File: tmt4.cpp

package info (click to toggle)
newmat 1.10.4-2
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 1,236 kB
  • ctags: 1,986
  • sloc: cpp: 16,936; makefile: 95; sh: 10
file content (155 lines) | stat: -rw-r--r-- 4,641 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

//#define WANT_STREAM


#include "include.h"

#include "newmat.h"

#include "tmt.h"

#ifdef use_namespace
using namespace NEWMAT;
#endif


/**************************** test program ******************************/


void trymat4()
{
//   cout << "\nFourth test of Matrix package\n";
   Tracer et("Fourth test of Matrix package");
   Tracer::PrintTrace();

   int i,j;

   {
      Tracer et1("Stage 1");
      Matrix M(10,10);
      UpperTriangularMatrix U(10);
      for (i=1;i<=10;i++) for (j=1;j<=10;j++) M(i,j) = 100*i+j;
      U << -M;
      Matrix X1 = M.Rows(2,4);
      Matrix Y1 = U.t().Rows(2,4);
      Matrix X = U; { Print(Matrix(X.Columns(2,4).t()-Y1)); }
      RowVector RV = M.Row(5);
      {
         X.ReSize(3,10);
         X.Row(1) << M.Row(2); X.Row(2) << M.Row(3); X.Row(3) << M.Row(4);
         Print(Matrix(X-X1));
      }
      {
         UpperTriangularMatrix V = U.SymSubMatrix(3,5);
         Matrix MV = U.SubMatrix(3,5,3,5); { Print(Matrix(MV-V)); }
         Matrix X2 = M.t().Columns(2,4); { Print(Matrix(X2-X1.t())); }
         Matrix Y2 = U.Columns(2,4); { Print(Matrix(Y2-Y1.t())); }
         ColumnVector CV = M.t().Column(5); { Print(ColumnVector(CV-RV.t())); }
         X.ReSize(10,3); M = M.t();
         X.Column(1) << M.Column(2); X.Column(2) << M.Column(3);
         X.Column(3) << M.Column(4);
         Print(Matrix(X-X2));
      }
   }

   {
      Tracer et1("Stage 2");
      Matrix M; Matrix X; M.ReSize(5,8);
      for (i=1;i<=5;i++) for (j=1;j<=8;j++) M(i,j) = 100*i+j;
      {
         X = M.Columns(5,8); M.Columns(5,8) << M.Columns(1,4);
             M.Columns(1,4) << X;
         X = M.Columns(3,4); M.Columns(3,4) << M.Columns(1,2);
             M.Columns(1,2) << X;
         X = M.Columns(7,8); M.Columns(7,8) << M.Columns(5,6);
             M.Columns(5,6) << X;
      }
      {
         X = M.Column(2); M.Column(2) = M.Column(1); M.Column(1) = X;
         X = M.Column(4); M.Column(4) = M.Column(3); M.Column(3) = X;
         X = M.Column(6); M.Column(6) = M.Column(5); M.Column(5) = X;
         X = M.Column(8); M.Column(8) = M.Column(7); M.Column(7) = X;
         X.ReSize(5,8);
      }
      for (i=1;i<=5;i++) for (j=1;j<=8;j++) X(i,9-j) = 100*i+j;
      Print(Matrix(X-M));
   }
   {
      Tracer et1("Stage 3");
      // try submatrices of zero dimension
      Matrix A(4,5); Matrix B, C;
      for (i=1; i<=4; i++) for (j=1; j<=5; j++)
         A(i,j) = 100+i*10+j;
      B = A + 100;
      C = A | B.Columns(4,3); Print(Matrix(A - C));
      C = A | B.Columns(1,0); Print(Matrix(A - C));
      C = A | B.Columns(6,5); Print(Matrix(A - C));
      C = A & B.Rows(2,1); Print(Matrix(A - C));
   }
   {
      Tracer et1("Stage 4");
      BandMatrix BM(5,3,2);
      BM(1,1) = 1; BM(1,2) = 2; BM(1,3) = 3;
      BM(2,1) = 4; BM(2,2) = 5; BM(2,3) = 6; BM(2,4) = 7;
      BM(3,1) = 8; BM(3,2) = 9; BM(3,3) =10; BM(3,4) =11; BM(3,5) =12;
      BM(4,1) =13; BM(4,2) =14; BM(4,3) =15; BM(4,4) =16; BM(4,5) =17;
                   BM(5,2) =18; BM(5,3) =19; BM(5,4) =20; BM(5,5) =21;
      SymmetricBandMatrix SM(5,3);
      SM.Inject(BandMatrix(BM + BM.t()));
      Matrix A = BM + 1;
      Matrix M = A + A.t() - 2;
      Matrix C = A.i() * BM;
      C = A * C - BM; Clean(C, 0.000000001); Print(C);
      C = A.i() * SM;
      C = A * C - M; Clean(C, 0.000000001); Print(C);

      // check row-wise load
      BandMatrix BM1(5,3,2);
      BM1.Row(1) <<  1 <<  2 <<  3;
      BM1.Row(2) <<  4 <<  5 <<  6 <<  7;
      BM1.Row(3) <<  8 <<  9 << 10 << 11 << 12;
      BM1.Row(4) << 13 << 14 << 15 << 16 << 17;
      BM1.Row(5)       << 18 << 19 << 20 << 21;
      Matrix M1 = BM1 - BM; Print(M1);
   }
   {
      Tracer et1("Stage 5");
      Matrix X(4,4);
      X << 1 << 2 << 3 << 4
        << 5 << 6 << 7 << 8
        << 9 <<10 <<11 <<12
        <<13 <<14 <<15 <<16;
      Matrix Y(4,0);
      Y = X | Y;
      X -= Y; Print(X);

      DiagonalMatrix D(1);
      D << 23;                       // matrix input with just one value
      D(1) -= 23; Print(D);

   }
   {
      Tracer et1("Stage 6");
      Matrix h (2,2);
      h << 1.0 << 2.0 << 0.0 << 1.0 ;
      RowVector c(2);
      c << 0.0 << 1.0;
      h -= c & c;
      h -= c.t().Reverse() | c.Reverse().t();
      Print(h);
   }
   {
      Tracer et1("Stage 7");
      // Check row-wise input for diagonal matrix
      DiagonalMatrix D(4);
      D << 18 << 23 << 31 << 17;
      DiagonalMatrix D1(4);
      D1.Row(1) << 18; D1.Row(2) << 23; D1.Row(3) << 31; D1.Row(4) << 17;
      D1 -= D; Print(D1);
      D1(1) = 18; D1(2) = 23; D1(3) = 31; D1(4) = 17;
      D1 -= D; Print(D1);
   }

//   cout << "\nEnd of fourth test\n";
}