f g))
(select lst '(0 3 2 5 3)) <span class='arw'>→</span> (a d c f d)
(select lst '(-2 -1 0)) <span class='arw'>→</span> (f g a)
(select lst -2 -1 0) <span class='arw'>→</span> (f g a)
</pre>
<p>
In the second two forms,
<tt>select</tt> picks one or more characters
from <em>string</em>
using one or more indices specified in <em>list-selection</em>
or the <em>int-index_i</em>.
</p>
<!-- example -->
<pre>
(set 'str "abcdefg")
(select str '(0 3 2 5 3)) <span class='arw'>→</span> "adcfd"
(select str '(-2 -1 0)) <span class='arw'>→</span> "fga"
(select str -2 -1 0) <span class='arw'>→</span> "fga"
</pre>
<p>
Selected elements can be repeated and do not have to appear in order,
although this speeds up processing.
The order in <em>list-selection</em> or <em>int-index_i</em>
can be changed to rearrange elements.
</p>
<br/><br/>
<br/><br/>
<a name="semaphore"></a>
<h2><span class="function">semaphore</span></h2>
<h4>syntax: (semaphore)<br/>
syntax: (semaphore <em>int-id</em>)<br/>
syntax: (semaphore <em>int-id</em> <em>int-wait</em>)<br/>
syntax: (semaphore <em>int-id</em> <em>int-signal</em>)<br/>
syntax: (semaphore <em>int-id</em> <em>0</em>)</h4>
<p>A semaphore is an interprocess synchronization object
that maintains a count between <tt>0</tt> (zero) and some maximum value.
Useful in controlling access to a shared resource,
a semaphore is set to signaled when its count is greater than zero
and to non-signaled when its count is zero.</p>
<p>A semaphore is created using the first syntax. This returns
the semaphore ID, an integer used subsequently as <em>int-id</em>
when the <em>semaphore</em> function is called. Initially, the
semaphore has a value of zero, which represents the non-signaled state.
</p>
<p>
If calling <tt>semaphore</tt> with a negative value in <em>int-wait</em>
causes it to be decremented below zero,
the function call will block until another process
signals the semaphore with a positive value in <em>int-signal</em>.
Calls to the semaphore with <em>int-wait</em> or <em>int-signal</em>
effectively try to increment or decrement the semaphore value
by a positive or negative value specified in <em>int-signal</em>
or <em>int-wait</em>.
Because the value of a semaphore must never fall below zero,
the function call will block when this is attempted
(i.e., a semaphore with a value of zero
will block until another process
increases the value with a positive <em>int-signal</em>).
</p>
<p>The second syntax is used to inquire about the value of a semaphore
by calling <tt>semaphore</tt> with the <em>int-id</em> only.
This form is not available on MS Windows.</p>
<p>Supplying <tt>0</tt> (zero) as the last argument will release system
resources for the semaphore, which then becomes unavailable.
Any pending waits on this semaphore in other child processes
will be released.</p>
<p>On MS Windows, only parent and child processes can share a semaphore.
On Linux/Unix, independent processes can share a semaphore.</p>
<p>On failure the <tt>semaphore</tt> function returns <tt>nil</tt>.
<a href="#sys-error">sys-error</a> can be used to retrieve the error
number and text from the underlying operating system.</p>
<p>The following code examples summarize the different syntax forms:</p>
<!-- example -->
<pre>
;; init semaphores
(semaphore)
;; assign a semaphore to sid
(set 'sid (semaphore))
;; inquire the state of a semaphore (not on Windows OS)
(semaphore sid)
;; put sid semaphore in wait state (-1)
(semaphore sid -1)
;; run sid semaphore previously put in wait (always 1)
(semaphore sid 1)
;; run sid semaphore with X times a skip (backward or forward) on the function
(semaphore sid X)
;; release sid semaphore system-wide (always 0)
(semaphore sid 0)
</pre>
<p>The following example shows semaphores controlling a child process:</p>
<!-- example -->
<pre>
;; counter process output in bold
(define (counter n)
(println "counter started")
(dotimes (x n)
(semaphore sid -1)
(println x)))
;; hit extra <enter> to make the prompt come back
;; after output to the console from the counter process
> (set 'sid (semaphore))
> (semaphore sid)
<b>0</b>
> (fork (counter 100))
<b>counter started</b>
> (semaphore sid 1)
<b>0</b>
> (semaphore sid 3)
<b>1</b>
<b>2</b>
<b>3</b>
> (semaphore sid 2)
<b>4</b>
<b>5</b>
> _
</pre>
<p>
After the semaphore is acquired in <tt>sid</tt>,
it has a value of <tt>0</tt>
(the non-signaled state).
When starting the process <tt>counter</tt>,
the semaphore will block after the initial start message
and will wait in the semaphore call.
The <tt>-1</tt> is trying to decrement the semaphore,
which is not possible because its value is already zero.
In the interactive, main parent process,
the semaphore is signaled by raising its value by <tt>1</tt>.
This unblocks the semaphore call in the <tt>counter</tt> process,
which can now decrement the semaphore from <tt>1</tt> to <tt>0</tt>
and execute the <tt>print</tt> statement.
When the semaphore call is reached again,
it will block because the semaphore is already in the wait
(<tt>0</tt>) state.
</p>
<p>
Subsequent calls to <tt>semaphore</tt>
with numbers greater than <tt>1</tt>
give the <tt>counter</tt> process an opportunity
to decrement the semaphore several times before blocking.
</p>
<p>
More than one process can participate in controlling the semaphore,
just as more than one semaphore can be created.
The maximum number of semaphores is controlled
by a system-wide kernel setting on Unix-like operating systems.
</p>
<p>Use the <a href="#fork">fork</a> function to start a new process
and the <a href="#share">share</a> function to share information between
processes. For a more comprehensive example of using <tt>semaphore</tt>
to synchronize processes, see the file <tt>prodcons.lsp</tt> example
in the <tt>examples</tt> directory in the source distribution,
as well as the examples and modules distributed with newLISP.</p>
<br/><br/>
<a name="send"></a>
<h2><span class="function">send</span></h2>
<h4>syntax: (send <em>int-pid</em> <em>exp</em>)<br/>
syntax: (send)</h4>
<p>The <tt>send</tt> function enables communication between
parent and child processes started with <a href="#spawn">spawn</a>.
Parent processes can send and receive messages to and from
their child processes and child processes can send and receive
messages to and from their parent process. A proxy technique – shown further
down – is employed to communicate between child process
peers. <tt>send</tt> and <a href="#receive">receive</a> do not require
locks or semaphores. They work on dual send and receive message queues.
</p>
<p>Processes started using <a href="#fork">fork</a> or
<a href="#process">process</a> can not use <tt>send</tt> and <tt>receive</tt>
message functions. Instead they should use either <a href="#share">share</a>
with <a href="#semaphore">semaphore</a> or <a href="#pipe">pipe</a> to
communicate.</p>
<p>The <tt>send</tt> function is not available on MS Windows.</p>
<p>In the first syntax <tt>send</tt> is used to send a message
from a parent to a child process or a child to a parent process.</p>
<p>The second syntax is only used by parent processes to get a list
of all child processes ready to accept message from the parent in their
receive queues. If a child's receive queue is full, it will not be part of
the list returned by the <tt>(send)</tt> statement.</p>
<p>The content of a message may be any newLISP expression either
atomic or list expressions: boolean constants <tt>nil</tt> and <tt>true</tt>,
integers, floating point numbers or strings, or any list expression
in valid newLISP syntax. The size of a message is unlimited.</p>
<p>The <em>exp</em> parameter specifies the data to be sent
to the recipient in <em>int-pid</em>. The recipient can be either a
spawned child process of the current process or the parent
process. If a message queue is full, it can be read from the receiving
end, but a <tt>send</tt> issued on the other side of the queue will
fail and return <tt>nil</tt>.</p>
<pre>
; child process dispatching message to parent
(set 'ppid (sys-info -4)) ; get parent pid
(send ppid "hello") ; send message
</pre>
<p>The targeted recipient of the message is the parent process:</p>
<pre>
; parent process receiving message from child
(receive child-pid msg) <span class='arw'>→</span> true
msg <span class='arw'>→</span> "hello"
</pre>
<p>When the <tt>send</tt> queue is full, <tt>send</tt> will return
<tt>nil</tt> until enough message content is read on the receiving side
of the queue and the queue is ready to accept new messages from
<tt>send</tt> statements.</p>
<p>Using the <a href="#until">until</a> looping function, the
message statements can be repeated until they return a value
not <tt>nil</tt>. This way, non-blocking <tt>send</tt> and <tt>receive</tt>
can be made blocking until they succeed:</p>
<pre>
; blocking sender
(until (send pid msg)) ; true after message is queued up
; blocking receiver
(until (receive pid msg)) ; true after message could be read
</pre>
<p>The sender statement blocks until the message could be deposited
in the recipients queue.</p>
<p>The <tt>receive</tt> statement blocks until a new message can
be fetched from the queue.</p>
<p>As the <tt>until</tt> statements in this example lack body expressions,
the last value of the evaluated conditional expression is the return
value of the <tt>until</tt> loop.</p>
<h3>Blocking message exchange</h3>
<p>The following code shows how a recipient can listen for incoming
messages, and in turn how a sender can retry to deposit a message
into a queue. The example shows 5 child processes constantly delivering
status data to a parent process which will display the data.
After three data sets have been read, the parent will abort all
child processes and exit:</p>
<!-- example -->
<pre>
#!/usr/local/bin/newlisp
; child process transmits random numbers
(define (child-process)
(set 'ppid (sys-info -4)) ; get parent pid
(while true
(until (send ppid (rand 100))))
)
; parent starts 5 child processes, listens and displays
; the true flag is specified to enable send/receive
(dotimes (i 5) (spawn 'result (child-process) true))
(for (i 1 3)
(dolist (cpid (sync)) ; iterate thru pending child PIDs
(until (receive cpid msg))
(print "pid:" cpid "->" (format "%-2d " msg)))
(println)
)
(abort) ; cancel child-processes
(exit)
</pre>
<p>Running above example produces the following output:</p>
<pre><b>pid:53181->47 pid:53180->61 pid:53179->75 pid:53178->39 pid:53177->3
pid:53181->59 pid:53180->12 pid:53179->20 pid:53178->77 pid:53177->47
pid:53181->6 pid:53180->56 pid:53179->96 pid:53178->78 pid:53177->18
</b></pre>
<p>The <tt>(sync)</tt> expression returns a list of all child PIDs,
and <tt>(until (receive cpid msg))</tt> is used to force a wait
until status messages are received for each of the child processes.</p>
<p>A timeout mechanism could be part of an <tt>until</tt> or <tt>while</tt>
loop to stop waiting after certain time has expired.</p>
<p>The examples show messages flowing from a child processes to
a parent process, in the same fashion messages could flow
into the other direction from parent to child processes. In that
case the parent process would use <tt>(send)</tt> to obtain a
list of child processes with place in their message queues.</p>
<h3>Messages containing code for evaluation</h3>
<p>The most powerful feature of the message functions is the ability
to send any newLISP expression, which then can be evaluated by the recipient.
The recipient uses <a href="#eval">eval</a> to evaluate the received
expression. Symbols contained in the expression are evaluated in the
receivers environment.</p>
<p>The following example shows how a parent process acts like a message
proxy. The parent receives messages from a child process A and routes them
to a second child process with ID B. In effect this implements messages
between child process peers. The implementation relies on the fact that
the recipient can evaluate expressions contained in messages received.
These expressions can be any valid newLISP statements:</p>
<!-- example -->
<pre>
#!/usr/local/bin/newlisp
; sender child process of the message
(set 'A (spawn 'result
(begin
(dotimes (i 3)
(set 'ppid (sys-info -4))
/* the statement in msg will be evaluated in the proxy */
(set 'msg '(until (send B (string "greetings from " A))))
(until (send ppid msg)))
(until (send ppid '(begin
(sleep 100) ; make sure all else is printed
(println "parent exiting ...\n")
(set 'finished true))))) true))
; receiver child process of the message
(set 'B (spawn 'result
(begin
(set 'ppid (sys-info -4))
(while true
(until (receive ppid msg))
(println msg)
(unless (= msg (string "greetings from " A))
(println "ERROR in proxy message: " msg)))) true))
(until finished (if (receive A msg) (eval msg))) ; proxy loop
(abort)
(exit)
</pre>
<p>Child process <tt>A</tt> sends three messages to <tt>B</tt>.
As this cannot be done directly <tt>A</tt> sends <tt>send</tt>
statements to the parent for evaluation. The statement:</p>
<pre>
(until (send pidB (string "greetings from " A)))
</pre>
<p>will be evaluated in the environment of the parent process. Even so the
variables <tt>A</tt> and <tt>B</tt> are bound to <tt>nil</tt> in
the sender process <tt>A</tt>, in the parent process they will be
bound to the correct process ID numbers.</p>
<p>After sending the three messages, the statement:</p>
<pre>
(set 'finished true)
</pre>
<p>is sent to the parent process. Once evaluated, it will cause the <tt>until</tt>
loop to finish.</p>
<p>For more details on <tt>send</tt> and <tt>receive</tt> and more examples
see the <a href="http://www.newlisp.org/CodePatterns.html">Code Patterns</a>
document.</p>
<br/><br/>
<a name="sequence"></a>
<h2><span class="function">sequence</span></h2>
<h4>syntax: (sequence <em>num-start</em> <em>num-end</em> [<em>num-step</em>])</h4>
<p>
Generates a sequence of numbers
from <em>num-start</em> to <em>num-end</em>
with an optional step size of <em>num-step</em>.
When <em>num-step</em> is omitted,
the value <tt>1</tt> (one) is assumed.
The generated numbers are of type integer
(when no optional step size is specified)
or floating point
(when the optional step size is present).
</p>
<!-- example -->
<pre>
(sequence 10 5) <span class='arw'>→</span> (10 9 8 7 6 5)
(sequence 0 1 0.2) <span class='arw'>→</span> (0 0.2 0.4 0.6 0.8 1)
(sequence 2 0 0.3) <span class='arw'>→</span> (2 1.7 1.4 1.1 0.8 0.5 0.2)
</pre>
<p>
Note that the step size must be a positive number,
even if sequencing from a higher to a lower number.
</p>
<p>
Use the <a href="#series">series</a> function
to generate geometric sequences.
</p>
<br/><br/>
<a name="series"></a>
<h2><span class="function">series</span></h2>
<h4>syntax: (series <em>num-start</em> <em>num-factor</em> <em>num-count</em>)<br/>
syntax: (series <em>exp-start</em> <em>func</em> <em>num-count</em>)</h4>
<p>In the first syntax, <tt>series</tt> creates a geometric sequence with <em>num-count</em>
elements starting with the element in <em>num-start</em>. Each subsequent element
is multiplied by <em>num-factor</em>. The generated numbers are always floating point
numbers.</p>
<p>When <em>num-count</em> is less than <tt>1</tt>, then <tt>series</tt>
returns an empty list.</p>
<!-- example -->
<pre>
(series 2 2 5) <span class='arw'>→</span> (2 4 8 16 32)
(series 1 1.2 6) <span class='arw'>→</span> (1 1.2 1.44 1.728 2.0736 2.48832)
(series 10 0.9 4) <span class='arw'>→</span> (10 9 8.1 7.29)
(series 0 0 10) <span class='arw'>→</span> (0 0 0 0 0 0 0 0 0 0)
(series 99 1 5) <span class='arw'>→</span> (99 99 99 99 99)
</pre>
<p>In the second syntax, <tt>series</tt> uses a function specified in <em>func</em>
to transform the previous expression in to the next expression:</p>
<!-- example -->
<pre>
; embed the function Phi: f(x) = 1 / (1 + x)
; see also http://en.wikipedia.org/wiki/Golden_ratio
(series 1 (fn (x) (div (add 1 x))) 20) <span class='arw'>→</span>
(1 0.5 0.6666666 0.6 0.625 0.6153846 0.619047 0.6176470 0.6181818
0.6179775 0.6180555 0.6180257 0.6180371 0.6180327 0.6180344
0.6180338 0.6180340 0.6180339 0.6180339 0.6180339)
; pre-define the function
(define (oscillate x)
(if (< x)
(+ (- x) 1)
(- (+ x 1)))
)
(series 1 oscillate 20) <span class='arw'>→</span>
(1 -2 3 -4 5 -6 7 -8 9 -10 11 -12 13 -14 15 -16 17 -18 19 -20)
; any data type is accepted as a start expression
(series "a" (fn (c) (char (inc (char c)))) 5) <span class='arw'>→</span> ("a" "b" "c" "d" "e")
; dependency of the two previous values in this fibonacci generator
(let (x 1) (series x (fn (y) (+ x (swap y x))) 10)) <span class='arw'>→</span>
(1 2 3 5 8 13 21 34 55 89)
</pre>
<p>The first example shows a series converging to the <em>golden ratio, φ</em>
(for any starting value). The second example shows how <em>func</em> can be defined
previously for better readability of the <tt>series</tt> statement.</p>
<p>The <tt>series</tt> function also updates the internal list <tt>$idx</tt>
index value, which can be used inside <em>func</em>.</p>
<p>Use the <a href="#sequence">sequence</a> function to generate arithmetic sequences.
</p>
<br/><br/>
<a name="set"></a>
<h2><span class="function">set</span> <a href="#destructive">!</a></h2>
<h4>syntax: (set <em>sym-1</em> <em>exp-1</em> [<em>sym-2</em> <em>exp-2</em> ... ])</h4>
<p>Evaluates both arguments and then assigns the result of <em>exp</em>
to the symbol found in <em>sym</em>. The <tt>set</tt> expression
returns the result of the assignment. The assignment is performed by copying
the contents of the right side into the symbol. The old contents of the symbol
are deleted. An error message results when trying to change the contents
of the symbols <tt>nil</tt>, <tt>true</tt>, or a context symbol.
<tt>set</tt> can take multiple argument pairs.</p>
<!-- example -->
<pre>
(set 'x 123) <span class='arw'>→</span> 123
(set 'x 'y) <span class='arw'>→</span> y
(set x "hello") <span class='arw'>→</span> "hello"
y <span class='arw'>→</span> "hello"
(set 'alist '(1 2 3)) <span class='arw'>→</span> (1 2 3)
(set 'x 1 'y "hello") <span class='arw'>→</span> "hello" ; multiple arguments
x <span class='arw'>→</span> 1
y <span class='arw'>→</span> "hello"
</pre>
<p>The symbol for assignment could be the result from another newLISP expression.
Expressions can refer to variables in the <tt>set</tt> expression.</p>
<pre>
(set 'lst '(x y z)) <span class='arw'>→</span> (x y z)
(set (first lst) 123) <span class='arw'>→</span> 123
x <span class='arw'>→</span> 123
(set 'a 10 'b (+ a a))
a <span class='arw'>→</span> 10, b <span class='arw'>→</span> 20
</pre>
<p>
Symbols can be set to lambda or lambda-macro expressions.
This operation is equivalent to using <a href="#define">define</a>
or <a href="#define-macro">define-macro</a>.</p>
<pre>
(set 'double (lambda (x) (+ x x)))
<span class='arw'>→</span> (lambda (x) (+ x x))
</pre>
<p>is equivalent to:</p>
<pre>
(define (double x) (+ x x))
<span class='arw'>→</span> (lambda (x) (+ x x))
</pre>
<p>is equivalent to:</p>
<pre>
(define double (lambda (x) (+ x x)))
<span class='arw'>→</span> (lambda (x) (+ x x))
</pre>
<p>
Use the <a href="#constant">constant</a> function (which works like <tt>set</tt>)
to protect the symbol from subsequent alteration. Using the <a href="#setq">setq</a>
or <a href="#setf">setf</a> function eliminates the need to quote the variable symbol.
</p>
<br/><br/>
<a name="set-locale"></a>
<h2><span class="function">set-locale</span></h2>
<h4>syntax: (set-locale [<em>str-locale</em> [<em>int-category</em>]])</h4>
<p>Reports or switches to a different locale on your operating system or platform.
When used without arguments, <em>set-locale</em> reports
the current locale being used. When <em>str-locale</em> is specified,
<em>set-locale</em> switches to the locale with all category options turned on
(<tt>LC_ALL</tt>). Placing an empty string in <em>str-locale</em>
switches to the default locale used on the current platform.</p>
<p><tt>set-locale</tt> returns either the current locale string and decimal
point string in a list or <tt>nil</tt> if the requested change could not
be performed.</p>
<!-- example -->
<pre>
; report current locale
(set-locale)
; set default locale of your platform and country
; return value shown when executing on German MS-Windows
(set-locale "") <span class='arw'>→</span> ("German_Germany.1252" ",")
(add 1,234 1,234) <span class='arw'>→</span> 2,468
</pre>
<p>By default, newLISP – if not enabled for UTF-8 – starts up with the POSIX C
default locale. This guarantees that newLISP's behavior will be identical on any
platform locale. On UTF-8 enabled versions of newLISP the locale of
the current platform is chosen.</p>
<pre>
; after non-UTF-8 newLISP start up
(set-locale) <span class='arw'>→</span> ("C" ".")
</pre>
<p>In <em>int-category</em> integer numbers may be specified as <em>category options</em>
for fine-tuning certain aspects of the locale, such as number display, date display,
and so forth. The options valid on your platform can be found in the C include file
<tt>locale.h</tt> and may be different on each platform. When no <em>int-category</em>
is specified, <tt>LC_ALL</tt> is used to turn on all options for that locale.</p>
<table>
<tr align="left"><th>Category</th><th>macOS, BSDs<br/>& MS Windows</th></tr>
<tr><td>LC_ALL</td><td>0</td></tr>
<tr><td>LC_COLLATE</td><td>1</td></tr>
<tr><td>LC_CTYPE</td><td>2</td></tr>
<tr><td>LC_MONETARY</td><td>3</td></tr>
<tr><td>LC_NUMERIC</td><td>4</td></tr>
<tr><td>LC_TIME</td><td>5</td></tr>
</table>
<br/>
<p>The default C locale uses the decimal dot, but most others use a decimal comma.</p>
<pre>
; with the current locale "en_US.UTF-8", only change the decimal separator
; to German locale comma on macOS. LC_NUMERIC is 4 on most platforms
(set-locale) <span class='arw'>→</span> ("en_US.UTF-8" ".")
(set-locale "de_DE.UTF-8" 4) <span class='arw'>→</span> ("de_DE.UTF-8" ",")
; mixed locale shows country setting for each category, 4 has changed
(set-locale) <span class='arw'>→</span> ("en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/de_DE.UTF-8/en_US.UTF-8/en_US.UTF-8" ",")
</pre>
<p>Note that using <tt>set-locale</tt> does not change the behavior
of regular expressions in newLISP. To localize the behavior of PCRE
(Perl Compatible Regular Expressions), newLISP must be compiled
with different character tables. See the file, LOCALIZATION,
in the newLISP source distribution for details.</p>
<p>
See also the chapter <a href="#switching">Switching the locale</a>.
</p>
<br/><br/>
<a name="set-ref"></a>
<h2><span class="function">set-ref</span> <a href="#destructive">!</a></h2>
<h4>syntax: (set-ref <em>exp-key</em> <em>list</em> <em>exp-replacement</em> [<em>func-compare</em>])</h4>
<p>Searches for <em>exp-key</em> in <em>list</em> and replaces the found element with
<em>exp-replacement</em>. The <em>list</em> can be nested. The system variables
<tt>$it</tt> contains the expression found and can be used in
<em>exp-replacement</em>. The function returns the new modified <em>list</em>.</p>
<!-- example -->
<pre>
(set 'data '(fruits (apples 123 44) (oranges 1 5 3)))
(set-ref 'apples data 'Apples) <span class='arw'>→</span> (fruits (Apples 123 44) (oranges 1 5 3))
data <span class='arw'>→</span> (fruits (Apples 123 44) (oranges 1 5 3)))
</pre>
<p><tt>data</tt> could be the context identifier of a default function for passing lists by reference:</p>
<pre>
(set 'db:db '(fruits (apples 123 44) (oranges 1 5 3)))
(define (update ct key value)
(set-ref key ct value))
(update db 'apples 'Apples) <span class='arw'>→</span> (fruits (Apples 123 44) (oranges 1 5 3))
(update db 'oranges 'Oranges) <span class='arw'>→</span> (fruits (Apples 123 44) (Oranges 1 5 3))
db:db <span class='arw'>→</span> (fruits (Apples 123 44) (Oranges 1 5 3))
</pre>
<p>For examples on how to use <em>func-compare</em> see
<a href="#set-ref-all">set-ref-all</a></p>
<p>For changing all occurrences of an element in a list use
<a href="#set-ref-all">set-ref-all</a>.</p>
<br/><br/>
<a name="set-ref-all"></a>
<h2><span class="function">set-ref-all</span> <a href="#destructive">!</a></h2>
<h4>syntax: (set-ref-all <em>exp-key</em> <em>list</em> <em>exp-replacement</em> [<em>func-compare</em>])</h4>
<p>Searches for <em>exp-key</em> in <em>list</em> and replaces each instance of the found element
with <em>exp-replacement</em>. The <em>list</em> can be nested. The system variable <tt>$it</tt>
contains the expression found and can be used in <em>exp-replacement</em>.
The system variable <tt>$count</tt> contains the number of replacements made.
The function returns the new modified <em>list</em>.</p>
<!-- example -->
<pre>
(set 'data '((monday (apples 20 30) (oranges 2 4 9)) (tuesday (apples 5) (oranges 32 1))))
(set-ref-all 'apples data "Apples")
<span class='arw'>→</span> ((monday ("Apples" 20 30) (oranges 2 4 9)) (tuesday ("Apples" 5) (oranges 32 1)))
$count <span class='arw'>→</span> 2
</pre>
<p>Using the default functor in the <tt>(<em>list</em> <em>key</em>)</tt> pattern allows the
list to be passed by reference to a user-defined function containing a <tt>set-ref-all</tt>
statement. This would result in less memory usage and higher speeds in when doing replacements
in large lists:</p>
<pre>
(set 'db:db '((monday (apples 20 30) (oranges 2 4 9)) (tuesday (apples 5) (oranges 32 1))))
(define (foo ctx)
(set-ref-all 'apples ctx "Apples")
)
(foo db)
<span class='arw'>→</span> ((monday ("Apples" 20 30) (oranges 2 4 9)) (tuesday ("Apples" 5) (oranges 32 1)))
</pre>
<p>When evaluating <tt>(foo db)</tt>, the list in <tt>db:db</tt> will be passed
by reference and <tt>set-ref-all</tt> will make the changes on the original, not on
a copy of <tt>db:db</tt>.</p>
<p>Like with <a href="#find">find</a>, <a href="#replace">replace</a>,
<a href="#ref">ref</a> and <a href="#ref-all">ref-all</a>,
complex searches can be expressed using
<a href="#match">match</a> or <a href="#unify">unify</a> in <em>func-compare</em>:</p>
<pre>
(set 'data '((monday (apples 20 30) (oranges 2 4 9)) (tuesday (apples 5) (oranges 32 1))))
(set-ref-all '(oranges *) data (list (first $it) (apply + (rest $it))) match)
<span class='arw'>→</span> ( ... (oranges 15) ... (oranges 33) ... )
</pre>
<p>The example sums all numbers found in records starting with
the symbol <tt>oranges</tt>. The found items appear in <tt>$it</tt></p>
<p>See also <a href="#set-ref">set-ref</a> which replaces only the first element found.</p>
<br/><br/>
<a name="setq"></a> <a name="setf"></a>
<h2><span class="function">setq setf</span> <a href="#destructive">!</a></h2>
<h4>syntax: (setq <em>place-1</em> <em>exp-1</em> [<em>place-2</em> <em>exp-2</em> ... ])</h4>
<p>
<tt>setq</tt> and <tt>setf</tt> work alike in newLISP and set the contents
of a symbol, list, array or string or of a list, array or string place reference. Like
<a href="#set">set</a>, <tt>setq</tt> and <tt>setf</tt> can take multiple argument pairs.
Although both <tt>setq</tt> and <tt>setf</tt> point to the same built-in function internally,
throughout this manual <tt>setq</tt> is used when setting a symbol reference and <tt>setf</tt>
is used when setting list or array references.</p>
<!-- example -->
<pre>
(setq x 123) <span class='arw'>→</span> 123
; multiple arguments
(setq x 1 y 2 z 3) <span class='arw'>→</span> 3
x <span class='arw'>→</span> 1
y <span class='arw'>→</span> 2
z <span class='arw'>→</span> 3
; with nth or implicit indices
(setq L '(a b (c d) e f g))
(setf (L 1) 'B) <span class='arw'>→</span> B
; or the same
(setf (nth 1 L) 'B)
L <span class='arw'>→</span> (a B (c d) e f g)
(setf (L 2 0) 'C) <span class='arw'>→</span> C
L <span class='arw'>→</span> (a B (C d) e f g)
(setf (L 2) 'X)
L <span class='arw'>→</span> (A B X e f g)
; with assoc
(setq L '((a 1) (b 2)))
(setf (assoc 'b L) '(b 3)) <span class='arw'>→</span> (b 3)
L <span class='arw'>→</span> ((a 1) (b 3))
; with lookup
(setf (lookup 'b L) 30) <span class='arw'>→</span> 30
L <span class='arw'>→</span> ((a 1) (b 30))
; several list accessors can be nested
(setq L '((a 1) (b 2)))
(push 'b (setf (assoc 'b l) '(b 4))) 'b) <span class='arw'>→</span> b
L <span class='arw'>→</span>((a 1) (b b 4)))
; on strings
(set 's "NewISP")
(setf (s 0) "n") <span class='arw'>→</span> "n"
s <span class='arw'>→</span> "newISP"
(setf (s 3) "LI") <span class='arw'>→</span> "LI"
s <span class='arw'>→</span> "newLISP"
</pre>
<p>Often the new value set is dependent on the old value. <tt>setf</tt> can
use the anaphoric system variable <tt>$it</tt> to refer to the old
value inside the <tt>setf</tt> expression:</p>
<pre>
(setq L '((apples 4) (oranges 1)))
(setf (L 1 1) (+ $it 1)) <span class='arw'>→</span> 2
L <span class='arw'>→</span> ((apples 4) (oranges 2))
(set 's "NewLISP")
(setf (s 0) (lower-case $it)) <span class='arw'>→</span> "n")
s <span class='arw'>→</span> "newLISP"
</pre>
<br/><br/>
<a name="sgn"></a>
<h2><span class="function">sgn</span></h2>
<h4>syntax: (sgn <em>num</em>)<br/>
syntax: (sgn <em>num</em> <em>exp-1</em> [<em>exp-2</em> [<em>exp-3</em>]])</h4>
<p>
In the first syntax,
the <tt>sgn</tt> function is a logical function
that extracts the sign of a real number
according to the following rules:
</p>
<p>
<b><em>
x > <tt>0</tt> : sgn(x) = 1<br/>
x < <tt>0</tt> : sgn(x) = -1<br/>
x = <tt>0</tt> : sgn(x) = <tt>0</tt>
</em></b>
</p>
<!-- example -->
<pre>
(sgn -3.5) <span class='arw'>→</span> -1
(sgn 0) <span class='arw'>→</span> 0
(sgn 123) <span class='arw'>→</span> 1
</pre>
<p>In the second syntax, the result of evaluating
one of the optional expressions
<em>exp-1</em>, <em>exp-2</em>, or <em>exp-3</em> is returned,
instead of <tt>-1</tt>, <tt>0</tt>, or <tt>1</tt>.
If <em>exp-n</em> is missing for the case triggered,
then <tt>nil</tt> is returned.</p>
<!-- example -->
<pre>
(sgn x -1 0 1) ; works like (sgn x)
(sgn x -1 1 1) ; -1 for negative x all others 1
(sgn x nil true true) ; nil for negative else true
(sgn x (abs x) 0) ; (abs x) for x < 0, 0 for x = 0, else nil
</pre>
<p>
Any expression or constant can be used for
<em>exp-1</em>, <em>exp-2</em>, or <em>exp-3</em>.
</p>
<br/><br/>
<a name="share"></a>
<h2><span class="function">share</span></h2>
<h4>syntax: (share)<br/>
syntax: (share <em>int-address-or-handle</em>)<br/>
syntax: (share <em>int-address-or-handle</em> <em>exp-value</em>)<br/><br/>
syntax: (share <em>nil</em> <em>int-address</em>)</h4>
<p>
Accesses shared memory
for communicating between
several newLISP processes.
When called without arguments,
<tt>share</tt> requests a page of shared memory
from the operating system.
This returns a memory address on Linux/Unix
and a handle on MS Windows,
which can then be
assigned to a variable
for later reference.
This function is not available on OS/2.
</p>
<p>To set the contents of shared memory, use the third syntax of <tt>share</tt>.
Supply a shared memory address on Linux/Unix or a handle on MS Windows in
<em>int-address-or-handle</em>, along with an integer, float, string
expression or any other expression (since v.10.1.0) supplied
in <em>exp-value</em>. Using this syntax, the value supplied in <em>exp-value</em>
is also the return value.</p>
<p>To access the contents of shared memory,
use the second syntax of <tt>share</tt>,
supplying only the shared memory address or handle.
The return value will be any constant or expression (since v.10.1.0)
written previously into the memory.
If the memory has not been previously set to a value,
<tt>nil</tt> will be returned.</p>
<p>Only available on Unix-like operating systems,
the last syntax unmaps a shared memory address.
Note that using a shared address after unmapping it
will crash the system.</p>
<p>Memory can be shared between parent and child processes,
but not between independent processes.</p>
<p>Since 10.1.0 size of share objects can exceed the shared memory pagesize
of the operating system. For objects bigger than the pagesize, newLISP internally
uses files for sharing. This requires a <tt>/tmp</tt> directory on Unix-like
operating system. On MS Windows systems the environment variable <tt>TEMP</tt>
must be set.</p>
<!-- example -->
<pre>
(set 'mem (share))
(share mem 123) <span class='arw'>→</span> 123
(share mem) <span class='arw'>→</span> 123
(share mem "hello world") <span class='arw'>→</span> "hello world"
(share mem) <span class='arw'>→</span> "hello world"
(share mem true) <span class='arw'>→</span> true
(share mem) <span class='arw'>→</span> true
(share mem '(+ 1 2 3 4)) <span class='arw'>→</span> (+ 1 2 3 4)
(share mem) <span class='arw'>→</span> (+ 1 2 3 4)
; expressions received can be evaluated (since v.10.1.0)
(eval (share mem)) <span class='arw'>→</span> 10
(share nil mem) <span class='arw'>→</span> true ; unmap only on Unix
</pre>
<p>Expression read from shared memory and evaluated, will be evaluated
in the recipient's process environment.</p>
<p>Note that shared memory access between different processes
should be synchronized using a <a href="#semaphore">semaphore</a>.
Simultaneous access to shared memory can crash the running process.</p>
<p>For a more comprehensive example of using shared memory in a multi process
Linux/Unix application, see the file <tt>example/prodcons.lsp</tt> in the
newLISP source distribution.</p>
<br/><br/>
<a name="signal"></a>
<h2><span class="function">signal</span></h2>
<h4>syntax: (signal <em>int-signal</em> <em>sym-event-handler</em> | <em>func-event-handler</em>)<br/>
syntax: (signal <em>int-signal</em> "ignore" | "default" | "reset")<br/>
syntax: (signal <em>int-signal</em>)</h4>
<p>
Sets a user-defined handler in <em>sym-event-handler</em> for a signal specified in <em>int-signal</em>
or sets to a function expression in <em>func-event-handler</em>.</p>
<p>A parameter following <em>int-signal</em> is not evaluated.</p>
<p>If no signal handler is specified any of the string constants <tt>"ignore"</tt>,
<tt>"default"</tt> or <tt>"reset"</tt> can be specified in either lower or upper case
or simply using the first letter of the option string. When signal setup with any
of these three options has been successful, <tt>true</tt> is returned.</p>
<p>Using <tt>"ignore"</tt> will make newLISP ignore the signal. Using <tt>"default"</tt>
will set the handler to the default handler of the underlying platform OS. The <tt>"reset"</tt>
option will restore the handler to newLISP startup state.</p>
<p>On startup, newLISP either specifies an empty newLISP handler or a Ctrl-C handler for
<tt>SIGINT</tt> and a <tt>waitpipd(-1, 0, WNOHANG)</tt> C-call for <tt>SIGCHLD</tt>.
</p>
<p>Different signals are available on different OS platforms and Linux/Unix flavors.
The numbers to specify in <em>int-signal</em> also differ from platform-to-platform.
Valid values can normally be extracted from a file found in <tt>/usr/include/sys/signal.h</tt>
or <tt>/usr/include/signal.h</tt>.</p>
<p>Some signals make newLISP exit even after a user-defined handler
has been specified and executed (e.g., signal SIGKILL).
This behavior may also be different on different platforms.</p>
<!-- example -->
<pre>
(constant 'SIGINT 2)
(define (ctrlC-handler) (println "ctrl-C has been pressed"))
(signal SIGINT 'ctrlC-handler)
; now press ctrl-C
; the following line will appear
; this will only work in an interactive terminal window
ctrl-C has been pressed
; reset treatment of signal 2 to startup conditions
(signal SIGINT "reset")
</pre>
<p> On MS Windows, the above example would execute the handler before exiting newLISP.
On most Linux/Unix systems, newLISP would stay loaded and the prompt would appear
after hitting the [enter] key.</p>
<p> Instead of specifying a symbol containing the signal handler,
a function can be specified directly. The signal number is passed as a parameter:
</p>
<pre>
(signal SIGINT exit) <span class='arw'>→</span> $signal-2
(signal SIGINT (fn (s) (println "signal " s " occurred")))
</pre>
<p> Note that the signal SIGKILL (9 on most platforms) will always terminate the
application regardless of an existing signal handler.</p>
<p>The signal could have been sent from another shell on the same computer:</p>
<pre>
kill -s SIGINT 2035
</pre>
<p>In this example, <tt>2035</tt> is the process ID of the running newLISP.</p>
<p>The signal could also have been sent from another newLISP application using
the function <a href="#destroy">destroy</a>:</p>
<pre>
(destroy 2035) <span class='arw'>→</span> true
</pre>
<p>If newLISP receives a signal while evaluating another function,
it will still accept the signal and the handler function will be executed:</p>
<pre>
; only on macOS, BSDs and Linux, not on Windows
(constant 'SIGINT 2)
(define (ctrlC-handler) (println "ctrl-C has been pressed"))
(signal SIGINT 'ctrlC-handler)
;; or
(signal SIGINT ctrlC-handler)
(while true (sleep 300) (println "busy"))
;; generates following output
busy
busy
busy
ctrl-C has been pressed
busy
busy
…
</pre>
<p>Specifying only a signal number will return either the name of
the currently defined handler function or <tt>nil</tt>.
</p>
<p>The user-defined signal handler can pass the signal number as a parameter.</p>
<pre>
(define (signal-handler sig)
(println "received signal: " sig))
;; set all signals from 1 to 8 to the same handler
(for (s 1 8)
(signal s 'signal-handler))
</pre>
<p>In this example, all signals from 1 to 8 are set to the same handler.</p>
<br/><br/>
<a name="silent"></a>
<h2><span class="function">silent</span></h2>
<h4>syntax: (silent [<em>exp-1</em> [<em>exp-2</em> ... ]])</h4>
<p>
Evaluates one or more expressions in <em>exp-1</em>—.
<tt>silent</tt> is similar to <a href="#begin">begin</a>,
but it suppresses console output
of the return value
and the following prompt.
It is often used
when communicating from
a remote application with newLISP
(e.g., GUI front-ends
or other applications controlling newLISP),
and the return value is of no interest.
</p>
<p>
Silent mode is reset when returning to a prompt.
This way,
it can also be used without arguments
in a batch of expressions.
When in interactive mode,
hit [enter] twice after a statement
using <tt>silent</tt>
to get the prompt back.
</p>
<!-- example -->
<pre>
(silent (my-func)) ; same as next
(silent) (my-func) ; same effect as previous
</pre>
<br/><br/>
<a name="sin"></a>
<h2><span class="function">sin</span></h2>
<h4>syntax: (sin <em>num-radians</em>)</h4>
<p>
Calculates the sine function
from <em>num-radians</em>
and returns the result.
</p>
<!-- example -->
<pre>
(sin 1) <span class='arw'>→</span> 0.8414709838
(set 'pi (mul 2 (acos 0))) <span class='arw'>→</span> 3.141592654
(sin (div pi 2)) <span class='arw'>→</span> 1
</pre>
<br/><br/>
<a name="sinh"></a>
<h2><span class="function">sinh</span></h2>
<h4>syntax: (sinh <em>num-radians</em>)</h4>
<p>Calculates the hyperbolic sine of <em>num-radians</em>.
The hyperbolic sine is defined mathematically as: <em>(exp (x) - exp (-x)) / 2</em>.
An overflow to <tt>inf</tt> may occur if <em>num-radians</em> is too large.</p>
<!-- example -->
<pre>
(sinh 1) <span class='arw'>→</span> 1.175201194
(sinh 10) <span class='arw'>→</span> 11013.23287
(sinh 1000) <span class='arw'>→</span> inf
(sub (tanh 1) (div (sinh 1) (cosh 1))) <span class='arw'>→</span> 0
</pre>
<br/><br/>
<a name="sleep"></a>
<h2><span class="function">sleep</span></h2>
<h4>syntax: (sleep <em>num-milliseconds</em>)</h4>
<p>Gives up CPU time to other processes for the amount of
milliseconds specified in <em>num-milli-seconds</em>.
</p>
<!-- example -->
<pre>
(sleep 1000) ; sleeps 1 second
(sleep 0.5) ; sleeps 500 micro seconds
</pre>
<p>On some platforms, <tt>sleep</tt> is only available with a resolution
of one second. In this case, the parameter <em>int-milli-seconds</em>
will be rounded to the nearest full second.</p>
<p>A <tt>sleep</tt> may be cut short by a finishing child process started
with <a href="#fork">fork</a> or <a href="#spawn">spawn</a>.</p>
<br/><br/>
<a name="slice"></a>
<h2><span class="function">slice</span></h2>
<h4>syntax: (slice <em>list</em> <em>int-index</em> [<em>int-length</em>])<br/>
syntax: (slice <em>array</em> <em>int-index</em> [<em>int-length</em>])<br/>
syntax: (slice <em>str</em> <em>int-index</em> [<em>int-length</em>])</h4>
<p>In the first form, <tt>slice</tt> copies a sublist
from a <em>list</em>. The original list is left unchanged.
The sublist extracted starts at index <em>int-index</em>
and has a length of <em>int-length</em>. If <em>int-length</em> is negative,
<tt>slice</tt> will take the parameter as offset counting from the end and copy
up to but not including that offset. If the parameter is omitted,
<tt>slice</tt> copies all of the elements to the end of the list.</p>
<p>
See also <a href="#indexing">Indexing elements of strings and lists</a>.
</p>
<!-- example -->
<pre>
(slice '(a b c d e f) 3 2) <span class='arw'>→</span> (d e)
(slice '(a b c d e f) 2 -2) <span class='arw'>→</span> (c d)
(slice '(a b c d e f) 2) <span class='arw'>→</span> (c d e f)
(slice '(a b c d e f) -4 3) <span class='arw'>→</span> (c d e)
(set 'A (array 3 2 (sequence 1 6))) <span class='arw'>→</span> ((1 2) (3 4) (5 6))
(slice A 1 2) <span class='arw'>→</span> ((3 4) (5 6))
</pre>
<p>
In the second form, a part of the string in <em>str</em>
is extracted. <em>int-index</em> contains the start index
and <em>int-length</em> contains the length of the substring.
If <em>int-length</em> is not specified, everything to the end of the string is extracted.
<tt>slice</tt> also works on string buffers containing binary data like <tt>0</tt>'s (zeroes).
It operates on byte boundaries rather than character boundaries.
See also <a href="#indexing">Indexing elements of strings and lists</a>.</p>
<p>Note that <tt>slice</tt> always works on single 8-bit byte boundaries for
offset and length numbers, even when running the UTF-8 enabled version of newLISP.</p>
<!-- example -->
<pre>
(slice "Hello World" 6 2) <span class='arw'>→</span> "Wo"
(slice "Hello World" 0 5) <span class='arw'>→</span> "Hello"
(slice "Hello World" 6) <span class='arw'>→</span> "World"
(slice "newLISP" -4 2) <span class='arw'>→</span> "LI"
; UTF-8 strings are converted to a list, then joined again
(join (slice (explode "ΩΨΧΦΥΤΣΣΡΠΟΞΝΜΛΚΙΘΗΖΕΔΓΒΑ") 3 5)) <span class='arw'>→</span> "ΦΥΤΣΣ"
</pre>
<p>
Note that an <em>implicit slice</em>
is available for lists.
See the chapter <a href="#implicit_rest_slice">Implicit rest and slice</a>.
</p>
<p>
Be aware that <a href="#slice">slice</a>
always works on byte boundaries
rather than character boundaries
in the UTF-8–enabled version of newLISP.
As a result,
<a href="#slice">slice</a> can be used
to manipulate binary content.
</p>
<br/><br/>
<a name="sort"></a>
<h2><span class="function">sort</span> <a href="#destructive">!</a></h2>
<h4>syntax: (sort <em>list</em> [<em>func-compare</em>])<br/>
syntax: (sort <em>array</em> [<em>func-compare</em>])</h4>
<p>All members in <em>list</em> or <em>array</em> are sorted in ascending order.
Anything may be sorted, regardless of the types.
When members are themselves lists or arrays, each element
is recursively compared. If two expressions
of different types are compared, the lower type is sorted
before the higher type in the following order:
</p>
<pre>
Atoms: nil, true, integer or float, string, symbol, primitive
Lists: quoted expression, list, lambda, lambda-macro
</pre>
<p>The <tt>sort</tt> is destructive, changing the order of the elements in the
original list or array and returning the sorted list or array. It is a stable
binary merge-sort with approximately <em>O(n log2 n)</em> performance
preserving the order of adjacent elements which are equal. When
<em>func-compare</em> is used it must work with either <tt><=</tt> or
<tt>>=</tt> operators to be stable.</p>
<p>An optional comparison operator, user-defined function,
or anonymous function can be supplied. The functor or operator
can be given with or without a preceding quote.</p>
<!-- example -->
<pre>
(sort '(v f r t h n m j)) <span class='arw'>→</span> (f h j m n r t v)
(sort '((3 4) (2 1) (1 10))) <span class='arw'>→</span> ((1 10) (2 1) (3 4))
(sort '((3 4) "hi" 2.8 8 b)) <span class='arw'>→</span> (2.8 8 "hi" b (3 4))
(set 's '(k a l s))
(sort s) <span class='arw'>→</span> (a k l s)
(sort '(v f r t h n m j) >) <span class='arw'>→</span> (v t r n m j h f)
(sort s <) <span class='arw'>→</span> (a k l s)
(sort s >) <span class='arw'>→</span> (s l k a)
s <span class='arw'>→</span> (s l k a)
;; define a comparison function
(define (comp x y)
(>= (last x) (last y)))
(set 'db '((a 3) (g 2) (c 5)))
(sort db comp) <span class='arw'>→</span> ((c 5) (a 3) (g 2))
;; use an anonymous function
(sort db (fn (x y) (>= (last x) (last y))))
</pre>
<br/><br/>
<a name="source"></a>
<h2><span class="function">source</span></h2>
<h4>syntax: (source)<br/>
syntax: (source <em>sym-1</em> [<em>sym-2</em> ... ])</h4>
<p>
Works almost identically to <a href="#save">save</a>,
except symbols and contexts get serialized to a string
instead of being written to a file.
Multiple variable symbols,
definitions, and contexts
can be specified.
If no argument is given,
<tt>source</tt> serializes the entire
newLISP workspace.
When context symbols are serialized,
any symbols contained within that context
will be serialized, as well.
Symbols containing <tt>nil</tt>
are not serialized.
System symbols beginning with the <tt>$</tt> (dollar sign) character
are only serialized when mentioned explicitly.
</p>
<p>
Symbols not belonging to the current context
are written out with their context prefix.
</p>
<!-- example -->
<pre>
(define (double x) (+ x x))
(source 'double) <span class='arw'>→</span> "(define (double x)\n (+ x x))\n\n"
</pre>
<p>
As with <a href="#save">save</a>,
the formatting of line breaks
and leading spaces or tabs
can be controlled using the
<a href="#pretty-print">pretty-print</a> function.
</p>
<br/><br/>
<a name="spawn"></a>
<h2><span class="function">spawn</span></h2>
<h4>syntax: (spawn <em>sym</em> <em>exp</em> [true])</h4>
<p>Launches the evaluation of <em>exp</em> as a child process and immediately
returns. The symbol in <em>sym</em> is quoted and receives the result of the
evaluation when the function <a href="#sync">sync</a> is executed. <tt>spawn</tt>
is used to start parallel evaluation of expressions in concurrent processes.
If newLISP is running on a multi-core CPU, the underlying operating system
will distribute spawned processes onto different cores, thereby evaluating
expressions in parallel and speeding up overall processing.</p>
<p>The optional <tt>true</tt> parameter must be set if <a href="#send">send</a>
or <a href="#receive">receive</a> is used to communicated with the child
process spawned.</p>
<p>The function <tt>spawn</tt> is not available on MS Windows.</p>
<p>After successfully starting a child process, the <tt>spawn</tt> expression
returns the process id of the forked process. The following examples shows
how the calculation of a range of prime numbers can be split up in four sub ranges to
speed up the calculation of the whole range:</p>
<!-- example -->
<pre>
; calculate primes in a range
(define (primes from to)
(local (plist)
(for (i from to)
(if (= 1 (length (factor i)))
(push i plist -1)))
plist))
; start child processes
(set 'start (time-of-day))
(spawn 'p1 (primes 1 1000000))
(spawn 'p2 (primes 1000001 2000000))
(spawn 'p3 (primes 2000001 3000000))
(spawn 'p4 (primes 3000001 4000000))
; wait for a maximum of 60 seconds for all tasks to finish
(sync 60000) ; returns true if all finished in time
; p1, p2, p3 and p4 now each contain a lists of primes
(println "time spawn: " (- (time-of-day) start))
(println "time simple: " (time (primes 1 4000000)))
(exit)
</pre>
<p>On a 1.83 Intel Core 2 Duo processor, the above example will finish
after about 13 seconds. Calculating all primes using <tt>(primes 1 4000000)</tt>
would take about 20 seconds.</p>
<p>The <a href="#sync">sync</a> function will wait for all child processes
to finish and receive the evaluation results in the symbols <tt>p1</tt> to
<tt>p4</tt>. When all results are collected, <tt>sync</tt>
will stop waiting and return <tt>true</tt>. When the time specified was
insufficient , <tt>sync</tt> will return <tt>nil</tt> and another
<tt>sync</tt> statement could be given to further wait and collect results.
A short timeout time can be used to do other processing during waiting:</p>
<pre>
(spawn 'p1 (primes 1 1000000))
(spawn 'p2 (primes 1000001 2000000))
(spawn 'p3 (primes 2000001 3000000))
(spawn 'p4 (primes 3000001 4000000))
; print a dot after each 2 seconds of waiting
(until (sync 2000) (println "."))
</pre>
<p><tt>sync</tt> when used without any parameters, will not wait but immediately
return a list of pending child processes. For the <tt>primes</tt> example, the following
<tt>sync</tt> expression could be used to watch the progress:</p>
<pre>
(spawn 'p1 (primes 1 1000000))
(spawn 'p2 (primes 1000001 2000000))
(spawn 'p3 (primes 2000001 3000000))
(spawn 'p4 (primes 3000001 4000000))
; show a list of pending process ids after each three-tenths of a second
(until (sync 300) (println (sync)))
</pre>
<p>A parameter of <tt>-1</tt> tells <tt>sync</tt> to wait for a very long time
(~ 1193 hours). A better solution would be to wait for a maximum time,
then <a href="#abort">abort</a> all pending child processes:</p>
<pre>
(spawn 'p1 (primes 1 1000000))
(spawn 'p2 (primes 1000001 2000000))
(spawn 'p3 (primes 2000001 3000000))
(spawn 'p4 (primes 3000001 4000000))
; wait for one minute, then abort and
; report unfinished PIDs
(if (not (sync 60000))
(begin
(println "aborting unfinished: " (sync))
(abort))
(println "all finished successfully")
)
</pre>
<p>The three functions <tt>spawn</tt>, <tt>sync</tt> and <tt>abort</tt>
are part of the <a href="http://supertech.csail.mit.edu/cilk/">Cilk</a> API.
The original implementation also does sophisticated scheduling and allocation
of threaded tasks to multiple CPU cores. The newLISP implementation of the Cilk API
lets the operating system of the underlying platform handle process management.
Internally, the API is implemented using the Unix libc functions <tt>fork()</tt>,
<tt>waitpid()</tt> and <tt>kill()</tt>. Intercommunications between processes
and child processes is done using the <a href="#send">send</a> and
<a href="#receive">receive</a> functions.</p>
<p><tt>spawn</tt> can be called recursively from spawned subtasks:</p>
<pre>
(define (fibo n)
(local (f1 f2)
(if(< n 2) 1
(begin
(spawn 'f1 (fibo (- n 1)))
(spawn 'f2 (fibo (- n 2)))
(sync 10000)
(+ f1 f2)))))
(fibo 7) <span class='arw'>→</span> 21
</pre>
<p>With <tt>(fibo 7)</tt> 41 processes will be generated. Although the above
code shows the working of the Cilk API in a recursive application,
it would not be practical, as the overhead required to spawn subtasks
is much higher than the time saved through parallelization.</p>
<p>Since version 10.1 a <a href="#send">send</a> and <a href="#receive">receive</a>
message functions are available for communications between parent and child processes.
Using these functions any data or expression of any size can be transferred.
Additionally messaged expressions can be evaluated in the recipient's environment.</p>
<p><a href="#fork">fork</a> and <a href="#process">process</a> are other functions
to start newLISP processes.</p>
<br/><br/>
<a name="sqrt"></a>
<h2><span class="function">sqrt</span></h2>
<h4>syntax: (sqrt <em>num</em>)</h4>
<p>
Calculates the square root from
the expression in <em>num</em>
and returns the result.
</p>
<!-- example -->
<pre>
(sqrt 10) <span class='arw'>→</span> 3.16227766
(sqrt 25) <span class='arw'>→</span> 5
</pre>
<br/><br/>
<a name="ssq"></a>
<h2><span class="function">ssq</span></h2>
<h4>syntax: (ssq <em>list-vector | array-vector</em>)</h4>
<p>Calculates the sum of squares of numbers in a vector in
<em>list-vector</em> or <em>array-vector</em>.</p>
<!-- example -->
<pre>
(set 'vector (sequence 1 10))
(ssq vector) <span class='arw'>→</span> 385
(set 'vector (array 10 (sequence 1 10)))
(ssq vector) <span class='arw'>→</span> 385
</pre>
<br/><br/>
<a name="starts-with"></a>
<h2><span class="function">starts-with</span></h2>
<h4>syntax: (starts-with <em>str</em> <em> str-key</em> [<em>num-option</em>])<br/>
syntax: (starts-with <em>list</em> [<em>exp</em>])</h4>
<p>In the first version, <tt>starts-with</tt> checks if the string <em>str</em>
starts with a key string in <em>str-key</em> and returns <tt>true</tt> or <tt>nil</tt>
depending on the outcome.</p>
<p>If a regular expression number is specified in <em>num-option</em>,
<em>str-key</em> contains a regular expression pattern.
See <a href="#regex">regex</a> for valid <em>option</em> numbers. </p>
<!-- example -->
<pre>
(starts-with "this is useful" "this") <span class='arw'>→</span> true
(starts-with "this is useful" "THIS") <span class='arw'>→</span> nil
;; use regular expressions
(starts-with "this is useful" "THIS" 1) <span class='arw'>→</span> true
(starts-with "this is useful" "this|that" 0) <span class='arw'>→</span> true
</pre>
<p>In the second version, <tt>starts-with</tt> checks to see if a list
starts with the list element in <em>exp</em>. <tt>true</tt> or <tt>nil</tt>
is returned depending on outcome.</p>
<!-- example -->
<pre>
(starts-with '(1 2 3 4 5) 1) <span class='arw'>→</span> true
(starts-with '(a b c d e) 'b) <span class='arw'>→</span> nil
(starts-with '((+ 3 4) b c d) '(+ 3 4)) <span class='arw'>→</span> true
</pre>
<p>
See also the <a href="#ends-with">ends-with</a> function.
</p>
<br/><br/>
<a name="stats"></a>
<h2><span class="function">stats</span></h2>
<h4>syntax: (stats <em>list-vector</em>)</h4>
<p>The functions calculates statistical values of central tendency and distribution moments
of values in <em>list-vector</em>. The following values are returned by <tt>stats</tt>
in a list:</p>
<table>
<tr align="left"><th>name</th><th>description</th></tr>
<tr><td>N</td><td>Number of values</td></tr>
<tr><td>mean</td><td>Mean of values</td></tr>
<tr><td>avdev</td><td>Average deviation from mean value</td></tr>
<tr><td>sdev</td><td>Standard deviation (population estimate)</td></tr>
<tr><td>var</td><td>Variance (population estimate)</td></tr>
<tr><td>skew</td><td>Skew of distribution</td></tr>
<tr><td>kurt</td><td>Kurtosis of distribution</td></tr>
</table>
<br/>
<!-- example -->
<p>The following example uses the list output from the <tt>stats</tt> expression as an
argument for the <a href="#format">format</a> statement:</p>
<pre>
(set 'data '(90 100 130 150 180 200 220 300 350 400))
(println (format [text]
N = %5d
mean = %8.2f
avdev = %8.2f
sdev = %8.2f
var = %8.2f
skew = %8.2f
kurt = %8.2f
[/text] (stats data)))
; outputs the following
N = 10
mean = 212.00
avdev = 84.40
sdev = 106.12
var = 11262.22
skew = 0.49
kurtosis = -1.34
</pre>
<br/><br/>
<a name="string"></a>
<h2><span class="function">string</span></h2>
<h4>syntax: (string <em>exp-1</em> [<em>exp-2</em> ... ])</h4>
<p>
Translates into a string anything that results
from evaluating <em>exp-1</em>—.
If more than one expression is specified,
the resulting strings are concatenated.
</p>
<!-- example -->
<pre>
(string 'hello) <span class='arw'>→</span> "hello"
(string 1234) <span class='arw'>→</span> "1234"
(string '(+ 3 4)) <span class='arw'>→</span> "(+ 3 4)"
(string (+ 3 4) 8) <span class='arw'>→</span> "78"
(string 'hello " " 123) <span class='arw'>→</span> "hello 123"
</pre>
<p>
If a buffer passed to <tt>string</tt>
contains <tt>\000</tt>,
only the string up to the first terminating zero will be copied:
</p>
<pre>
(set 'buff "ABC\000\000\000") <span class='arw'>→</span> "ABC\000\000\000"
(length buff) <span class='arw'>→</span> 6
(string buff) <span class='arw'>→</span> "ABC"
(length (string buff)) <span class='arw'>→</span> 3
</pre>
<p>
Use the <a href="#append">append</a>
and <a href="#join">join</a>
(allows the joining string
to be specified) functions
to concatenate strings containing zero bytes.
Use the <a href="#source">source</a> function
to convert a lambda expression
into its newLISP source string representation.
</p>
<br/><br/>
<a name="stringp"></a>
<h2><span class="function">string?</span></h2>
<h4>syntax: (string? <em>exp</em>)</h4>
<p>
Evaluates <em>exp</em> and tests
to see if it is a string.
Returns <tt>true</tt> or <tt>nil</tt>
depending on the result.
</p>
<!-- example -->
<pre>
(set 'var "hello")
(string? var) <span class='arw'>→</span> true
</pre>
<br/><br/>
<a name="struct"></a>
<h2><span class="function">struct</span></h2>
<h4>syntax: (struct <em>symbol</em> [<em>str-data-type</em> ... ])</h4>
<p>The <tt>struct</tt> function can be used to define aggregate data types for
usage with the extended syntax of <a href="#import">import</a>,
<a href="#pack">pack</a> and <a href="#unpack">unpack</a>, available on all
versions of newLISP compiled with <i>libffi</i>. This allows importing
functions which take C-language <em>struct</em> data types or pointers to these
aggregate data types.</p>
<p>The following example illustrates the usage of <tt>struct</tt> together with
the C data functions <tt>localtime</tt> and <tt>asctime</tt>. The <tt>localtime</tt>
functions works similar to the built-in <a href="#now">now</a> function. The
<tt>asctime</tt> function takes the numerical data output by <tt>localtime</tt>
and formats these to readable text.</p>
<pre>
/* The C function prototypes for the functions to import */
struct tm * localtime(const time_t *clock);
char * asctime(const struct tm *timeptr);
/* the tm struct aggregating different time related values */
struct tm {
int tm_sec; /* seconds after the minute [0-60] */
int tm_min; /* minutes after the hour [0-59] */
int tm_hour; /* hours since midnight [0-23] */
int tm_mday; /* day of the month [1-31] */
int tm_mon; /* months since January [0-11] */
int tm_year; /* years since 1900 */
int tm_wday; /* days since Sunday [0-6] */
int tm_yday; /* days since January 1 [0-365] */
int tm_isdst; /* Daylight Savings Time flag */
long tm_gmtoff; /* offset from CUT in seconds */ /*** not on Windows ***/
char *tm_zone; /* timezone abbreviation */ /*** not on Windows ***/
};
</pre>
<p>Function import and definition of the structure data type in newLISP:</p>
<pre>
;; for pointers to structs always use void*
;; as a library use msvcrt.dll on Windows or libc.so on Unix.
;; The tm struct type is configured for macOS and Linux.
;; On other OS the tm structure may be different
(import "libc.dylib" "asctime" "char*" "void*")
(import "libc.dylib" "localtime" "void*" "void*")
; definition of the struct
(struct 'tm "int" "int" "int" "int" "int" "int" "int" "int" "int" "long" "char*")
;; use import and struct
; todays date number (seconds after 1970 also called Unix epoch time)
(set 'today (date-value)) <span class='arw'>→</span> 1324134913
;; the time value is passed by it's address
;; localtime retirns a pointer to a tm struct
(set 'ptr (localtime (address today))) <span class='arw'>→</span> 2896219696
; unpack the tm struct (7:15:13 on the 17th etc.)
(unpack tm ptr) <span class='arw'>→</span> (13 15 7 17 11 111 6 350 0 -28800 "PST")
; transform to readable form
(asctime ptr) <span class='arw'>→</span> "Sat Dec 17 07:15:13 2011\n"
; all in one statement does actually not use struct, pointers are passed directly
(asctime (localtime (address today))) <span class='arw'>→</span> "Sat Dec 17 07:15:13 2011"
; same as the built-in date function
(date today) <span class='arw'>→</span> "Sat Dec 17 07:15:13 2011"
</pre>
<p>Care must be taken to pass valid addresses to pointer parameters in imported functions
or when passing address pointers to <a href="#unpack">unpack</a>. Invalid address pointers
can crash newLISP or make it unstable.</p>
<p><tt>struct</tt> definitions can be nested:</p>
<pre>
; the pair aggregate type
(struct 'pair "char" "char") <span class='arw'>→</span> pair
; nested struct type
(struct 'comp "pair" "int") <span class='arw'>→</span> comp
; pack data using the extended pack syntax
; note the insertion of structure alignment bytes after the pair
(pack comp (pack pair 1 2) 3) <span class='arw'>→</span> "\001\002\000\000\003\000\000\000"
; unpack reverses the process
(unpack comp "\001\002\000\000\003\000\000\000") <span class='arw'>→</span> ((1 2) 3)
</pre>
<p>Nested structures are unpacked recursively.</p>
<br/><br/>
<a name="sub"></a>
<h2><span class="function">sub</span></h2>
<h4>syntax: (sub <em>num-1</em> [<em>num-2</em> ... ])</h4>
<p>
Successively subtracts
the expressions in <em>num-1</em>,
<em>num-2</em>—.
<tt>sub</tt> performs mixed-type arithmetic
and handles integers or floating points,
but it will always return
a floating point number.
If only one argument is supplied,
its sign is reversed.
Any floating point calculation
with <tt>NaN</tt> also returns <tt>NaN</tt>.
</p>
<!-- example -->
<pre>
(sub 10 8 0.25) <span class='arw'>→</span> 1.75
(sub 123) <span class='arw'>→</span> -123
</pre>
<br/><br/>
<a name="swap"></a>
<h2><span class="function">swap</span> <a href="#destructive">!</a></h2>
<h4>syntax: (swap <em>place-1</em> <em>place-2</em>)</h4>
<p>The contents of the two places <em>place-1 and place-2</em>
are swapped. A <em>place</em> can be the contents of an unquoted symbol or any
list or array references expressed with <a href="#nth">nth</a>,
<a href="#first">first</a>, <a href="#lst">last</a> or implicit
<a href="#indexing">indexing</a> or places referenced by <a href="#assoc">assoc</a>
or <a href="#lookup">lookup</a>.</p>
<p><tt>swap</tt> is a destructive operation that changes the contents of the
lists, arrays, or symbols involved.</p>
<!-- example -->
<pre>
(set 'lst '(a b c d e f))
(swap (first lst) (last lst)) <span class='arw'>→</span> a
lst <span class='arw'>→</span> (f b c d e a)
(set 'lst-b '(x y z))
(swap (lst 0) (lst-b -1)) <span class='arw'>→</span> f
lst <span class='arw'>→</span> (z b c d e a)
lst-b <span class='arw'>→</span> (x y f)
(set 'A (array 2 3 (sequence 1 6)) <span class='arw'>→</span> ((1 2 3) (4 5 6))
(swap (A 0) (A 1)) <span class='arw'>→</span> (1 2 3)
A <span class='arw'>→</span> ((4 5 6) (1 2 3))
(set 'x 1 'y 2)
(swap x y) <span class='arw'>→</span> 1
x <span class='arw'>→</span> 2
y <span class='arw'>→</span> 1
(set 'lst '((a 1 2 3) (b 10 20 30)))
(swap (lookup 'a lst -1) (lookup 'b lst 1))
lst <span class='arw'>→</span> ((a 1 2 10) (b 3 20 30))
(swap (assoc 'a lst) (assoc 'b lst))
lst <span class='arw'>→</span> ((b 3 20 30) (a 1 2 10))
</pre>
<p>Any two places can be swept in the same or different objects.</p>
<br/><br/>
<a name="sym"></a>
<h2><span class="function">sym</span></h2>
<h4>syntax: (sym <em>string</em> [<em>sym-context</em> [<em>nil-flag</em>]])<br/>
syntax: (sym <em>number</em> [<em>sym-context</em> [<em>nil-flag</em>]])<br/>
syntax: (sym <em>symbol</em> [<em>sym-context</em> [<em>nil-flag</em>]])</h4>
<p>
Translates the first argument in <em>string</em>,
<em>number</em>, or <em>symbol</em>
into a symbol and returns it.
If the optional context is not specified
in <em>sym-context</em>,
the current context is used
when doing symbol lookup or creation.
Symbols will be created
if they do not already exist.
When the context does not exist
and the context is specified by a quoted symbol,
the symbol also gets created.
If the context specification is unquoted,
the context is the specified name
or the context specification is a variable
containing the context.
</p>
<p>
<tt>sym</tt> can create symbols within the symbol table
that are not legal symbols in newLISP source code
(e.g., numbers or names containing special characters
such as parentheses, colons, etc.).
This makes <tt>sym</tt> usable
as a function for associative memory access,
much like <em>hash table</em> access
in other scripting languages.
</p>
<p>
As a third optional argument,
<tt>nil</tt> can be specified
to suppress symbol creation
if the symbol is not found.
In this case,
<tt>sym</tt> returns <tt>nil</tt>
if the symbol looked up does not exist.
Using this last form,
<tt>sym</tt> can be used
to check for the existence
of a symbol.
</p>
<!-- example -->
<pre>
(sym "some") <span class='arw'>→</span> some
(set (sym "var") 345) <span class='arw'>→</span> 345
var <span class='arw'>→</span> 345
(sym "aSym" 'MyCTX) <span class='arw'>→</span> MyCTX:aSym
(sym "aSym" MyCTX) <span class='arw'>→</span> MyCTX:aSym ; unquoted context
(sym "foo" MyCTX nil) <span class='arw'>→</span> nil ; 'foo does not exist
(sym "foo" MyCTX) <span class='arw'>→</span> foo ; 'foo is created
(sym "foo" MyCTX nil) <span class='arw'>→</span> foo ; foo now exists
</pre>
<p>
Because the function <tt>sym</tt>
returns the symbol looked up or created,
expressions with <tt>sym</tt> can be embedded
directly in other expressions
that use symbols as arguments.
The following example shows
the use of <tt>sym</tt>
as a hash-like function
for associative memory access,
as well as symbol configurations
that are not legal newLISP symbols:
</p>
<!-- example -->
<pre>
;; using sym for simulating hash tables
(set (sym "John Doe" 'MyDB) 1.234)
(set (sym "(" 'MyDB) "parenthesis open")
(set (sym 12 'MyDB) "twelve")
(eval (sym "John Doe" 'MyDB)) <span class='arw'>→</span> 1.234
(eval (sym "(" 'MyDB)) <span class='arw'>→</span> "parenthesis open"
(eval (sym 12 'MyDB)) <span class='arw'>→</span> "twelve"
;; delete a symbol from a symbol table or hash
(delete (sym "John Doe" 'MyDB)) <span class='arw'>→</span> true
</pre>
<p>
The last statement shows
how a symbol can be eliminated
using <a href="#delete">delete</a>.
</p>
<p>
The third syntax allows symbols to be used
instead of strings for the symbol name
in the target context.
In this case,
<tt>sym</tt> will extract the name from the symbol
and use it as the name string
for the symbol in the target context:
</p>
<!-- example -->
<pre>
(sym 'myVar 'FOO) <span class='arw'>→</span> FOO:myVar
(define-macro (def-context)
(dolist (s (rest (args)))
(sym s (first (args)))))
(def-context foo x y z)
(symbols foo) <span class='arw'>→</span> (foo:x foo:y foo:z)
</pre>
<p>The <tt>def-context</tt> macro shows how this could be used
to create a macro that creates contexts and their variables
in a dynamic fashion.</p>
<p> A syntax of the <a href="#context">context</a> function can also be used to
create, set and evaluate symbols.
</p>
<br/><br/>
<a name="symbolp"></a>
<h2><span class="function">symbol?</span></h2>
<h4>syntax: (symbol? <em>exp</em>)</h4>
<p>
Evaluates the <em>exp</em> expression
and returns <tt>true</tt> if the value is a symbol;
otherwise, it returns <tt>nil</tt>.
</p>
<!-- example -->
<pre>
(set 'x 'y) <span class='arw'>→</span> y
(symbol? x) <span class='arw'>→</span> true
(symbol? 123) <span class='arw'>→</span> nil
(symbol? (first '(var x y z))) <span class='arw'>→</span> true
</pre>
<p>
The first statement sets the contents of <tt>x</tt>
to the symbol <tt>y</tt>.
The second statement then checks the contents of <tt>x</tt>.
The last example checks the first element of a list.
</p>
<br/><br/>
<a name="symbols"></a>
<h2><span class="function">symbols</span></h2>
<h4>syntax: (symbols [<em>context</em>])</h4>
<p>
Returns a sorted list of all symbols
in the current context
when called without an argument.
If a context symbol is specified,
symbols defined in that context are returned.
</p>
<!-- example -->
<pre>
(symbols) ; list of all symbols in current context
(symbols 'CTX) ; list of symbols in context CTX
(symbols CTX) ; omitting the quote
(set 'ct CTX) ; assigning context to a variable
(symbols ct) ; list of symbols in context CTX
</pre>
<p>
The quote can be omitted
because contexts evaluate to themselves.
</p>
<br/><br/>
<a name="sync"></a>
<h2><span class="function">sync</span></h2>
<h4>syntax: (sync <em>int-timeout</em> [<em>func-inlet</em>])<br/>
syntax: (sync)</h4>
<p>When <em>int-timeout</em> in milliseconds is specified, <tt>sync</tt> waits
for child processes launched with <a href="#spawn">spawn</a> to finish.
Whenever a child process finishes, <tt>sync</tt> assigns the evaluation result
of the spawned subtask to the symbol specified in the spawn statement.
The <tt>sync</tt> returns <tt>true</tt> if all child processes have been processed
or <tt>nil</tt> if the timeout value has been reached and more child processes
are pending.</p>
<p>If <tt>sync</tt> additionally is given with an optional user-defined <em>inlet</em>
function in <em>func-inlet</em>, this function will be called with the child process-id
as argument whenever a spawned child process returns. <em>func-inlet</em> can contain
either a lambda expression or a symbol which defines a function.</p>
<p>Without any parameter, <tt>sync</tt> returns a list of pending child process
PIDs (process identifiers), for which results have not been processed yet.</p>
<p>The function <tt>sync</tt> is not available on MS Windows.</p>
<!-- example -->
<pre>
; wait for 10 seconds and process finished child processes
(sync 10000)
; wait for the maximum time (~ 1193 hours)
(sync -1)
(define (report pid)
(println "process: " pid " has returned"))
; call the report function, when a child returns
(sync 10000 report) ; wait for 10 seconds max
; return a list of pending child processes
(sync) <span class='arw'>→</span> (245 246 247 248)
; wait and do something else
(until (true? (sync 10 report) )
(println (time-of-day)))
</pre>
<p>When <tt>sync</tt> is given with a timeout parameter, it will block
until timeout or until all child processes have returned, whichever
comes earlier. When no parameter is specified or a function is specified,
<tt>sync</tt> returns immediately.</p>
<p>The function <tt>sync</tt> is part of the Cilk API for synchronizing
child processes and process parallelization. See the reference for the
function <a href="#spawn">spawn</a> for a full discussion of the Cilk API.</p>
<br/><br/>
<a name="sys-error"></a>
<h2><span class="function">sys-error</span></h2>
<h4>syntax: (sys-error)<br/>
syntax: (sys-error <em>int-error</em>)<br/>
syntax: (sys-error <tt>0</tt>)</h4>
<p>Reports the last error generated by the underlying OS
which newLISP is running on. The error reported
may differ on the platforms newLISP has been compiled for.
Consult the platform's C library information. The error is
reported as a list of error number and error text.</p>
<p>If no error has occurred or the system error number has
been reset, <tt>nil</tt> is returned.</p>
<p>When <em>int-error</em> is greater <tt>0</tt> (zero) a
list of the number and the error text is returned.</p>
<p>To reset the error specify <tt>0</tt> as the error number.</p>
<p>Whenever a function in newLISP within the system resources area
returns <tt>nil</tt>, <tt>sys-error</tt> can be checked
for the underlying reason. For file operations,
<tt>sys-error</tt> may be set for nonexistent files
or wrong permissions when accessing the resource.
Another cause of error could be the exhaustion of certain system
resources like file handles or semaphores.</p>
<!-- example -->
<pre>
;; trying to open a nonexistent file
(open "xyz" "r") <span class='arw'>→</span> nil
(sys-error) <span class='arw'>→</span> (2 "No such file or directory")
;; reset errno
(sys-error 0) <span class='arw'>→</span> (0 "Unknown error: 0")
(sys-error) <span class='arw'>→</span> nil
</pre>
<p>See also <a href="#last-error">last-error</a> and <a href="#net-error">net-error</a>.</p>
<br/><br/>
<a name="sys-info"></a>
<h2><span class="function">sys-info</span></h2>
<h4>syntax: (sys-info [<em>int-idx</em>])</h4>
<p>Calling <tt>sys-info</tt> without <em>int-idx</em> returns a list of internal
resource statistics. Ten integers report the following status:</p>
<table width="98%" summary="sys-info offsets">
<tr align="left"><th>offset</th><th>description</th></tr>
<tr><td>0</td><td>Number of Lisp cells</td></tr>
<tr><td>1</td><td>Maximum number of Lisp cells constant</td></tr>
<tr><td>2</td><td>Number of symbols</td></tr>
<tr><td>3</td><td>Evaluation/recursion level</td></tr>
<tr><td>4</td><td>Environment stack level</td></tr>
<tr><td>5</td><td>Maximum call stack constant</td></tr>
<tr><td>6</td><td>Pid of the parent process or 0</td></tr>
<tr><td>7</td><td>Pid of running newLISP process</td></tr>
<tr><td>8</td><td>Version number as an integer constant</td></tr>
<tr><td>9</td><td>Operating system constant:<br/>
linux=1, bsd=2, osx=3, solaris=4, windows=6, os/2=7, cygwin=8, tru64 unix=9, aix=10, android=11
<br/>
bit 11 will be set for ffilib (extended import/callback API) versions (add 1024)<br/>
bit 10 will be set for IPv6 versions (add 512)<br/>
bit 9 will be set for 64-bit (changeable at runtime) versions (add 256)<br/>
bit 8 will be set for UTF-8 versions (add 128)<br/>
bit 7 will be added for library versions (add 64)</td></tr>
</table><br/>
<p>The numbers from <tt>0</tt> to <tt>9</tt> indicate the optional offset
in the returned list.</p>
<p>It is recommended to use offsets 0 to 5 to address
up and including "Maximum call stack constant" and to use
negative offsets -1 to -4 to access the last four
entries in the system info list. Future new entries will be inserted
after offset 5. This way older source code does not need to change.</p>
<p> When using <em>int-idx</em>, one element of the list will be returned.
</p>
<!-- example -->
<pre>
(sys-info) <span class='arw'>→</span> (429 268435456 402 1 0 2048 0 19453 10406 1155)
(sys-info 3) <span class='arw'>→</span> 1
(sys-info -2) <span class='arw'>→</span> 10406 ;; version 10.4.6
</pre>
<p>The number for the maximum of Lisp cells can be changed via the <tt>-m</tt>
command-line switch. For each megabyte of Lisp cell memory,
64k memory cells can be allocated. The maximum call stack depth
can be changed using the <tt>-s</tt> command-line switch. </p>
<br/><br/>
<a name="t-test"></a>
<h2><span class="function">t-test</span></h2>
<h4>syntax: (t-test <em>list-vector</em> <em>number-value</em>)<br/>
syntax: (t-test <em>list-vector-A</em> <em>list-vector-B</em> [<tt>true</tt>])<br/>
syntax: (t-test <em>list-vector-A</em> <em>list-vector-B</em> <em>float-probability</em>)</h4>
<p>In the <b>first syntax</b> the function uses a one sample <em>Student's t</em>
test to compare the mean value of <em>list-vector</em> to the value in
<em>number-value</em>:</p>
<!-- example -->
<pre>
; one sample t-test
(t-test '(3 5 4 2 5 7 4 3) 2.5)
<span class='arw'>→</span> '(4.125 2.5 1.552 0.549 2.960 7 0.021)
</pre>
<p>The following data are returned in a list:</p>
<table>
<tr align="left"><th>name</th><th>description</th></tr>
<tr><td>mean</td><td>mean of data in vector</td></tr>
<tr><td>value</td><td>value to compare</td></tr>
<tr><td>sdev</td><td>standard deviation in data vector</td></tr>
<tr><td>mean-error</td><td>standard error of mean</td></tr>
<tr><td>t</td><td>t between mean and value</td></tr>
<tr><td>df</td><td>degrees of freedom</td></tr>
<tr><td>p</td><td>two tailed probability of t under the null hypothesis</td></tr>
</table>
<p>In above example the difference of the mean value <tt>4.125</tt> from <tt>2.5</tt> is
moderately significant. With a probability <tt>p = 0.021 (2.1%)</tt> the null hypothesis
that the mean is not significantly different, can be rejected.</p>
<p>In the <b>second syntax</b>, the function performs a t-test using the
<em>Student's t</em> statistic for comparing the means values in <em>list-vector-A</em>
and <em>list-vector-B</em>. If the <tt>true</tt> flag is not used, both vectors
in A and B can be of different length and groups represented by A and B are
not related.</p>
<p>When the optional flag is set to <tt>true</tt>, measurements were taken
from the same group twice, e.g. before and after a procedure.</p>
<p>The following results are returned in a list:</p>
<table>
<tr align="left"><th>name</th><th>description</th></tr>
<tr><td>mean-a</td><td>mean of group A</td></tr>
<tr><td>mean-b</td><td>mean of group B</td></tr>
<tr><td>sdev-a</td><td>standard deviation in group A</td></tr>
<tr><td>sdev-b</td><td>standard deviation in group B</td></tr>
<tr><td>t</td><td>t between mean values</td></tr>
<tr><td>df</td><td>degrees of freedom</td></tr>
<tr><td>p</td><td>two tailed probability of t under the null hypothesis</td></tr>
</table>
<p>The first example studies the effect of different sleep length
before a test on the SCAT (Sam's Cognitive Ability Test):</p>
<!-- example -->
<pre>
; SCAT (Sam's Cognitive Ability Test)
; two independent sample t-test
(set 'hours-sleep-8 '(5 7 5 3 5 3 3 9))
(set 'hours-sleep-4 '(8 1 4 6 6 4 1 2))
(t-test hours-sleep-8 hours-sleep-4)
<span class='arw'>→</span> (5 4 2.138 2.563 0.847 14 0.411)
</pre>
<p>The duration of sleeps before the SCAT does not have a significant
effect with a probability value of <tt>0.411</tt>.</p>
<p>In the second example, the same group of people get tested twice,
before and after a treatment with Prozac depression medication:</p>
<!-- example -->
<pre>
; Effect of an antidepressant on a group of depressed people
; two related samples t-test
(set 'mood-pre '(3 0 6 7 4 3 2 1 4))
(set 'mood-post '(5 1 5 7 10 9 7 11 8))
(t-test mood-pre mood-post true)
<span class='arw'>→</span> (3.333 7 2.236 3.041 -3.143 8 0.0137)
</pre>
<p>The effect of the antidepressant treatment is moderately significant with a
<tt>p</tt> of <tt>0.0137</tt>.</p>
<p>In the <b>third syntax</b>, a form of the <em>Student's t</em> called <em>Welch's t-test</em>
is performed. This method is used when the variances observed in both
samples are significantly different. The threshold can be set using the
<em>float-probability</em> parameter. When this parameter is used the <tt>t-test</tt>
function will perform a F-test to compare the variances in the two data samples.
If the probability of the found <em>F-ratio</em> is below the <em>float-probability</em>
parameter, the <em>Welch's t-test</em> method will be used. Specifying this value
as <tt>1.0</tt> effectively forces a <em>Welch's t-test</em>:</p>
<!-- example -->
<pre>
; two independent sample t-test using the Welch method
(t-test '(10 4 7 1 1 6 1 8 2 4) '(4 6 9 4 6 8 9 3) 1.0)
<span class='arw'>→</span> (4.4 6.125 3.239 2.357 -1.307 15 0.211)
; two independent sample t-test using the normal method
(t-test '(10 4 7 1 1 6 1 8 2 4) '(4 6 9 4 6 8 9 3))
<span class='arw'>→</span> (4.4 6.125 3.239 2.357 -1.260 16 0.226)
</pre>
<p>There is no significant difference between the means of the two samples.
The <em>Welch</em> method of the t-test is slightly more sensitive in this
case than using the normal t-test method.</p>
<p>Smaller values than <tt>1.0</tt> would trigger the <em>Welch's t-test</em>
method only when the significance of variance difference in the samples reaches
certain value.</p>
<br/><br/>
<a name="tan"></a>
<h2><span class="function">tan</span></h2>
<h4>syntax: (tan <em>num-radians</em>)</h4>
<p>
Calculates the tangent function from <em>num-radians</em>
and returns the result.
</p>
<!-- example -->
<pre>
(tan 1) <span class='arw'>→</span> 1.557407725
(set 'pi (mul 2 (asin 1))) <span class='arw'>→</span> 3.141592654
(tan (div pi 4)) <span class='arw'>→</span> 1
</pre>
<br/><br/>
<a name="tanh"></a>
<h2><span class="function">tanh</span></h2>
<h4>syntax: (tanh <em>num-radians</em>)</h4>
<p>Calculates the hyperbolic tangent of <em>num-radians</em>.
The hyperbolic tangent is defined mathematically as: <em>sinh (x) / cosh (x)</em>.
</p>
<!-- example -->
<pre>
(tanh 1) <span class='arw'>→</span> 0.761594156
(tanh 10) <span class='arw'>→</span> 0.9999999959
(tanh 1000) <span class='arw'>→</span> 1
(= (tanh 1) (div (sinh 1) (cosh 1))) <span class='arw'>→</span> true
</pre>
<br/><br/>
<a name="term"></a>
<h2><span class="function">term</span></h2>
<h4>syntax: (term <em>symbol</em>)</h4>
<p>Returns as a string, the term part of a <em>symbol</em> without the context prefix.</p>
<!-- example -->
<pre>
(set 'ACTX:var 123)
(set 'sm 'ACTX:var)
(string sm) <span class='arw'>→</span> "ACTX:var"
(term sm) <span class='arw'>→</span> "var"
(set 's 'foo:bar)
(= s (sym (term s) (prefix s)))
</pre>
<p>See also <a href="#prefix">prefix</a> to extract the namespace or
context prefix from a symbol.</p>
<br/><br/>
<a name="throw"></a>
<h2><span class="function">throw</span></h2>
<h4>syntax: (throw <em>exp</em>)</h4>
<p>
Works together with
the <a href="#catch">catch</a> function.
<tt>throw</tt> forces the return of a previous <tt>catch</tt> statement
and puts the <em>exp</em> into the result symbol of <tt>catch</tt>.
</p>
<!-- example -->
<pre>
(define (throw-test)
(dotimes (x 1000)
(if (= x 500) (throw "interrupted"))))
(catch (throw-test) 'result) <span class='arw'>→</span> true
result <span class='arw'>→</span> "interrupted"
(catch (throw-test)) <span class='arw'>→</span> "interrupted"
</pre>
<p>
The last example shows a shorter form of <a href="#catch">catch</a>,
which returns the <tt>throw</tt> result directly.
</p>
<p>
<tt>throw</tt> is useful for breaking out of a loop
or for early return from user-defined functions
or expression blocks.
In the following example,
the <tt>begin</tt> block will return <tt>X</tt>
if <tt>(foo X)</tt> is <tt>true</tt>;
else <tt>Y</tt> will be returned:
</p>
<pre>
(catch (begin
…
(if (foo X) (throw X) Y)
…
))
</pre>
<p>
<tt>throw</tt> will <em>not</em> cause an error exception.
Use <a href="#throw-error">throw-error</a>
to throw user error exceptions.
</p>
<br/><br/>
<a name="throw-error"></a>
<h2><span class="function">throw-error</span></h2>
<h4>syntax: (throw-error <em>exp</em>)</h4>
<p>
Causes a user-defined error exception
with text provided by evaluating <em>exp</em>.
</p>
<!-- example -->
<pre>
(define (foo x y)
(if (= x 0) (throw-error "first argument cannot be 0"))
(+ x y))
(foo 1 2) <span class='arw'>→</span> 3
(foo 0 2) ; causes a user error exception
<span class='err'>ERR: user error : first argument cannot be 0
called from user-defined function foo</span>
</pre>
<p>
The user error can be handled
like any other error exception
using user-defined error handlers
and the <a href="#error-event">error-event</a> function,
or the form of <a href="#catch">catch</a>
that can capture error exceptions.
</p>
<br/><br/>
<a name="time"></a>
<h2><span class="function">time</span></h2>
<h4>syntax: (time <em>exp</em> [<em>int-count</em>)</h4>
<p>Evaluates the expression in <em>exp</em> and returns the time spent
on evaluation in floating point milliseconds. Depending on the platform
decimals of milliseconds are shown or not shown.</p>
<!-- example -->
<pre>
(time (myprog x y z)) <span class='arw'>→</span> 450.340
(time (myprog x y z) 10) <span class='arw'>→</span> 4420.021
</pre>
<p>In first the example, 450 milliseconds elapsed
while evaluating <tt>(myprog x y z)</tt>. The second example
returns the time for ten evaluations of <tt>(myprog x y z)</tt>.
See also <a href="#date">date</a>,
<a href="#date-value">date-value</a>,
<a href="#time-of-day">time-of-day</a>,
and <a href="#now">now</a>.</p>
<br/><br/>
<a name="time-of-day"></a>
<h2><span class="function">time-of-day</span></h2>
<h4>syntax: (time-of-day)</h4>
<p>Returns the time in milliseconds since the start of the current day.
</p>
<p>See also the <a href="#date">date</a>,
<a href="#date-value">date-value</a>,
<a href="#time">time</a>,
and <a href="#now">now</a> functions.</p>
<br/><br/>
<a name="timer"></a>
<h2><span class="function">timer</span></h2>
<h4>syntax: (timer <em>sym-event-handler | func-event-handler</em> <em>num-seconds</em> [<em>int-option</em>])<br/>
syntax: (timer <em>sym-event-handler | func-event-handler</em>)<br/>
syntax: (timer)</h4>
<p>Starts a one-shot timer firing off the Unix signal <tt>SIGALRM</tt>, <tt>SIGVTALRM</tt>,
or <tt>SIGPROF</tt> after the time in seconds (specified in <em>num-seconds</em>)
has elapsed. When the timer fires, it calls the user-defined function
in <em>sym-</em> or <em>func-event-handler</em>.
</p>
<p>On Linux/Unix, an optional <tt>0</tt>, <tt>1</tt>, or <tt>2</tt> can
be specified to control how the timer counts. With default option
<tt>0</tt>, real time is measured. Option <tt>1</tt> measures the time
the CPU spends processing in the process owning the timer.
Option <tt>2</tt> is a combination of both called <em>profiling time</em>.
See the Unix man page <tt>setitimer()</tt> for details.
</p>
<p>The event handler can start the timer again to achieve a
continuous flow of events. Starting with version 8.5.9,
seconds can be defined as floating point numbers with a fractional
part (e.g., <tt>0.25</tt> for 250 milliseconds).</p>
<p>Defining <tt>0</tt> (zero) as time shuts the running timer down
and prevents it from firing.</p>
<p>
When called with <em>sym-</em> or <em>func-event-handler</em>,
<tt>timer</tt> returns the elapsed time of the timer in progress.
This can be used to program time lines or schedules.</p>
<p>
<tt>timer</tt> called without arguments returns the symbol of the current
event handler.</p>
<!-- example -->
<pre>
(define (ticker)
(println (date)) (timer 'ticker 1.0))
> (ticker)
<b>Tue Apr 12 20:44:48 2005</b> ; first execution of ticker
<span class='arw'>→</span> ticker ; return value from ticker
> <b>Tue Apr 12 20:44:49 2005</b> ; first timer event
<b>Tue Apr 12 20:44:50 2005</b> ; second timer event ...
<b>Tue Apr 12 20:44:51 2005
Tue Apr 12 20:44:52 2005</b>
</pre>
<p>
The example shows an event handler, <tt>ticker</tt>,
which starts the timer again after each event.
</p>
<p>
Note that a timer cannot interrupt an
ongoing built-in function.
The timer interrupt gets registered by newLISP,
but a timer handler cannot run
until one expression is evaluated
and the next one starts.
To interrupt an ongoing I/O operation with <tt>timer</tt>,
use the following pattern,
which calls <a href="#net-select">net-select</a>
to test if a socket is ready for reading:
</p>
<!-- example -->
<pre>
define (interrupt)
(set 'timeout true))
(set 'listen (net-listen 30001))
(set 'socket (net-accept listen))
(timer 'interrupt 10)
;; or specifying the function directly
(timer (fn () (set 'timeout true)) 10)
(until (or timeout done)
(if (net-select socket "read" 100000)
(begin
(net-receive socket buffer 1024)
(set 'done true)))
)
(if timeout
(println "timeout")
(println buffer))
(exit)
</pre>
<p>
In this example,
the <tt>until</tt> loop will run
until something can be read from <tt>socket</tt>,
or until ten seconds have passed
and the <tt>timeout</tt> variable is set.
</p>
<br/><br/>
<a name="title-case"></a>
<h2><span class="function">title-case</span> <font size="-1"><a href="#utf8_capable">utf8</a></font></h2>
<h4>syntax: (title-case <em>str</em> <em>[bool]</em>)</h4>
<p>
Returns a copy of the string in <em>str</em>
with the first character converted to uppercase.
When the optional <em>bool</em> parameter
evaluates to any value other than <tt>nil</tt>,
the rest of the string is converted to lowercase.
</p>
<!-- example -->
<pre>
(title-case "hello") <span class='arw'>→</span> "Hello"
(title-case "hELLO" true) <span class='arw'>→</span> "Hello"
(title-case "hELLO") <span class='arw'>→</span> "HELLO"
</pre>
<p>
See also the <a href="#lower-case">lower-case</a>
and <a href="#upper-case">upper-case</a> functions.
</p>
<br/><br/>
<a name="trace"></a>
<h2><span class="function">trace</span></h2>
<h4>syntax: (trace <em>int-device</em>)<br/>
syntax: (trace <em>true</em>)<br/>
syntax: (trace <em>nil</em>)<br/>
syntax: (trace)</h4>
<p>In the first syntax the parameter is an integer of a device like an opened file.
Output is continuously written to that device. If <em>int-device</em> is
<tt>1</tt> output is written to <i>stdout</i>. </p>
<pre>
; write all entries and exits from expressions to trace.txt
(trace (open "trace.txt"))
; write all entries and exits from expressions to trace.txt
(foo x y)
(bar x)
; close the trace.txt file
(trace nil)
</pre>
<p>In the second syntax debugger mode is switched on when the
parameter evaluates true. When in debugging mode newLISP will stop
after each entry and exit from an expression and wait for user input.
Highlighting is done by bracketing the expression between two #
(number sign) characters. This can be changed to a different character
using <a href="#trace-highlight">trace-highlight</a>.:</p>
<pre>
[-> 2] s|tep n|ext c|ont q|uit >
</pre>
<p>
At the prompt, an <tt>s</tt>, <tt>n</tt>, <tt>c</tt>,
or <tt>q</tt> can be entered to step into or
merely execute the next expression. Any expression can be entered
at the prompt for evaluation. Entering the name of a variable,
for example, would evaluate to its contents.
In this way, a variable's contents can be checked during debugging
or set to different values.
</p>
<!-- example -->
<pre>
;; switches newLISP into debugging mode
(trace true) <span class='arw'>→</span> true
;; the debugger will show each step
(my-func a b c)
;; switched newLISP out of debugging mode
(trace nil) <span class='arw'>→</span> nil
</pre>
<p>To set break points where newLISP should interrupt
normal execution and go into debugging mode,
put <tt>(trace true)</tt> statements into the newLISP
code where execution should switch on the debugger.</p>
<p>Use the <a href="#debug">debug</a> function as a shortcut
for the above example:</p>
<pre>
(debug (my-func a b c))
</pre>
<p>In the third syntax <tt>(trace nil)</tt> closes debugger mode or
the trace file opened.</p>
<p>In the last syntax <tt>(trace)</tt> returns the current mode.</p>
<br/><br/>
<a name="trace-highlight"></a>
<h2><span class="function">trace-highlight</span></h2>
<h4>syntax: (trace-highlight <em>str-pre</em> <em>str-post</em> [<em>str-header</em> <em>str-footer</em>])</h4>
<p>Sets the characters or string of characters used to enclose expressions
during <a href="#trace">trace</a>. By default,
the # (number sign) is used to enclose the expression highlighted
in <a href="#trace">trace</a> mode. This can be changed to different characters
or strings of up to seven characters. If the console window accepts terminal
control characters, this can be used to display the expression in a different
color, bold, reverse, and so forth.</p>
<p>Two more strings can optionally be specified for <em>str-header and str-footer</em>,
which control the separator and prompt. A maximum of 15 characters is allowed
for the header and 31 for the footer.</p>
<!-- example -->
<pre>
;; active expressions are enclosed in >> and <<
(trace-highlight ">>" "<<")
;; 'bright' color on a VT100 or similar terminal window
(trace-highlight "\027[1m" "\027[0m")
</pre>
<p>
The first example replaces the default <tt>#</tt> (number sign)
with a <tt>>></tt> and <tt><<</tt>. The second example works
on most Linux shells. It may not, however, work in console windows
under MS Windows or CYGWIN, depending on the configuration of the terminal.</p>
<br/><br/>
<a name="transpose"></a>
<h2><span class="function">transpose</span></h2>
<h4>syntax: (transpose <em>matrix</em>)</h4>
<p>Transposes a <em>matrix</em> by reversing the rows and columns.
Any kind of list-matrix can be transposed. Matrices are made rectangular
by filling in <tt>nil</tt> for missing elements, omitting elements where
appropriate, or expanding atoms in rows into lists.
Matrix dimensions are calculated using the number of rows in the original
matrix for columns and the number of elements in the first row
as number of rows for the transposed matrix.</p>
<p>The matrix to transpose can contain any data-type.</p>
<p>The dimensions of a matrix are defined by the number of rows
and the number of elements in the first row. A matrix can either be a
nested list or an <a href="#array">array</a>.</p>
<!-- example -->
<pre>
(set 'A '((1 2 3) (4 5 6)))
(transpose A) <span class='arw'>→</span> ((1 4) (2 5) (3 6))
(transpose (list (sequence 1 5))) <span class='arw'>→</span> ((1) (2) (3) (4) (5))
; any data type is allowed in the matrix
(transpose '((a b) (c d) (e f))) <span class='arw'>→</span> ((a c e) (b d f))
; arrays can be transposed too
(set 'A (array 2 3 (sequence 1 6)))
(set 'M (transpose A))
M <span class='arw'>→</span> ((1 4) (2 5) (3 6))
</pre>
<p>The number of columns in a matrix is defined by the number of elements
in the first row of the matrix. If other rows have fewer elements,
<tt>transpose</tt> will assume <tt>nil</tt> for those missing elements.
Superfluous elements in a row will be ignored.</p>
<pre>
(set 'A '((1 2 3) (4 5) (7 8 9)))
(transpose A) <span class='arw'>→</span> ((1 4 7) (2 5 8) (3 nil 9))
</pre>
<p>If a row is any other data type besides a list,
the transposition treats it like an entire row of elements
of that data type:</p>
<pre>
(set 'A '((1 2 3) X (7 8 9)))
(transpose A) <span class='arw'>→</span> ((1 X 7) (2 X 8) (3 X 9))
</pre>
<p>All operations shown here on lists can also be performed on arrays.
</p>
<p>
See also the matrix operations
<a href="#det">det</a>, <a href="#invert">invert</a>,
<a href="#mat">mat</a> and <a href="#multiply">multiply</a>.
</p>
<br/><br/>
<a name="trim"></a>
<h2><span class="function">trim</span> <font size="-1"><a href="#utf8_capable">utf8</a></font></h2>
<h4>syntax: (trim <em>str</em>)<br/>
syntax: (trim <em>str</em> <em>str-char</em>)<br/>
syntax: (trim <em>str</em> <em>str-left-char</em> <em>str-right-char</em>)</h4>
<p>Using the first syntax, all white-space characters are trimmed from both
sides of <em>str</em>.</p>
<p>The second syntax trims the string <em>str</em> from both sides,
stripping the leading and trailing characters as given
in <em>str-char</em>. If <em>str-char</em> contains no character,
the space character is assumed. <tt>trim</tt> returns the new string.
</p>
<p>The third syntax can either trim different characters from both sides
or trim only one side if an empty string is specified
for the other. </p>
<!-- example -->
<pre>
(trim " hello \n ") <span class='arw'>→</span> "hello"
(trim " h e l l o ") <span class='arw'>→</span> "h e l l o")
(trim "----hello-----" "-") <span class='arw'>→</span> "hello"
(trim "00012340" "0" "") <span class='arw'>→</span> "12340"
(trim "1234000" "" "0") <span class='arw'>→</span> "1234"
(trim "----hello=====" "-" "=") <span class='arw'>→</span> "hello"
</pre>
<p>For more complex cases <a href="#replace">replace</a> can be used. When
possible, the much faster <tt>trim</tt> is preferred.</p>
<br/><br/>
<a name="truep"></a>
<h2><span class="function">true?</span></h2>
<h4>syntax: (true? <em>exp</em>)</h4>
<p>If the expression in <em>exp</em>
evaluates to anything other than <tt>nil</tt>
or the empty list <tt>()</tt>,
<tt>true?</tt> returns <tt>true</tt>;
otherwise, it returns <tt>nil</tt>.</p>
<!-- example -->
<pre>
(map true? '(x 1 "hi" (a b c) nil ()))
<span class='arw'>→</span> (true true true true nil nil)
(true? nil) <span class='arw'>→</span> nil
(true? '()) <span class='arw'>→</span> nil
</pre>
<p><tt>true?</tt> behaves like <a href="#if">if</a>
and rejects the empty list <tt>()</tt>.</p>
<br/><br/>
<a name="unicode"></a>
<h2><span class="function">unicode</span></h2>
<h4>syntax: (unicode <em>str-utf8</em>)</h4>
<p>Converts ASCII/UTF-8 character strings in <em>str</em>
to UCS-4–encoded Unicode of 4-byte integers per character.
The string is terminated with a 4-byte integer <tt>0</tt>.
This function is only available on UTF-8–enabled versions
of newLISP.</p>
<!-- example -->
<pre>
(unicode "new")
<span class='arw'>→</span> "n\000\000\000e\000\000\000w\000\000\000\000\000\000\000"
(utf8 (unicode "new")) <span class='arw'>→</span> "new"
</pre>
<p>On <em>big endian</em> CPU architectures, the byte order will
be reversed from high to low. The <tt>unicode</tt> and
<a href="#utf8">utf8</a> functions are the inverse of each other.
These functions are only necessary if UCS-4 Unicode is in use.
Most systems use UTF-8 encoding only.</p>
<br/><br/>
<a name="unify"></a>
<h2><span class="function">unify</span></h2>
<h4>syntax: (unify <em>exp-1</em> <em>exp-2</em> [<em>list-env</em>])</h4>
<p>Evaluates and matches <em>exp-1</em> and <em>exp-2</em>.
Expressions match if they are equal or if one of the expressions is
an unbound variable (which would then be bound to the other expression).
If expressions are lists, they are matched by comparing subexpressions.
Unbound variables start with an uppercase character
to distinguish them from symbols. <tt>unify</tt> returns <tt>nil</tt>
when the unification process fails,
or it returns a list of variable associations on success.
When no variables were bound, but the match is still successful,
<tt>unify</tt> returns an empty list.
newLISP uses a modified <em>J. Alan Robinson</em> unification algorithm
with correctly applied <em>occurs check</em>.
See also <em>Peter Norvig</em>'s paper about a common
<a href="http://norvig.com/unify-bug.pdf">unification algorithm bug</a>, which
is not present in this implementation.
</p>
<p>Since version 10.4.0 the underscore symbol <tt>_</tt> (ASCII 95) matches any atom,
list or unbound variable and never binds.</p>
<p>
Like <a href="#match">match</a>, <tt>unify</tt> is frequently
employed as a parameter functor in <a href="#find">find</a>,
<a href="#ref">ref</a>, <a href="#ref-all">ref-all</a> and
<a href="#replace">replace</a>.
</p>
<!-- example -->
<pre>
(unify 'A 'A) <span class='arw'>→</span> () ; tautology
(unify 'A 123) <span class='arw'>→</span> ((A 123)) ; A bound to 123
(unify '(A B) '(x y)) <span class='arw'>→</span> ((A x) (B y)) ; A bound to x, B bound to y
(unify '(A B) '(B abc)) <span class='arw'>→</span> ((A abc) (B abc)) ; B is alias for A
(unify 'abc 'xyz) <span class='arw'>→</span> nil ; fails because symbols are different
(unify '(A A) '(123 456)) <span class='arw'>→</span> nil ; fails because A cannot be bound to different values
(unify '(f A) '(f B)) <span class='arw'>→</span> ((A B)) ; A and B are aliases
(unify '(f A) '(g B)) <span class='arw'>→</span> nil ; fails because heads of terms are different
(unify '(f A) '(f A B)) <span class='arw'>→</span> nil ; fails because terms are of different arity
(unify '(f (g A)) '(f B)) <span class='arw'>→</span> ((B (g A))) ; B bound to (g A)
(unify '(f (g A) A) '(f B xyz)) <span class='arw'>→</span> ((B (g xyz)) (A xyz)) ; B bound to (g xyz) A to xyz
(unify '(f A) 'A) <span class='arw'>→</span> nil ; fails because of infinite unification (f(f(f …)))
(unify '(A xyz A) '(abc X X)) <span class='arw'>→</span> nil ; indirect alias A to X doesn't match bound terms
(unify '(p X Y a) '(p Y X X)) <span class='arw'>→</span> '((Y a) (X a))) ; X alias Y and binding to 'a
(unify '(q (p X Y) (p Y X)) '(q Z Z)) <span class='arw'>→</span> ((Y X) (Z (p X X))) ; indirect alias
(unify '(A b _) '(x G z)) <span class='arw'>→</span> ((A x) (G b)) ; _ matches atom z
(unify '(A b c _) '(x G _ z)) <span class='arw'>→</span> ((A x) (G b)) ; _ never binds, matches c and z
(unify '(A b _) '(x G (x y z))) <span class='arw'>→</span> ((A x) (G b)) ; _ matches list (x y z)
;; some examples taken from <a href="http://en.wikipedia.org/wiki/Unification_(computer_science)">http://en.wikipedia.org/wiki/Unification_(computer_science)</a>
</pre>
<p>
<tt>unify</tt> can take an optional binding
or association list in <em>list-env</em>.
This is useful when chaining <tt>unify</tt> expressions
and the results of previous <tt>unify</tt> bindings
must be included:
</p>
<!-- example -->
<pre>
(unify '(f X) '(f 123)) <span class='arw'>→</span> ((X 123))
(unify '(A B) '(X A) '((X 123)))
<span class='arw'>→</span> ((X 123) (A 123) (B 123))
</pre>
<p>
In the previous example,
<tt>X</tt> was bound to <tt>123</tt> earlier
and is included in the second statement
to pre-bind <tt>X</tt>.
</p>
<h3>Use <tt>unify</tt> with <tt>expand</tt></h3>
<p>
Note that variables are not actually bound
as a newLISP assignment. Rather,
an association list is returned
showing the logical binding.
A special syntax of <a href="#expand">expand</a>
can be used to actually replace bound variables
with their terms:
</p>
<pre>
(set 'bindings (unify '(f (g A) A) '(f B xyz)))
<span class='arw'>→</span> ((B (g xyz)) (A xyz))
(expand '(f (g A) A) bindings) <span class='arw'>→</span> (f (g xyz) xyz)
; or in one statement
(expand '(f (g A) A) (unify '(f (g A) A) '(f B xyz)))
<span class='arw'>→</span> (f (g xyz) xyz)
</pre>
<h3>Use <tt>unify</tt> with <tt>bind</tt> for de-structuring</h3>
<p>The function <a href="#bind">bind</a> can be used to set unified
variables:</p>
<pre>
(bind (unify '(f (g A) A) '(f B xyz)))
A <span class='arw'>→</span> xyz
B <span class='arw'>→</span> (g xyz)
</pre>
<p>This can be used for de-structuring:</p>
<pre>
(set 'structure '((one "two") 3 (four (x y z))))
(set 'pattern '((A B) C (D E)))
(bind (unify pattern structure))
A <span class='arw'>→</span> one
B <span class='arw'>→</span> "two"
C <span class='arw'>→</span> 3
D <span class='arw'>→</span> four
E <span class='arw'>→</span> (x y z)
</pre>
<p><tt>unify</tt> returns an association list and <tt>bind</tt> binds the associations.</p>
<h3>Model propositional logic with <tt>unify</tt></h3>
<p>
The following example shows how propositional logic
can be modeled using <tt>unify</tt>
and <a href="#expand">expand</a>:
</p>
<pre>
; if somebody is human, he is mortal -> (X human) :- (X mortal)
; socrates is human -> (socrates human)
; is socrates mortal? -> ? (socrates mortal)
(expand '(X mortal)
(unify '(X human) '(socrates human)))
<span class='arw'>→</span> (socrates mortal)
</pre>
<p>
The following is a more complex example
showing a small, working PROLOG (Programming in Logic)
implementation.
</p>
<pre>
;; a small PROLOG implementation
(set 'facts '(
(socrates philosopher)
(socrates greek)
(socrates human)
(einstein german)
(einstein (studied physics))
(einstein human)
))
(set 'rules '(
((X mortal) <- (X human))
((X (knows physics)) <- (X physicist))
((X physicist) <- (X (studied physics)))
))
(define (query trm)
(or (when (find trm facts) true) (catch (prove-rule trm))))
(define (prove-rule trm)
(dolist (r rules)
(when (list? (set 'e (unify trm (first r))))
(when (query (expand (last r) e))
(throw true))))
nil
)
; try it
> (query '(socrates human))
<b>true</b>
> (query '(socrates (knows physics)))
<b>nil</b>
> (query '(einstein (knows physics)))
<b>true</b>
</pre>
<p>
The program handles a database of <tt>facts</tt>
and a database of simple
<em>A is a fact if B is a fact</em> <tt>rules</tt>.
A fact is proven true
if it either can be found in the <tt>facts</tt> database
or if it can be proven using a rule.
Rules can be nested:
for example, to prove that somebody <tt>(knows physics)</tt>,
it must be proved true that somebody is a <tt>physicist</tt>.
But somebody is only a physicist
if that person <tt>studied physics</tt>.
The <tt><-</tt> symbol
separating the left and right terms of the rules
is not required
and is only added to make the rules database
more readable.
</p>
<p>
This implementation does not handle multiple terms
in the right premise part of the rules,
but it does handle backtracking of the <tt>rules</tt> database
to try out different matches.
It does not handle backtracking
in multiple premises of the rule.
For example,
if in the following rule <tt>A if B and C and D</tt>,
the premises <tt>B</tt> and <tt>C</tt> succeed
and <tt>D</tt> fails,
a backtracking mechanism might need to go back
and reunify the <tt>B</tt> or <tt>A</tt> terms
with different facts or rules
to make <tt>D</tt> succeed.
</p>
<p>
The above algorithm could be written differently
by omitting <a href="#expand">expand</a>
from the definition of <tt>prove-rule</tt>
and by passing the environment, <tt>e</tt>,
as an argument to the <tt>unify</tt> and <tt>query</tt> functions.
</p>
<p>
A <em>learning</em> of proven facts
can be implemented by appending them
to the <tt>facts</tt> database
once they are proven.
This would speed up subsequent queries.
</p>
<p>
Larger PROLOG implementations
also allow the evaluation of terms in rules.
This makes it possible to implement functions
for doing other work
while processing rule terms.
<tt>prove-rule</tt> could accomplish this testing
for the symbol <tt>eval</tt> in each rule term.
</p>
<br/><br/>
<a name="union"></a>
<h2><span class="function">union</span></h2>
<h4>syntax: (union <em>list-1</em> <em>list-2</em> [<em>list-3</em> ... ])</h4>
<p><tt>union</tt> returns a unique collection list of distinct elements found in two
or more lists.</p>
<pre>
(union '(1 3 1 4 4 3) '(2 1 5 6 4)) <span class='arw'>→</span> (1 3 4 2 5 6)
</pre>
<p>Like the other set functions <a href="#difference">difference</a>,
<a href="#intersect">intersect</a> and <a href="#unique">unique</a>,
<tt>union</tt> maintains the order of elements as found in the original
lists.</p>
<br/><br/>
<a name="unique"></a>
<h2><span class="function">unique</span></h2>
<h4>syntax: (unique <em>list</em>)</h4>
<p>
Returns a unique version of <em>list</em>
with all duplicates removed.
</p>
<!-- example -->
<pre>
(unique '(2 3 4 4 6 7 8 7)) <span class='arw'>→</span> (2 3 4 6 7 8)
</pre>
<p>
Note that the list does not need to be sorted,
but a sorted list makes <tt>unique</tt> perform faster.
</p>
<p>
Other <em>set</em> functions are <a href="#difference">difference</a>,
<a href="#intersect">intersect</a> and <a href="#union">union</a>.
</p>
<br/><br/>
<a name="unless"></a>
<h2><span class="function">unless</span></h2>
<h4>syntax: (unless <em>exp-condition</em> <em>body</em>)</h4>
<p>The statements in <em>body</em> are only evaluated if <em>exp-condition</em>
evaluates to <tt>nil</tt> or the empty list <tt>()</tt>. The result
of the last expression in <em>body</em> is returned or the return value
of <em>exp-condition</em> if <em>body</em> was not executed.</p>
<p>Because <tt>unless</tt> does not have an <em>else</em> condition as in
<a href="#if">if</a>, <!-- or <a href="#if-not">if-not</a> -->the statements in <em>body</em> need
not to be grouped with <a href="#begin">begin</a>:</p>
<pre>
(unless (starts-with (read-line) "quit")
(process (current-line))
...
(finish)
)
</pre>
<p>See also the function <a href="#when">when</a>.</p>
<br/><br/>
<a name="unpack"></a>
<h2><span class="function">unpack</span>
<a href="#shared-lib"><font size="+2">⚠</font></a></h2>
<h4>syntax: (unpack <em>str-format</em> <em>str-addr-packed</em>)<br/>
syntax: (unpack <em>str-format</em> <em>num-addr-packed</em>)<br/><br/>
syntax: (unpack <em>struct</em> <em>num-addr-packed</em>)<br/>
syntax: (unpack <em>struct</em> <em>str-addr-packed</em>)</h4>
<p>When the first parameter is a string, <tt>unpack</tt> unpacks a binary structure
in <em>str-addr-packed</em> or pointed to by <em>num-addr-packed</em> into newLISP
variables using the format in <em>str-format</em>. <tt>unpack</tt> is the reverse
operation of <tt>pack</tt>. Using <em>num-addr-packed</em> facilitates the unpacking
of structures returned from imported, shared library functions.</p>
<p>If the number specified in <em>num-addr-packed</em> is not a valid memory
address, a system bus error or segfault can occur and crash newLISP or leave
it in an unstable state.</p>
<p>When the first parameter is the symbol of a <a href="#struct">struct</a> definition,
<tt>unpack</tt> uses the format as specified in <em>struct</em>.
While <tt>unpack</tt> with <em>str-format</em> literally unpacks as specified,
<tt>unpack</tt> with <em>struct</em> will skip structure aligning pad-bytes
depending on data type, order of elements and CPU architecture.
Refer to the description of the <a href="#struct">struct</a> function for more detail.</p>
<p>When unpacking structures containing <tt>NULL</tt> pointers, an error will be
thrown when <tt>unpack</tt> tries to convert the pointer to a string. If <tt>NULL</tt>
pointers are to be expected, <tt>void*</tt> should be used in the structure definition.</p>
<p>The following characters may define a format:</p>
<table width="98%" summary="format chracters in pack">
<tr align="left" valign="bottom"><th>format</th><th>description</th></tr>
<tr>
<td><tt>c </tt></td>
<td>a signed 8-bit number</td>
</tr>
<tr>
<td><tt>b </tt></td>
<td>an unsigned 8-bit number</td>
</tr>
<tr>
<td><tt>d </tt></td>
<td>a signed 16-bit short number</td>
</tr>
<tr>
<td><tt>u </tt></td>
<td>an unsigned 16-bit short number</td>
</tr>
<tr>
<td><tt>ld</tt></td>
<td>a signed 32-bit long number</td>
</tr>
<tr>
<td><tt>lu</tt></td>
<td>an unsigned 32-bit long number</td>
</tr>
<tr>
<td><tt>Ld</tt></td>
<td>a signed 64-bit long number</td>
</tr>
<tr>
<td><tt>Lu</tt></td>
<td>an unsigned 64-bit long number</td>
</tr>
<tr>
<td><tt>f </tt></td>
<td>a float in 32-bit representation</td>
</tr>
<tr>
<td><tt>lf</tt></td>
<td>a double float in 64-bit representation</td>
</tr>
<tr>
<td><tt>sn</tt></td>
<td>a string of <em>n</em> null padded ASCII characters</td>
</tr>
<tr>
<td><tt>nn</tt></td>
<td><em>n</em> null characters</td>
</tr>
<tr>
<td><tt>></tt></td>
<td>switches to big endian byte order</td>
</tr>
<tr>
<td><tt><</tt></td>
<td>switches to little endian byte order</td>
</tr>
</table><br/>
<br/>
<!-- example -->
<pre>
(pack "c c c" 65 66 67) <span class='arw'>→</span> "ABC"
(unpack "c c c" "ABC") <span class='arw'>→</span> (65 66 67)
(set 's (pack "c d u" 10 12345 56789))
(unpack "c d u" s) <span class='arw'>→</span> (10 12345 56789)
(set 's (pack "s10 f" "result" 1.23))
(unpack "s10 f" s) <span class='arw'>→</span> ("result\000\000\000\000" 1.230000019)
(set 's (pack "s3 lf" "result" 1.23))
(unpack "s3 f" s) <span class='arw'>→</span> ("res" 1.23)
(set 's (pack "c n7 c" 11 22))
(unpack "c n7 c" s) <span class='arw'>→</span> (11 22))
</pre>
<p>
The <tt>></tt> and <tt><</tt> specifiers
can be used to switch between
<em>little endian</em> and <em>big endian</em> byte order
when packing or unpacking:
</p>
<pre>
;; on a little endian system (e.g., Intel CPUs)
(set 'buff (pack "d" 1)) <span class='arw'>→</span> "\001\000"
(unpack "d" buff) <span class='arw'>→</span> (1)
(unpack ">d" buff) <span class='arw'>→</span> (256)
</pre>
<p>
Switching the byte order
will affect all number formats
with 16-, 32-, or 64-bit sizes.
</p>
<p>
The <tt>pack</tt> and <tt>unpack</tt> format
need not be the same,
as in the following example:
</p>
<pre>
(set 's (pack "s3" "ABC"))
(unpack "c c c" s) <span class='arw'>→</span> (65 66 67)
</pre>
<p>
The examples show spaces between the format specifiers.
Although not required, they can improve readability.
</p>
<p>
If the buffer's size at a memory address
is smaller than the formatting string specifies,
some formatting characters may be left unused.</p>
<p>
See also the <a href="#address">address</a>,
<a href="#get-int">get-int</a>,
<a href="#get-long">get-long</a>,
<a href="#get-char">get-char</a>,
<a href="#get-string">get-string</a>,
and <a href="#pack">pack</a> functions.
</p>
<br/><br/>
<a name="until"></a>
<h2><span class="function">until</span></h2>
<h4>syntax: (until <em>exp-condition</em> [<em>body</em>])</h4>
<p> Evaluates the condition in <em>exp-condition</em>.
If the result is <tt>nil</tt> or the empty list <tt>()</tt>,
the expressions in <em>body</em> are evaluated.
Evaluation is repeated until the exp-condition results in a value
other than <tt>nil</tt> or the empty list.
The result of the last expression evaluated in <em>body</em>
is the return value of the <tt>until</tt> expression. If
<em>body</em> is empty, the result of last <em>exp-condition</em>
is returned. <tt>until</tt> works like
(<a href="#while">while</a> (<a href="#not">not</a> …)).
</p>
<p><tt>until</tt> also updates the system iterator symbol <tt>$idx</tt>.</p>
<!-- example -->
<pre>
(device (open "somefile.txt" "read"))
(set 'line-count 0)
(until (not (read-line)) (inc line-count))
(close (device))
(print "the file has " line-count " lines\n")
</pre>
<p>
Use the <a href="#do-until">do-until</a> function
to test the condition <em>after</em> evaluation
of the body expressions.
</p>
<br/><br/>
<a name="upper-case"></a>
<h2><span class="function">upper-case</span> <font size="-1"><a href="#utf8_capable">utf8</a></font></h2>
<h4>syntax: (upper-case <em>str</em>)</h4>
<p>Returns a copy of the string in <em>str</em> converted to uppercase.
International characters are converted correctly.</p>
<!-- example -->
<pre>
(upper-case "hello world") <span class='arw'>→</span> "HELLO WORLD"
</pre>
<p>
See also the <a href="#lower-case">lower-case</a>
and <a href="#title-case">title-case</a> functions.
</p>
<br/><br/>
<a name="utf8"></a>
<h2><span class="function">utf8</span></h2>
<h4>syntax: (utf8 <em>str-unicode</em>)</h4>
<p>Converts a UCS-4, 4-byte, Unicode-encoded string (<em>str</em>)
into UTF-8. This function is only available on UTF-8–enabled
versions of newLISP.</p>
<!-- example -->
<pre>
(unicode "new")
<span class='arw'>→</span> "n\000\000\000e\000\000\000w\000\000\000\000\000\000\000"
(utf8 (unicode "new")) <span class='arw'>→</span> "new"
</pre>
<p>The <tt>utf8</tt> function can also be used
to test for the presence of UTF-8–enabled newLISP:</p>
<pre>
(if utf8 (do-utf8-version-of-code) (do-ascii-version-of-code))
</pre>
<p>
On <em>big endian</em> CPU architectures, the byte order will be reversed
from highest to lowest. The <tt>utf8</tt> and <a href="#unicode">unicode</a>
functions are the inverse of each other. These functions are only necessary
if UCS-4 Unicode is in use. Most systems use UTF-8 Unicode encoding only.
</p>
<br/><br/>
<a name="utf8len"></a>
<h2><span class="function">utf8len</span></h2>
<h4>syntax: (utf8len <em>str</em>)</h4>
<p>Returns the number of characters in a UTF-8–encoded string.
UTF-8 characters can be encoded in more than one 8-bit byte.
<tt>utf8len</tt> returns the number of UTF-8 characters in a string.
This function is only available on UTF-8–enabled versions of newLISP.</p>
<!-- example -->
<pre>
(utf8len "我能吞下玻璃而不伤身体。") <span class='arw'>→</span> 12
(length "我能吞下玻璃而不伤身体。") <span class='arw'>→</span> 36
</pre>
<p>See also the <a href="#unicode">unicode</a> and <a href="#utf8">utf8</a> functions.
Above Chinese text from <a href="http://www.columbia.edu/kermit/utf8.html">UTF-8 Sampler</a>.</p>
<br/><br/>
<a name="uuid"></a>
<h2><span class="function">uuid</span></h2>
<h4>syntax: (uuid [<em>str-node</em>])</h4>
<p>
Constructs and returns
a UUID (Universally Unique IDentifier).
Without a node spec in <em>str-node</em>,
a type 4 UUID random generated byte number
is returned.
When the optional <em>str-node</em> parameter is used,
a type 1 UUID is returned.
The string in <em>str-node</em>
specifies a valid MAC (Media Access Code)
from a network adapter installed on the node
or a random node ID.
When a random node ID is specified,
the least significant bit of the first node byte
should be set to 1
to avoid clashes with real MAC identifiers.
UUIDs of type 1 with node ID
are generated from a timestamp and other data.
See <a href="http://www.ietf.org/rfc/rfc4122.txt">RFC 4122</a>
for details on UUID generation.
</p>
<!-- example -->
<pre>
;; type 4 UUID for any system
(uuid) <span class='arw'>→</span> "493AAD61-266F-48A9-B99A-33941BEE3607"
;; type 1 UUID preferred for distributed systems
;; configure node ID for ether 00:14:51:0a:e0:bc
(set 'id (pack "cccccc" 0x00 0x14 0x51 0x0a 0xe0 0xbc))
(uuid id) <span class='arw'>→</span> "0749161C-2EC2-11DB-BBB2-0014510AE0BC"
</pre>
<p>
Each invocation of the <tt>uuid</tt> function
will yield a new unique UUID.
The UUIDs are generated without system-wide
shared stable store (see RFC 4122).
If the system generating the UUIDs
is distributed over several nodes,
then type 1 generation should be used
with a different node ID on each node.
For several processes on the same node,
valid UUIDs are guaranteed
even if requested at the same time.
This is because the process ID
of the generating newLISP process
is part of the seed
for the random number generator.
When type 4 IDs are used on a distributed system,
two identical UUID's are still highly unlikely
and impossible for type 1 IDs
if real MAC addresses are used.
</p>
<br/><br/>
<a name="wait-pid"></a>
<h2><span class="function">wait-pid</span></h2>
<h4>syntax: (wait-pid <em>int-pid</em> [<em>int-options</em> | <tt>nil</tt>])</h4>
<p>
Waits for a child process specified in <em>int-pid</em> to end. The child process was
previously started with <a href="#process">process</a> or <a href="#fork">fork</a>.
When the child process specified in <em>int-pid</em> ends, a list of pid and status value is
returned. The status value describes the reason for termination of the child process.
The interpretation of the returned status value differs between Linux and other flavors
of Unix. Consult the Linux/Unix man pages for the <tt>waitpid</tt> command (without the hyphen
used in newLISP) for further information.
</p>
<p>
When <tt>-1</tt> is specified for <em>int-pid</em>,
pid and status information of any child process started by the parent are returned.
When <tt>0</tt> is specified, <tt>wait-pid</tt> only watches child processes in the
same process group as the calling process. Any other negative value for <em>int-pid</em>
reports child processes in the same process group as specified with a negative sign
in <em>int-pid</em>.
</p>
<p>
An option can be specified in <em>int-option</em>. See Linux/Unix documentation
for details on integer values for <em>int-options</em>. As an alternative, <tt>nil</tt>
can be specified. This option causes <tt>wait-pid</tt> to be non-blocking, returning
right away with a <tt>0</tt> in the pid of the list returned. This option used together with
an <em>int-pid</em> parameter of <tt>-1</tt> can be used to continuously loop and act
on returned child processes.</p>
<p>
This function is only available on macOS, Linux and other Unix-like operating systems.
</p>
<!-- example -->
<pre>
(set 'pid (fork (my-process))) <span class='arw'>→</span> 8596
(set 'ret (wait-pid pid)) <span class='arw'>→</span> (8596 0) ; child has exited
(println "process: " pid " has finished with status: " (last ret))
</pre>
<p>
The process <tt>my-process</tt> is started,
then the main program blocks
in the <tt>wait-pid</tt> call
until <tt>my-process</tt> has finished.
</p>
<br/><br/>
<a name="when"></a>
<h2><span class="function">when</span></h2>
<h4>syntax: (when <em>exp-condition</em> <em>body</em>)</h4>
<p>The statements in <em>body</em> are only evaluated if <em>exp-condition</em>
evaluates to anything not <tt>nil</tt> and not the empty list <tt>()</tt>. The result
of the last expression in <em>body</em> is returned or <tt>nil</tt> or the empty
list <tt>()</tt> if <em>body</em> was not executed.</p>
<p>Because <tt>when</tt> does not have an <em>else</em> condition as in
<a href="#if">if</a>, the statements in <em>body</em> need not to be grouped with
<a href="#begin">begin</a>:</p>
<!-- example -->
<pre>
(when (read-line)
(set 'result (analyze (current-line)))
(report result)
(finish)
)
</pre>
<p>See also the function <a href="#unless">unless</a>.</p>
<br/><br/>
<a name="while"></a>
<h2><span class="function">while</span></h2>
<h4>syntax: (while <em>exp-condition</em> <em>body</em>)</h4>
<p> Evaluates the condition in <em>exp-condition</em>.
If the result is not <tt>nil</tt> or the empty list <tt>()</tt>,
the expressions in <em>body</em> are evaluated.
Evaluation is repeated until an <em>exp-condition</em> results
in <tt>nil</tt> or the empty list <tt>()</tt>.
The result of the body's last evaluated expression
is the return value of the <tt>while</tt> expression.
</p>
<p><tt>while</tt> also updates the system iterator symbol <tt>$idx</tt>.</p>
<!-- example -->
<pre>
(device (open "somefile.txt" "read"))
(set 'line-count 0)
(while (read-line) (inc line-count))
(close (device))
(print "the file has " line-count " lines\n")
</pre>
<p>
Use the <a href="#do-while">do-while</a> function to evaluate the condition
<em>after</em> evaluating the body of expressions.
</p>
<br/><br/>
<a name="write"></a>
<a name="write-buffer"></a>
<h2><span class="function">write</span> <a href="#destructive">!</a></h2>
<h4>syntax: (write)<br/>
syntax: (write <em>int-file</em> <em>str-buffer</em> [<em>int-size</em>])<br/>
syntax: (write <em>str</em> <em>str-buffer</em> [<em>int-size</em>])</h4>
<p>In the second syntax <tt>write</tt> writes <em>int-size</em> bytes
from a buffer in <em>str-buffer</em> to a file specified in <em>int-file</em>,
previously obtained from a file <tt>open</tt> operation. If <em>int-size</em>
is not specified, all data in <em>sym-buffer</em> or <em>str-buffer</em> is written.
<tt>write</tt> returns the number of bytes written or <tt>nil</tt> on failure.</p>
<p>If all parameters are omitted, <tt>write</tt> writes the contents from the
last <a href="#read-line">read-line</a> to standard out (STDOUT).</p>
<p><tt>write</tt> is a shorter writing of <tt>write-buffer</tt>. The longer
form still works but is deprecated and should be avoided in new code.</p>
<!-- example -->
<pre>
(set 'handle (open "myfile.ext" "write"))
(write handle data 100)
(write handle "a quick message\n")
</pre>
<p>The code in the example writes 100 bytes to the file <tt>myfile.ext</tt>
from the contents in <tt>data</tt>.</p>
<p>In the third syntax, <tt>write</tt> can be used for destructive
string appending:</p>
<pre>
(set 'str "")
(write str "hello world")
str <span class='arw'>→</span> "hello world"
</pre>
<p>See also the <a href="#read">read</a> function.</p>
<br/><br/>
<a name="write-char"></a>
<h2><span class="function">write-char</span></h2>
<h4>syntax: (write-char <em>int-file</em> <em>int-byte1</em> [<em>int-byte2</em> ... ])</h4>
<p>
Writes a byte specified in <em>int-byte</em> to a file specified by the file
handle in <em>int-file</em>. The file handle is obtained from a previous
<tt>open</tt> operation. Each <tt>write-char</tt> advances the file pointer
by one 8-bit byte.</p>
<p><tt>write-char</tt> returns the number of bytes written.</p>
<!-- example -->
<pre>
(define (slow-file-copy from-file to-file)
(set 'in-file (open from-file "read"))
(set 'out-file (open to-file "write"))
(while (set 'chr (read-char in-file))
(write-char out-file chr))
(close in-file)
(close out-file)
"finished")
</pre>
<p>
Use the <a href="#print">print</a>
and <a href="#device">device</a> functions
to write larger portions of data at a time.
Note that newLISP already supplies a faster
built-in function called
<a href="#copy-file">copy-file</a>.
</p>
<p>
See also the <a href="#read-char">read-char</a> function.
</p>
<br/><br/>
<a name="write-file"></a>
<h2><span class="function">write-file</span></h2>
<h4>syntax: (write-file <em>str-file-name</em> <em>str-buffer</em>)</h4>
<p>Writes a file in <em>str-file-name</em> with contents in <em>str-buffer</em>
in one swoop and returns the number of bytes written.</p>
<p>On failure the function returns <tt>nil</tt>. For error information,
use <a href="#sys-error">sys-error</a> when used on files. When used
on URLs <a href="#net-error">net-error</a> gives more error
information.</p>
<!-- example -->
<pre>
(write-file "myfile.enc"
(encrypt (read-file "/home/lisp/myFile") "secret"))
</pre>
<p>The file <tt>myfile</tt> is read, <a href="#encrypt">encrypted</a> using the
password <tt>secret</tt>, and written back into the new file <tt>myfile.enc</tt>
in the current directory.</p>
<p>
<tt>write-file</tt> can take an <tt>http://</tt> or <tt>file://</tt> URL
in <em>str-file-name</em>. When the prefix <tt>http://</tt> is used,
<tt>write-file</tt> works exactly like <a href="#put-url">put-url</a>
and can take the same additional parameters:</p>
<!-- example -->
<pre>
(write-file "http://asite.com/message.txt" "This is a message" )
</pre>
<p>The file <tt>message.txt</tt> is created and written at a remote location,
<tt>http://asite.com</tt>, with the contents of <em>str-buffer</em>.
In this mode, <tt>write-file</tt> can also be used to transfer files
to remote newLISP server nodes.</p>
<p>See also the <a href="#append-file">append-file</a>
and <a href="#read-file">read-file</a> functions.</p>
<br/><br/>
<a name="write-line"></a>
<h2><span class="function">write-line</span> <a href="#destructive">!</a></h2>
<h4>syntax: (write-line [<em>int-file</em> [<em>str</em>]])<br/>
syntax: (write-line <em>str-out</em> [<em>str</em>]])</h4>
<p>The string in <em>str</em> and the line termination character(s)
are written to the device specified in <em>int-file</em>.
When the string argument is omitted <tt>write-line</tt> writes the
contents of the last <a href="#read-line">read-line</a> to <em>int-file</em>
If the first argument is omitted too then it writes to to standard out
(STDOUT) or to whatever device is set by <a href="#device">device</a>.</p>
<p>In the second syntax lines are appended to a string in <em>str-out</em>.</p>
<p><tt>write-line</tt> returns the number of bytes written.</p>
<!-- example -->
<pre>
(set 'out-file (open "myfile" "write"))
(write-line out-file "hello there")
(close out-file)
(set 'myFile (open "init.lsp" "read")
(while (read-line myFile) (write-line))
(set 'str "")
(write-line str "hello")
(write-line str "world")
str <span class='arw'>→</span> "hello\nworld\n"
</pre>
<p>
The first example opens/creates a file, writes a line to it,
and closes the file. The second example shows the usage of <tt>write-line</tt>
without arguments. The contents of <tt>init.lsp</tt> are written to the console
screen.</p>
<p>See also the function <a href="#write">write</a> for writing
to a device without the line-terminating character.</p>
<br/><br/>
<a name="xfer-event"></a>
<h2><span class="function">xfer-event</span></h2>
<h4>syntax: (xfer-event <em>sym-event-handler</em> | <em>func-event-handler</em>)
syntax: (xfer-event nil)</h4>
<p>Registers a function in symbol <em>sym-event-handler</em> or in lambda function
<em>func-event-handler</em>
to monitor HTTP byte transfers initiated by <a href="#get-url">get-url</a>,
<a href="#post-url">post-url</a> or <a href="#put-url">put-url</a> or initiated
by file functions which can take URLs like <a href="#load">load</a>,
<a href="#save">save</a>, <a href="#read-file">read-file</a>,
<a href="#write-file">write-file</a> and <a href="#append-file">append-file</a>.
</p>
<p>E.g. whenever a block of data requested with <a href="#get-url">get-url</a>
arrives, the function in <em>sym</em> or <em>func</em> will be called with
the number of bytes transferred. Likewise when sending data with
<a href="#post-url">post-url</a> or any of the other data sending
functions, <em>sym</em> or <em>func</em> will be called with the number of
bytes transferred for each block of data transferred.</p>
<p>Specifying <tt>nil</tt> for the event will reset it to the initial default state.</p>
<!-- example -->
<pre>
(xfer-event (fn (n) (println "->" n)))
(length (get-url "http://newlisp.org"))
<b>
->73
->799
->1452
->351
->1093
->352
->211
->885
->564
->884
->561
->75
->812
->638
->1452
->801
->5
->927
11935
</b>
</pre>
<p>The computer output is shown in bold. Whenever a block of data is received
its byte size is printed. Instead of defining the handler
function directory with a lambda function in <em>func</em>, a symbol
containing a function definition could have been used:</p>
<pre>
(define (report n) (println "->" n))
(xfer-event 'report)
</pre>
<p> This can be used to monitor the progress of longer
lasting byte transfers in HTTP uploads or downloads.</p>
<br/><br/>
<a name="xml-error"></a>
<h2><span class="function">xml-error</span></h2>
<h4>syntax: (xml-error)</h4>
<p>
Returns a list of error information
from the last <a href="#xml-parse">xml-parse</a> operation;
otherwise, returns <tt>nil</tt>
if no error occurred.
The first element contains text
describing the error,
and the second element is a number indicating
the last scan position in the source XML text,
starting at <tt>0</tt> (zero).
</p>
<!-- example -->
<pre>
(xml-parse "<atag>hello</atag><fin") <span class='arw'>→</span> nil
(xml-error) <span class='arw'>→</span> ("expected closing tag: >" 18)
</pre>
<br/><br/>
<a name="xml-parse"></a>
<h2><span class="function">xml-parse</span></h2>
<h4>syntax: (xml-parse <em>string-xml</em> [<em>int-options</em> [<em>sym-context</em> [<em>func-callback</em>]]])</h4>
<p>
Parses a string containing XML 1.0 compliant, <em>well-formed</em> XML.
<tt>xml-parse</tt> does not perform DTD validation.
It skips DTDs (Document Type Declarations) and processing instructions.
Nodes of type ELEMENT, TEXT, CDATA, and COMMENT are parsed, and
a newLISP list structure is returned. When an element node does not have
attributes or child nodes, it instead contains an empty list.
Attributes are returned as association lists,
which can be accessed using <a href="#assoc">assoc</a>.
When <tt>xml-parse</tt> fails due to malformed XML, <tt>nil</tt> is returned
and <a href="#xml-error">xml-error</a> can be used to access error information.
</p>
<!-- example -->
<pre>
(set 'xml
"<person name='John Doe' tel='555-1212'>nice guy</person>")
(xml-parse xml)
<span class='arw'>→</span> (("ELEMENT" "person"
(("name" "John Doe")
("tel" "555-1212"))
(("TEXT" "nice guy"))))
</pre>
<h3>Modifying the translation process.</h3>
<p>
Optionally, the <em>int-options</em> parameter can be specified
to suppress whitespace, empty attribute lists, and comments.
It can also be used to transform tags from strings into symbols.
Another function, <a href="#xml-type-tags">xml-type-tags</a>,
serves for translating the XML tags.
The following option numbers can be used:
</p>
<table summary="option numbers for xml-parse">
<tr align="left" valign="bottom"><th>option</th><th>description</th></tr>
<tr><td>1</td><td>suppress whitespace text tags</td></tr>
<tr><td>2</td><td>suppress empty attribute lists</td></tr>
<tr><td>4</td><td>suppress comment tags</td></tr>
<tr><td>8</td><td>translate string tags into symbols</td></tr>
<tr><td>16</td><td>add SXML (S-expression XML) attribute tags (@ ...)</td></tr>
</table><br/>
<p>
Options can be combined by adding the numbers
(e.g., <tt>3</tt> would combine the options
for suppressing whitespace text tags/info
and empty attribute lists).
</p>
<p>
The following examples show how the different options can be used:
</p>
<br/>
<b>XML source:</b>
<pre>
<?xml version="1.0" ?>
<DATABASE name="example.xml">
<!--This is a database of fruits-->
<FRUIT>
<NAME>apple</NAME>
<COLOR>red</COLOR>
<PRICE>0.80</PRICE>
</FRUIT>
<FRUIT>
<NAME>orange</NAME>
<COLOR>orange</COLOR>
<PRICE>1.00</PRICE>
</FRUIT>
<FRUIT>
<NAME>banana</NAME>
<COLOR>yellow</COLOR>
<PRICE>0.60</PRICE>
</FRUIT>
</DATABASE>
</pre>
<h3>Parsing without any options:</h3>
<pre>
(xml-parse (read-file "example.xml"))
<span class='arw'>→</span> (("ELEMENT" "DATABASE" (("name" "example.xml")) (("TEXT" "\r\n\t")
("COMMENT" "This is a database of fruits")
("TEXT" "\r\n\t")
("ELEMENT" "FRUIT" () (("TEXT" "\r\n\t\t") ("ELEMENT" "NAME" ()
(("TEXT" "apple")))
("TEXT" "\r\n\t\t")
("ELEMENT" "COLOR" () (("TEXT" "red")))
("TEXT" "\r\n\t\t")
("ELEMENT" "PRICE" () (("TEXT" "0.80")))
("TEXT" "\r\n\t")))
("TEXT" "\r\n\r\n\t")
("ELEMENT" "FRUIT" () (("TEXT" "\r\n\t\t") ("ELEMENT" "NAME" ()
(("TEXT" "orange")))
("TEXT" "\r\n\t\t")
("ELEMENT" "COLOR" () (("TEXT" "orange")))
("TEXT" "\r\n\t\t")
("ELEMENT" "PRICE" () (("TEXT" "1.00")))
("TEXT" "\r\n\t")))
("TEXT" "\r\n\r\n\t")
("ELEMENT" "FRUIT" () (("TEXT" "\r\n\t\t") ("ELEMENT" "NAME" ()
(("TEXT" "banana")))
("TEXT" "\r\n\t\t")
("ELEMENT" "COLOR" () (("TEXT" "yellow")))
("TEXT" "\r\n\t\t")
("ELEMENT" "PRICE" () (("TEXT" "0.60")))
("TEXT" "\r\n\t")))
("TEXT" "\r\n"))))
</pre>
<p>
The <tt>TEXT</tt> elements containing only whitespace make the output very confusing.
As the database in <tt>example.xml</tt> only contains data,
we can suppress whitespace, empty attribute lists and comments with
option <tt>(+ 1 2 4)</tt>:</p>
<h3>Filtering whitespace TEXT, COMMENT tags, and empty attribute lists:</h3>
<pre>
(xml-parse (read-file "example.xml") (+ 1 2 4))
<span class='arw'>→</span> (("ELEMENT" "DATABASE" (("name" "example.xml")) (
("ELEMENT" "FRUIT" (
("ELEMENT" "NAME" (("TEXT" "apple")))
("ELEMENT" "COLOR" (("TEXT" "red")))
("ELEMENT" "PRICE" (("TEXT" "0.80")))))
("ELEMENT" "FRUIT" (
("ELEMENT" "NAME" (("TEXT" "orange")))
("ELEMENT" "COLOR" (("TEXT" "orange")))
("ELEMENT" "PRICE" (("TEXT" "1.00")))))
("ELEMENT" "FRUIT" (
("ELEMENT" "NAME" (("TEXT" "banana")))
("ELEMENT" "COLOR" (("TEXT" "yellow")))
("ELEMENT" "PRICE" (("TEXT" "0.60"))))))))
</pre>
<p>
The resulting output looks much more readable, but it can still be improved
by using symbols instead of strings for the tags "FRUIT", "NAME", "COLOR", and "PRICE",
as well as by suppressing the XML type tags "ELEMENT" and "TEXT" completely
using the <a href="#xml-type-tags">xml-type-tags</a> directive.
</p>
<h3>Suppressing XML type tags with <a href="#xml-type-tags">xml-type-tags</a>
and translating string tags into symbol tags:</h3>
<pre>
;; suppress all XML type tags for TEXT and ELEMENT
;; instead of "CDATA", use cdata and instead of "COMMENT", use !--
(xml-type-tags nil 'cdata '!-- nil)
;; turn on all options for suppressing whitespace and empty
;; attributes, translate tags to symbols
(xml-parse (read-file "example.xml") (+ 1 2 8))
<span class='arw'>→</span> ((DATABASE (("name" "example.xml"))
(!-- "This is a database of fruits")
(FRUIT (NAME "apple") (COLOR "red") (PRICE "0.80"))
(FRUIT (NAME "orange") (COLOR "orange") (PRICE "1.00"))
(FRUIT (NAME "banana") (COLOR "yellow") (PRICE "0.60"))))
</pre>
<p>
When tags are translated into symbols by using option <tt>8</tt>,
a context can be specified in <em>sym-context</em>.
If no context is specified, all symbols will be created inside the current context.
</p>
<pre>
(xml-type-tags nil nil nil nil)
(xml-parse "<msg>Hello World</msg>" (+ 1 2 4 8 16) 'CTX)
<span class='arw'>→</span> ((CTX:msg "Hello World"))
</pre>
<p>
Specifying <tt>nil</tt> for the XML type tags TEXT and ELEMENT
makes them disappear. At the same time,
parentheses of the child node list are removed so that
child nodes now appear as members of the list,
starting with the tag symbol translated from the string tags
"FRUIT", "NAME", etcetera.
</p>
<h3>Parsing into SXML (S-expressions XML) format:</h3>
<p>
Using <a href="#xml-type-tags">xml-type-tags</a> to suppress
all XML-type tags—along with the option numbers
<tt>1</tt>, <tt>2</tt>, <tt>4</tt>, <tt>8</tt>, and <tt>16</tt>—SXML
formatted output can be generated:
</p>
<pre>
(xml-type-tags nil nil nil nil)
(xml-parse (read-file "example.xml") (+ 1 2 4 8 16))
<span class='arw'>→</span> ((DATABASE (@ (name "example.xml"))
(FRUIT (NAME "apple") (COLOR "red") (PRICE "0.80"))
(FRUIT (NAME "orange") (COLOR "orange") (PRICE "1.00"))
(FRUIT (NAME "banana") (COLOR "yellow") (PRICE "0.60"))))
</pre>
<p>If the original XML tags contain a namespace part separated by a <tt>:</tt>,
that colon will be translated into a <tt>.</tt> dot in the resulting newLISP
symbol.</p>
<p>
Note that using option number <tt>16</tt>
causes an <tt>@</tt> (at symbol) to be added to attribute lists.
</p>
<p>
See also the <a href="#xml-type-tags">xml-type-tags</a> function
for further information on XML parsing.
</p>
<h3>Parsing into a specified context</h3>
<p>When parsing XML expressions, XML tags are translated into newLISP symbols,
when option 8 is specified. The <i>sym-context</i> option specifies the target
context for the symbol creation:</p>
<pre>
(xml-type-tags nil nil nil nil)
(xml-parse (read-file "example.xml") (+ 1 2 4 8 16) 'CTX)
<span class='arw'>→</span>((CTX:DATABASE (@ (CTX:name "example.xml"))
(CTX:FRUIT (CTX:NAME "apple") (CTX:COLOR "red") (CTX:PRICE "0.80"))
(CTX:FRUIT (CTX:NAME "orange") (CTX:COLOR "orange") (CTX:PRICE "1.00"))
(CTX:FRUIT (CTX:NAME "banana") (CTX:COLOR "yellow") (CTX:PRICE "0.60"))))
</pre>
<p>If the context does not exist, it will be created. If it exists, the quote can
be omitted or the context can be referred to by a variable.</p>
<h3>Using a call back function</h3>
<p>Normally, <tt>xml-parse</tt> will not return until all parsing has finished.
Using the <em>func-callback</em> option, <tt>xml-parse</tt> will call back after
each tag closing with the generated S-expression and a start position and
length in the source XML:</p>
<pre>
;; demo callback feature
(define (xml-callback s-expr start size)
(if (or (= (s-expr 0) 'NAME) (= (s-expr 0) 'COLOR) (= (s-expr 0) 'PRICE))
(begin
(print "parsed expression:" s-expr)
(println ", source:" (start size example-xml))
)
)
)
(xml-type-tags nil 'cdata '!-- nil)
(xml-parse (read-file "example.xml") (+ 1 2 8) MAIN xml-callback)
</pre>
<p>The following output will be generated by the callback function <tt>xml-callback</tt>:</p>
<pre>
parsed expression:(NAME "apple"), source:<NAME>apple</NAME>
parsed expression:(COLOR "red"), source:<COLOR>red</COLOR>
parsed expression:(PRICE "0.80"), source:<PRICE>0.80</PRICE>
parsed expression:(NAME "orange"), source:<NAME>orange</NAME>
parsed expression:(COLOR "orange"), source:<COLOR>orange</COLOR>
parsed expression:(PRICE "1.00"), source:<PRICE>1.00</PRICE>
parsed expression:(NAME "banana"), source:<NAME>banana</NAME>
parsed expression:(COLOR "yellow"), source:<COLOR>yellow</COLOR>
parsed expression:(PRICE "0.60"), source:<PRICE>0.60</PRICE>
</pre>
<p>The example callback handler function filters the tags of interest and processes
them as they occur.</p>
<br/><br/>
<a name="xml-type-tags"></a>
<h2><span class="function">xml-type-tags</span></h2>
<h4>syntax: (xml-type-tags [<em>exp-text-tag</em> <em>exp-cdata-tag</em> <em>exp-comment-tag</em> <em>exp-element-tags</em>])</h4>
<p>
Can suppress completely or replace the XML type tags
"TEXT", "CDATA", "COMMENT", and "ELEMENT" with something else specified
in the parameters.
</p>
<p>
Note that <tt>xml-type-tags</tt> only suppresses or translates the tags themselves
but does not suppress or modify the tagged information. The latter would be done
using option numbers in <a href="#xml-parse">xml-parse</a>.
</p>
<p>
Using <tt>xml-type-tags</tt> without arguments
returns the current type tags:
</p>
<!-- example -->
<pre>
(xml-type-tags) <span class='arw'>→</span> ("TEXT" "CDATA" "COMMENT" "ELEMENT")
(xml-type-tags nil 'cdata '!-- nil)
</pre>
<p>
The first example just shows the currently used type tags.
The second example specifies suppression of the "TEXT" and "ELEMENT" tags
and shows <tt>cdata</tt> and <tt>!--</tt> instead of
"CDATA" and "COMMENT".
</p>
<br/><br/>
<a name="zerop"></a>
<h2><span class="function">zero?</span>
<a href="#big_int"><font size="-1">bigint</font></a></h2>
<h4>syntax: (zero? <em>exp</em>)</h4>
<p>
Checks the evaluation of <em>exp</em> to see if it equals <tt>0</tt> (zero).
</p>
<!-- example -->
<pre>
(set 'value 1.2)
(set 'var 0)
(zero? value) <span class='arw'>→</span> nil
(zero? var) <span class='arw'>→</span> true
(map zero? '(0 0.0 3.4 4)) <span class='arw'>→</span> (true true nil nil)
(map zero? '(nil true 0 0.0 "" ())) <span class='arw'>→</span> (nil nil true true nil nil)
</pre>
<p>
<tt>zero?</tt> will return <tt>nil</tt>
on data types other than numbers.
</p>
<br/><br/>
<center style="font-size: 150%">
<span class="divider">( <font color="#7ba9d4">∂</font> )</span>
</center>
<br/><br/>
<hr/>
<br/><br/>
<a name="appendix"></a>
<center><h2>newLISP APPENDIX</h2></center>
<a name="error_codes"></a>
<h2>Error codes</h2>
<table summary="Error codes">
<tr align="left"><th>description</th><th>no</th></tr>
<tr><td>not enough memory</td><td>1</td></tr>
<tr><td>environment stack overflow</td><td>2</td></tr>
<tr><td>call stack overflow</td><td>3</td></tr>
<tr><td>problem accessing file</td><td>4</td></tr>
<tr><td>not an expression</td><td>5</td></tr>
<tr><td>missing parenthesis</td><td>6</td></tr>
<tr><td>string token too long</td><td>7</td></tr>
<tr><td>missing argument</td><td>8</td></tr>
<tr><td>number or string expected</td><td>9</td></tr>
<tr><td>value expected</td><td>10</td></tr>
<tr><td>string expected</td><td>11</td></tr>
<tr><td>symbol expected</td><td>12</td></tr>
<tr><td>context expected</td><td>13</td></tr>
<tr><td>symbol or context expected</td><td>14</td></tr>
<tr><td>list expected</td><td>15</td></tr>
<tr><td>list or array expected</td><td>16</td></tr>
<tr><td>list or symbol expected</td><td>17</td></tr>
<tr><td>list or string expected</td><td>18</td></tr>
<tr><td>list or number expected</td><td>19</td></tr>
<tr><td>array expected</td><td>20</td></tr>
<tr><td>array, list or string expected</td><td>21</td></tr>
<tr><td>lambda expected</td><td>22</td></tr>
<tr><td>lambda-macro expected</td><td>23</td></tr>
<tr><td>invalid function</td><td>24</td></tr>
<tr><td>invalid lambda expression</td><td>25</td></tr>
<tr><td>invalid macro expression</td><td>26</td></tr>
<tr><td>invalid let parameter list</td><td>27</td></tr>
<tr><td>problem saving file</td><td>28</td></tr>
<tr><td>division by zero</td><td>29</td></tr>
<tr><td>matrix expected</td><td>30</td></tr>
<tr><td>wrong dimensions</td><td>31</td></tr>
<tr><td>matrix is singular</td><td>32</td></tr>
<tr><td>syntax in regular expression</td><td>33</td></tr>
<tr><td>throw without catch</td><td>34</td></tr>
<tr><td>problem loading library</td><td>35</td></tr>
<tr><td>import function not found</td><td>36</td></tr>
<tr><td>symbol is protected</td><td>37</td></tr>
<tr><td>error number too high</td><td>38</td></tr>
<tr><td>regular expression</td><td>39</td></tr>
<tr><td>missing end of text [/text]</td><td>40</td></tr>
<tr><td>mismatch in number of arguments</td><td>41</td></tr>
<tr><td>problem in format string</td><td>42</td></tr>
<tr><td>data type and format don't match</td><td>43</td></tr>
<tr><td>invalid parameter</td><td>44</td></tr>
<tr><td>invalid parameter: 0.0</td><td>45</td></tr>
<tr><td>invalid parameter: NaN</td><td>46</td></tr>
<tr><td>invalid UTF8 string</td><td>47</td></tr>
<tr><td>illegal parameter type</td><td>48</td></tr>
<tr><td>symbol not in MAIN context</td><td>49</td></tr>
<tr><td>symbol not in current context</td><td>50</td></tr>
<tr><td>target cannot be MAIN</td><td>51</td></tr>
<tr><td>list index out of bounds</td><td>52</td></tr>
<tr><td>array index out of bounds</td><td>53</td></tr>
<tr><td>string index out of bounds</td><td>54</td></tr>
<tr><td>nesting level too deep</td><td>55</td></tr>
<tr><td>list reference changed</td><td>56</td></tr>
<tr><td>invalid syntax</td><td>57</td></tr>
<tr><td>user error</td><td>58</td></tr>
<tr><td>user reset -</td><td>59</td></tr>
<tr><td>received SIGINT -</td><td>60</td></tr>
<tr><td>function is not reentrant</td><td>61</td></tr>
<tr><td>local symbol is protected</td><td>62</td></tr>
<tr><td>no reference found</td><td>63</td></tr>
<tr><td>list is empty</td><td>64</td></tr>
<tr><td>I/O error</td><td>65</td></tr>
<tr><td>working directory not found</td><td>66</td></tr>
<tr><td>invalid PID</td><td>67</td></tr>
<tr><td>cannot open socket pair</td><td>68</td></tr>
<tr><td>cannot fork process</td><td>69</td></tr>
<tr><td>no comm channel found</td><td>70</td></tr>
<tr><td>ffi preparation failed</td><td>71</td></tr>
<tr><td>invalid ffi type</td><td>72</td></tr>
<tr><td>ffi struct expected</td><td>73</td></tr>
<tr><td>bigint type not applicable</td><td>74</td></tr>
<tr><td>not a number or infinite</td><td>75</td></tr>
<tr><td>cannot convert NULL to string</td><td>76</td></tr>
</table><br/>
<br/><br/><br/>
<a name="tcpip_error_codes"></a>
<h2>TCP/IP and UDP Error Codes</h2>
<table summary="tcp/ip error codes">
<tr align="left"><th>no</th><th>description</th></tr>
<tr><td>1</td><td>Cannot open socket</td></tr>
<tr><td>2</td><td>DNS resolution failed</td></tr>
<tr><td>3</td><td>Not a valid service</td></tr>
<tr><td>4</td><td>Connection failed</td></tr>
<tr><td>5</td><td>Accept failed</td></tr>
<tr><td>6</td><td>Connection closed</td></tr>
<tr><td>7</td><td>Connection broken</td></tr>
<tr><td>8</td><td>Socket send() failed</td></tr>
<tr><td>9</td><td>Socket recv() failed</td></tr>
<tr><td>10</td><td>Cannot bind socket</td></tr>
<tr><td>11</td><td>Too many sockets in net-select</td></tr>
<tr><td>12</td><td>Listen failed</td></tr>
<tr><td>13</td><td>Badly formed IP</td></tr>
<tr><td>14</td><td>Select failed</td></tr>
<tr><td>15</td><td>Peek failed</td></tr>
<tr><td>16</td><td>Not a valid socket</td></tr>
<tr><td>17</td><td>Cannot unblock socket</td></tr>
<tr><td>18</td><td>Operation timed out</td></tr>
<tr><td>19</td><td>HTTP bad formed URL</td></tr>
<tr><td>20</td><td>HTTP file operation failed</td></tr>
<tr><td>21</td><td>HTTP transfer failed</td></tr>
<tr><td>22</td><td>HTTP invalid response from server</td></tr>
<tr><td>23</td><td>HTTP no response from server</td></tr>
<tr><td>24</td><td>HTTP document empty</td></tr>
<tr><td>25</td><td>HTTP error in header</td></tr>
<tr><td>26</td><td>HTTP error in chunked format</td></tr>
</table><br/>
<br/><br/><br/>
<a name="system_symbols"></a>
<h2>System Symbols and Constants</h2>
<h3>Variables changed by the system</h3>
<p>newLISP maintains several internal symbol variables. All of them are global
and can be used by the programmer. Some have write protection, others
are user settable. Some will change when used in a sub-expression of the
enclosing expression using it. Others are safe when using reentrant in nested
functions or expressions.</p>
<p>All symbols starting with the <tt>$</tt> character will not be serialized
when using the <a href="#save">save</a> or <a href="#source">source</a> functions.
</p>
<table width="98%" summary="system vars">
<tr><th> variable name</th><th>purpose</th><th> protected </th><th> reentrant </th></tr>
<tr><td><tt> $0 - $15</tt></td><td>Used primarily in regular expressions. <tt>$0</tt>
is also used to record the last state or count of execution of some functions.</td>
<td> no</td><td> no</td></tr>
<tr><td><tt> $args</tt></td><td>Contains the list parameters not bound to local
variables. Normally the function <a href="#args">args</a> is used to retrieve
the contents of this variable.</td><td> yes</td><td> yes</td></tr>
<tr><td><tt> $count</tt></td><td>The count of elements matching when using
<a href="#find-all">find-all</a>, <a href="#replace">replace</a>,
<a href="#ref-all">ref-all</a> and <a href="#set-ref-all">set-ref-all</a> or the
count of characters processed by <a href="#read-expr">read-expr</a>.</td>
<td> yes</td><td> no</td></tr>
<tr><td><tt> $idx</tt></td><td>The function <a href="#dolist">dolist</a>
maintains this as a list index or offset. The functions
<a href="#map">map</a>, <a href="#series">series</a>,
<a href="#while">while</a>, <a href="#until">until</a>,
<a href="#do-while">do-while</a> and <a href="#do-until">do-until</a>
maintain this variable as an iteration counter starting with 0 (zero) for
the first iteration.</td>
<td> yes</td><td> yes</td></tr>
<tr><td><tt> $it</tt></td><td>The <em>anaphoric</em> <tt>$it</tt> refers to the
result inside an executing expression, i.e. in self referential assignments.
<tt>$it</tt> is only available inside the function expression setting it, and
is set to <tt>nil</tt> on exit of that expression. The following functions use it:
<a href="#if">if</a>,
<a href="#hash">hashes</a>, <a href="#find-all">find-all</a>,
<a href="#replace">replace</a>, <a href="#set-ref">set-ref</a>,
<a href="#set-ref-all">set-ref-all</a> and <a href="#setf">setf setq</a>.</td>
<td> yes</td><td> no</td></tr>
<tr><td><tt> $main-args</tt></td><td>Contains the list of command line arguments
passed by the OS to newLISP when it was started. Normally the function
<a href="#main-args">main-args</a> is used to retrieve the contents.</td>
<td> yes</td><td> n/a</td></tr>
</table><br/>
<h3>Predefined variables and functions.</h3>
<p>These are preset symbol constants. Two of them are used as namespace templates,
one two write platform independent code.</p>
<table width="98%" summary="preset vars">
<tr><th>name</th><th>purpose</th><th> protected </th><th> reentrant </th></tr>
<tr><td><tt> Class</tt></td><td>Is the predefined general FOOP class constructor
which can be used together with <tt>new</tt> to create new FOOP classes, e.g:
<tt>(new Class 'Rectangle)</tt> would create a class and object constructor for
a user class <tt>Rectangle</tt>. See the
<a href="#newlisp_classes">FOOP classes and constructors</a> chapter in the users
manual for details.</td>
<td> no</td><td> n/a</td></tr>
<tr><td><tt> ostype</tt></td><td>Contains a string identifying the OS-Platform
for which the running newLISP version has been compiled. See the reference section for
<a href="#ostype">details</a></td>
<td> yes</td><td> n/a</td></tr>
<tr><td><tt> Tree</tt></td><td>Is a predefined namespace to serve as a hash like
dictionary. Instead of writing <tt>(define Foo:Foo)</tt> to create a <tt>Foo</tt>
dictionary, the expression <tt>(new Tree 'Foo)</tt> can be used as well. See the chapter
<a href="#hash">Hash functions and dictionaries</a> foe details.</td>
<td> no</td><td> n/a</td></tr>
<tr><td><tt> module</tt></td><td>Is a predefined function to load modules.
Instead of using <tt>load</tt> together with the <tt>NEWLISPDIR</tt> environment
variable, the <tt>module</tt> function loads automatically from
<tt>$NEWLISPDIR/modules/</tt>.</td>
<td> no</td><td> n/a</td></tr>
</table><br/>
<p>The symbols <tt>Class</tt>, <tt>Tree</tt> and <tt>module</tt> are predefined as follows:</p>
<pre>
; built-in template for FOOP constructors
; usage: (new Class 'MyClass)
(define (Class:Class)
(cons (context) (args)))
; built-in template for hashes
; usage: (new Tree 'MyHash)
(context 'Tree)
(constant 'Tree:Tree)
(context MAIN)"
; load modules from standard path
; usage (module "mymodule.lsp")
(define (module $x)
(load (append (env "NEWLISPDIR") "/modules/" $x)))
(global 'module)
</pre>
<p>These symbols are not protected and can be redefined by the user.
The <tt>$x</tt> variable is built-in and protected against deletion.
This <tt>$x</tt> variable is also used in <a href="#curry">curry</a> expressions.</p>
<br/><br/>
<center style="font-size: 150%">
<span class="divider">( <font color="#7ba9d4">∂</font> )</span>
</center>
<br/><br/>
<hr/>
<div class="license">
<a name="GNUFDL"></a>
<center>
<h2><span class="gnu">GNU Free Documentation License</span></h2>
<p>Version 1.2, November 2002</p>
<p>
Copyright (C) 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
</p>
</center>
<br/><br/>
<h4>0. PREAMBLE</h4>
<p>The purpose of this License is to make a manual, textbook, or other
functional and useful document "free" in the sense of freedom: to
assure everyone the effective freedom to copy and redistribute it,
with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible
for modifications made by others.
</p>
<p>This License is a kind of "copyleft", which means that derivative
works of the document must themselves be free in the same sense. It
complements the GNU General Public License, which is a copyleft
license designed for free software.
</p>
<p>We have designed this License in order to use it for manuals for
free
software, because free software needs free documentation: a free
program should come with manuals providing the same freedoms that the
software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.
</p>
<h4>1. APPLICABILITY AND DEFINITIONS</h4>
<p>This License applies to any manual or other work, in any medium,
that
contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The "Document", below,
refers to any such manual or work. Any member of the public is a
licensee, and is addressed as "you". You accept the license if you
copy, modify or distribute the work in a way requiring permission
under copyright law.
</p>
<p>A "Modified Version" of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with
modifications and/or translated into another language.
</p>
<p>A "Secondary Section" is a named appendix or a front-matter section
of
the Document that deals exclusively with the relationship of the
publishers or authors of the Document to the Document's overall subject
(or to related matters) and contains nothing that could fall directly
within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any
mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding
them.
</p>
<p>The "Invariant Sections" are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice
that says that the Document is released under this License. If a
section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero
Invariant Sections. If the Document does not identify any Invariant
Sections then there are none.
</p>
<p>The "Cover Texts" are certain short passages of text that are
listed,
as Front-Cover Texts or Back-Cover Texts, in the notice that says that
the Document is released under this License. A Front-Cover Text may
be at most 5 words, and a Back-Cover Text may be at most 25 words.
</p>
<p>A "Transparent" copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the
general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input
to text formatters. A copy made in an otherwise Transparent file
format whose markup, or absence of markup, has been arranged to thwart
or discourage subsequent modification by readers is not Transparent.
An image format is not Transparent if used for any substantial amount
of text. A copy that is not "Transparent" is called "Opaque".
</p>
<p>Examples of suitable formats for Transparent copies include plain
ASCII without markup, Texinfo input format, LaTeX input format, SGML
or XML using a publicly available DTD, and standard-conforming simple
HTML, PostScript or PDF designed for human modification. Examples of
transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by
proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the
machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only.
</p>
<p>The "Title Page" means, for a printed book, the title page itself,
plus such following pages as are needed to hold, legibly, the material
this License requires to appear in the title page. For works in
formats which do not have any title page as such, "Title Page" means
the text near the most prominent appearance of the work's title,
preceding the beginning of the body of the text.
</p>
<p>A section "Entitled XYZ" means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following
text that translates XYZ in another language. (Here XYZ stands for a
specific section name mentioned below, such as "Acknowledgements",
"Dedications", "Endorsements", or "History".) To "Preserve the Title"
of such a section when you modify the Document means that it remains a
section "Entitled XYZ" according to this definition.
</p>
<p>The Document may include Warranty Disclaimers next to the notice
which
states that this License applies to the Document. These Warranty
Disclaimers are considered to be included by reference in this
License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has
no effect on the meaning of this License.
</p>
<h4>2. VERBATIM COPYING</h4>
<p>You may copy and distribute the Document in any medium, either
commercially or noncommercially, provided that this License, the
copyright notices, and the license notice saying this License applies
to the Document are reproduced in all copies, and that you add no other
conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further
copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.
</p>
<p>You may also lend copies, under the same conditions stated above,
and
you may publicly display copies.
</p>
<h4>3. COPYING IN QUANTITY</h4>
<p>If you publish printed copies (or copies in media that commonly have
printed covers) of the Document, numbering more than 100, and the
Document's license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify
you as the publisher of these copies. The front cover must present
the full title with all words of the title equally prominent and
visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve
the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.
</p>
<p>If the required texts for either cover are too voluminous to fit
legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto adjacent
pages.
</p>
<p>If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque copy
a computer-network location from which the general network-using
public has access to download using public-standard network protocols
a complete Transparent copy of the Document, free of added material.
If you use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to ensure
that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an
Opaque copy (directly or through your agents or retailers) of that
edition to the public.
</p>
<p>It is requested, but not required, that you contact the authors of
the
Document well before redistributing any large number of copies, to give
them a chance to provide you with an updated version of the Document.
</p>
<h4>4. MODIFICATIONS</h4>
<p>You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy
of it. In addition, you must do these things in the Modified Version:
</p>
<blockquote>
<p><b>A.</b> Use in the Title Page (and on the covers, if
any) a title distinct from that of the Document, and from those of
previous versions (which should, if there were any, be listed in the
History section of the Document). You may use the same title as a
previous version if the original publisher of that version gives
permission.</p>
<p><b>B.</b> List on the Title Page, as authors, one or
more persons or entities responsible for authorship of the
modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if
it has fewer than five), unless they release you from this requirement.</p>
<p><b>C.</b> State on the Title page the name of the
publisher of the Modified Version, as the publisher.</p>
<p><b>D.</b> Preserve all the copyright notices of the
Document.</p>
<p><b>E.</b> Add an appropriate copyright notice for your
modifications adjacent to the other copyright notices.</p>
<p><b>F.</b> Include, immediately after the copyright
notices, a license notice giving the public permission to use the
Modified Version under the terms of this License, in the form shown in
the Addendum below.</p>
<p><b>G.</b> Preserve in that license notice the full
lists of Invariant Sections and required Cover Texts given in the
Document's license notice.</p>
<p><b>H.</b> Include an unaltered copy of this License.</p>
<p><b>I.</b> Preserve the section Entitled "History",
Preserve its Title, and add to it an item stating at least the title,
year, new authors, and publisher of the Modified Version as given on
the Title Page. If there is no section Entitled "History" in the
Document, create one stating the title, year, authors, and publisher of
the Document as given on its Title Page, then add an item describing
the Modified Version as stated in the previous sentence.</p>
<p><b>J.</b> Preserve the network location, if any, given
in the Document for public access to a Transparent copy of the
Document, and likewise the network locations given in the Document for
previous versions it was based on. These may be placed in the "History"
section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original
publisher of the version it refers to gives permission.</p>
<p><b>K.</b> For any section Entitled "Acknowledgements"
or "Dedications", Preserve the Title of the section, and preserve in
the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.</p>
<p><b>L.</b> Preserve all the Invariant Sections of the
Document, unaltered in their text and in their titles. Section numbers
or the equivalent are not considered part of the section titles.</p>
<p><b>M.</b> Delete any section Entitled "Endorsements".
Such a section may not be included in the Modified Version.</p>
<p><b>N.</b> Do not retitle any existing section to be
Entitled "Endorsements" or to conflict in title with any Invariant
Section.</p>
<p><b>O.</b> Preserve any Warranty Disclaimers.</p>
</blockquote>
<p>
If the Modified Version includes new front-matter sections or
appendices that qualify as Secondary Sections and contain no material
copied from the Document, you may at your option designate some or all
of these sections as invariant. To do this, add their titles to the
list of Invariant Sections in the Modified Version's license notice.
These titles must be distinct from any other section titles.
</p>
<p>You may add a section Entitled "Endorsements", provided it contains
nothing but endorsements of your Modified Version by various
parties--for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a
standard.
</p>
<p>You may add a passage of up to five words as a Front-Cover Text, and
a
passage of up to 25 words as a Back-Cover Text, to the end of the list
of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or
through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of,
you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.
</p>
<p>The author(s) and publisher(s) of the Document do not by this
License
give permission to use their names for publicity for or to assert or
imply endorsement of any Modified Version.
</p>
<h4>5. COMBINING DOCUMENTS</h4>
<p>You may combine the Document with other documents released under
this
License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its
license notice, and that you preserve all their Warranty Disclaimers.
</p>
<p>The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single
copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.
</p>
<p>In the combination, you must combine any sections Entitled "History"
in the various original documents, forming one section Entitled
"History"; likewise combine any sections Entitled "Acknowledgements",
and any sections Entitled "Dedications". You must delete all sections
Entitled "Endorsements."
</p>
<h4>6. COLLECTIONS OF DOCUMENTS</h4>
<p>You may make a collection consisting of the Document and other
documents
released under this License, and replace the individual copies of this
License in the various documents with a single copy that is included in
the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.
</p>
<p>You may extract a single document from such a collection, and
distribute
it individually under this License, provided you insert a copy of this
License into the extracted document, and follow this License in all
other respects regarding verbatim copying of that document.
</p>
<h4>7. AGGREGATION WITH INDEPENDENT WORKS</h4>
<p>A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, is called an "aggregate" if the copyright
resulting from the compilation is not used to limit the legal rights
of the compilation's users beyond what the individual works permit.
When the Document is included in an aggregate, this License does not
apply to the other works in the aggregate which are not themselves
derivative works of the Document.
</p>
<p>If the Cover Text requirement of section 3 is applicable to these
copies of the Document, then if the Document is less than one half of
the entire aggregate, the Document's Cover Texts may be placed on
covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form.
Otherwise they must appear on printed covers that bracket the whole
aggregate.
</p>
<h4>8. TRANSLATION</h4>
<p>Translation is considered a kind of modification, so you may
distribute translations of the Document under the terms of section 4.
Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a
translation of this License, and all the license notices in the
Document, and any Warranty Disclaimers, provided that you also include
the original English version of this License and the original versions
of those notices and disclaimers. In case of a disagreement between
the translation and the original version of this License or a notice
or disclaimer, the original version will prevail.
</p>
<p>If a section in the Document is Entitled "Acknowledgements",
"Dedications", or "History", the requirement (section 4) to Preserve
its Title (section 1) will typically require changing the actual
title.
</p>
<h4>9. TERMINATION</h4>
<p>You may not copy, modify, sublicense, or distribute the Document
except
as expressly provided for under this License. Any other attempt to
copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However,
parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such
parties remain in full compliance.
</p>
<h4>10. FUTURE REVISIONS OF THIS LICENSE</h4>
<p>The Free Software Foundation may publish new, revised versions
of the GNU Free Documentation License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.
</p>
<p>Each version of the License is given a distinguishing version
number.
If the Document specifies that a particular numbered version of this
License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation.
</p>
<br/><br/>
<hr/>
<br/><br/>
<br/><br/>
<a name="GNUGPL"></a>
<center>
<h2><span class="gnu">GNU GENERAL PUBLIC LICENSE</span></h2>
<p>Version 3, 29 June 2007</p>
</center>
<p>
Copyright (C) 2007 Free Software Foundation, Inc. http://fsf.org/
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
</p>
<center><h4>Preamble</h4></center>
<p>
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
</p>
<p>
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
</p>
<p>
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
</p>
<p>
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
</p>
<p>
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
</p>
<p>
Developers that use the GNU GPL protect your rights with two steps:
</p>
<p>
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
</p>
<p>
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
</p>
<p>
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
</p>
<p>
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
</p>
<p>
The precise terms and conditions for copying, distribution and
modification follow.
</p>
<center><h4>TERMS AND CONDITIONS</h4></center>
<h4>0. Definitions.</h4>
<p>
"This License" refers to version 3 of the GNU General Public License.
</p>
<p>
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
</p>
<p>
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
</p>
<p>
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
</p>
<p>
A "covered work" means either the unmodified Program or a work based
on the Program.
</p>
<p>
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
</p>
<p>
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
</p>
<p>
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.</p>
<h4>1. Source Code.</h4>
<p>
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
</p>
<p>
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
</p>
<p>
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
</p>
<p>
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
</p>
<p>
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
</p>
<p>
The Corresponding Source for a work in source code form is that
same work.
</p>
<h4>2. Basic Permissions.</h4>
<p>
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
</p>
<p>
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
</p>
<p>
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
</p>
<h4>3. Protecting Users' Legal Rights From Anti-Circumvention Law.</h4>
<p>
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
</p>
<p>
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
</p>
<h4>4. Conveying Verbatim Copies.</h4>
<p>
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
</p>
<p>
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
</p>
<h4>5. Conveying Modified Source Versions.</h4>
<p>
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
</p>
<blockquote>
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
</blockquote>
<blockquote>
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
</blockquote>
<blockquote>
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
</blockquote>
<blockquote>
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
</blockquote>
<p>
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
</p>
<h4>6. Conveying Non-Source Forms.</h4>
<p>
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
</p>
<blockquote>
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
</blockquote>
<blockquote>
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
</blockquote>
<blockquote>
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
</blockquote>
<blockquote>
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
</blockquote>
<blockquote>
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
</blockquote>
<p>
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
</p>
<p>
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
</p>
<p>
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
</p>
<p>
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
</p>
<p>
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
</p>
<p>
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
</p>
<h4>7. Additional Terms.</h4>
<p>
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
</p>
<p>
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
</p>
<p>
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
</p>
<blockquote>
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
</blockquote>
<blockquote>
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
</blockquote>
<blockquote>
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
</blockquote>
<blockquote>
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
</blockquote>
<blockquote>
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
</blockquote>
<blockquote>
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
</blockquote>
<p>
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
</p>
<p>
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
</p>
<p>
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
</p>
<h4>8. Termination.</h4>
<p>
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
</p>
<p>
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
</p>
<p>
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
</p>
<p>
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
</p>
<h4>9. Acceptance Not Required for Having Copies.</h4>
<p>
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
</p>
<h4>10. Automatic Licensing of Downstream Recipients.</h4>
<p>
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
</p>
<p>
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
</p>
<p>
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
</p>
<h4>11. Patents.</h4>
<p>
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
</p>
<p>
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
</p>
<p>
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
</p>
<p>
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
</p>
<p>
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
</p>
<p>
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
</p>
<p>
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
</p>
<p>
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
</p>
<h4>12. No Surrender of Others' Freedom.</h4>
<p>
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
</p>
<h4>13. Use with the GNU Affero General Public License.</h4>
<p>
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
</p>
<h4>14. Revised Versions of this License.</h4>
<p>
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
</p>
<p>
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
</p>
<p>
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
</p>
<p>
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
</p>
<h4>15. Disclaimer of Warranty.</h4>
<p>
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
</p>
<h4>16. Limitation of Liability.</h4>
<p>
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
</p>
<h4>17. Interpretation of Sections 15 and 16.</h4>
<p>
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
</p>
<br/>
<center><h4>END OF TERMS AND CONDITIONS</h4></center>
</div>
<br/><br/>
<center style="font-size: 150%">
<span class="divider">( <font color="#7ba9d4">∂</font> )</span>
</center>
<br/><br/>
</body>
</html>
|