File: tmt1.cpp

package info (click to toggle)
newmat 1.10.4-5
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd, squeeze, wheezy
  • size: 1,240 kB
  • ctags: 1,984
  • sloc: cpp: 16,900; makefile: 76; sh: 10
file content (207 lines) | stat: -rw-r--r-- 6,372 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

#define WANT_STREAM



#include "include.h"

#include "newmat.h"

#include "tmt.h"

#ifdef use_namespace
using namespace NEWMAT;
#endif


/**************************** test program ******************************/


void trymat1()
{
//   cout << "\nFirst test of Matrix package\n\n";
   Tracer et("First test of Matrix package");
   Tracer::PrintTrace();
   {
      Tracer et1("Stage 1");
      int i,j;

      LowerTriangularMatrix L(10);
      for (i=1;i<=10;i++) for (j=1;j<=i;j++) L(i,j)=2.0+i*i+j;
      SymmetricMatrix S(10);
      for (i=1;i<=10;i++) for (j=1;j<=i;j++) S(i,j)=i*j+1.0;
      SymmetricMatrix S1 = S / 2.0;
      S = S1 * 2.0;
      UpperTriangularMatrix U=L.t()*2.0;
      Print(LowerTriangularMatrix(L-U.t()*0.5));
      DiagonalMatrix D(10);
      for (i=1;i<=10;i++) D(i,i)=(i-4)*(i-5)*(i-6);
      Matrix M=(S+U-D+L)*(L+U-D+S);
      DiagonalMatrix DD=D*D;
      LowerTriangularMatrix LD=L*D;
      // expressions split for Turbo C
      Matrix M1 = S*L + U*L - D*L + L*L + 10.0;
      { M1 = M1 + S*U + U*U - D*U + L*U - S*D; }
      { M1 = M1 - U*D + DD - LD + S*S; }
      { M1 = M1 + U*S - D*S + L*S - 10.0; }
      M=M1-M;
      Print(M);
   }
   {
      Tracer et1("Stage 2");
      int i,j;

      LowerTriangularMatrix L(9);
      for (i=1;i<=9;i++) for (j=1;j<=i;j++) L(i,j)=1.0+j;
      UpperTriangularMatrix U1(9);
      for (j=1;j<=9;j++) for (i=1;i<=j;i++) U1(i,j)=1.0+i;
      LowerTriangularMatrix LX(9);
      for (i=1;i<=9;i++) for (j=1;j<=i;j++) LX(i,j)=1.0+i*i;
      UpperTriangularMatrix UX(9);
      for (j=1;j<=9;j++) for (i=1;i<=j;i++) UX(i,j)=1.0+j*j;
      {
         L=L+LX/0.5;   L=L-LX*3.0;   L=LX*2.0+L;
         U1=U1+UX*2.0; U1=U1-UX*3.0; U1=UX*2.0+U1;
      }


      SymmetricMatrix S(9);
      for (i=1;i<=9;i++) for (j=1;j<=i;j++) S(i,j)=i*i+j;
      {
         SymmetricMatrix S1 = S;
         S=S1+5.0;
         S=S-3.0;
      }

      DiagonalMatrix D(9);
      for (i=1;i<=9;i++) D(i,i)=S(i,i);
      UpperTriangularMatrix U=L.t()*2.0;
      {
         U1=U1*2.0 - U;  Print(U1);
         L=L*2.0-D; U=U-D;
      }
      Matrix M=U+L; S=S*2.0; M=S-M; Print(M);
   }
   {
      Tracer et1("Stage 3");
      int i,j;
      Matrix M(10,3), N(10,3);
      for (i = 1; i<=10; i++) for (j = 1; j<=3; j++)
         {  M(i,j) = 2*i-j; N(i,j) = i*j + 20; }
      Matrix MN = M + N, M1;

      M1 = M; M1 += N; M1 -= MN; Print(M1);
      M1 = M; M1 += M1; M1 = M1 - M * 2; Print(M1);
      M1 = M; M1 += N * 2; M1 -= (MN + N); Print(M1);
      M1 = M; M1 -= M1; Print(M1);
      M1 = M; M1 -= MN + M1; M1 += N + M; Print(M1);
      M1 = M; M1 -= 5; M1 -= M; M1 *= 0.2; M1 = M1 + 1; Print(M1);
      Matrix NT = N.t();
      M1 = M; M1 *= NT; M1 -= M * N.t(); Print(M1);
      M = M * M.t();
      DiagonalMatrix D(10); D = 2;
      M1 = M; M1 += D; M1 -= M; M1 = M1 - D; Print(M1);
      M1 = M; M1 -= D; M1 -= M; M1 = M1 + D; Print(M1);
      M1 = M; M1 *= D; M1 /= 2; M1 -= M; Print(M1);
      SymmetricMatrix SM; SM << M;
      // UpperTriangularMatrix SM; SM << M;
      SM += 10; M1 = SM - M; M1 /=10; M1 = M1 - 1; Print(M1);
   }
   {
      Tracer et1("Stage 4");
      int i,j;
      Matrix M(10,3), N(10,5);
      for (i = 1; i<=10; i++) for (j = 1; j<=3; j++) M(i,j) = 2*i-j;
      for (i = 1; i<=10; i++) for (j = 1; j<=5; j++) N(i,j) = i*j + 20;
      Matrix M1;
      M1 = M; M1 |= N; M1 &= N | M;
      M1 -= (M | N) & (N | M); Print(M1);
      M1 = M; M1 |= M1; M1 &= M1;
      M1 -= (M | M) & (M | M); Print(M1);

   }
   {
      Tracer et1("Stage 5");
      int i,j;
      BandMatrix BM1(10,2,3), BM2(10,4,1); Matrix M1(10,10), M2(10,10);
      for (i=1;i<=10;i++) for (j=1;j<=10;j++)
        { M1(i,j) = 0.5*i+j*j-50; M2(i,j) = (i*101 + j*103) % 13; }
      BM1.Inject(M1); BM2.Inject(M2);
      BandMatrix BM = BM1; BM += BM2;
      Matrix M1X = BM1; Matrix M2X = BM2; Matrix MX = BM;
      MX -= M1X + M2X; Print(MX);
      MX = BM1; MX += BM2; MX -= M1X; MX -= M2X; Print(MX);
      SymmetricBandMatrix SM1; SM1 << BM1 * BM1.t(); 
      SymmetricBandMatrix SM2; SM2 << BM2 * BM2.t();
      SM1 *= 5.5;
      M1X *= M1X.t(); M1X *= 5.5; M2X *= M2X.t();
      SM1 -= SM2; M1 = SM1 - M1X + M2X; Print(M1);
      M1 = BM1; BM1 *= SM1; M1 = M1 * SM1 - BM1; Print(M1); 
      M1 = BM1; BM1 -= SM1; M1 = M1 - SM1 - BM1; Print(M1); 
      M1 = BM1; BM1 += SM1; M1 = M1 + SM1 - BM1; Print(M1); 
      
   }
   {
      Tracer et1("Stage 6");
      int i,j;
      Matrix M(10,10), N(10,10);
      for (i = 1; i<=10; i++) for (j = 1; j<=10; j++)
         {  M(i,j) = 2*i-j; N(i,j) = i*j + 20; }
      GenericMatrix GM = M;
      GM += N; Matrix M1 = GM - N - M; Print(M1);
      DiagonalMatrix D(10); D = 3;
      GM = D; GM += N; GM += M; GM += D;
      M1 = D*2 - GM + M + N; Print(M1);
      GM = D; GM *= 4; GM += 16; GM /= 8; GM -= 2;
      GM -= D / 2; M1 = GM; Print(M1);
      GM = D; GM *= M; GM *= N; GM /= 3; M1 = M*N - GM; Print(M1);
      GM = D; GM |= M; GM &= N | D; M1 = GM - ((D | M) & (N | D));
      Print(M1);
      GM = M; M1 = M; GM += 5; GM *= 3; M *= 3; M += 15; M1 = GM - M;
      Print(M1);
      D.ReSize(10); for (i = 1; i<=10; i++) D(i) = i;
      M1 = D + 10; GM = D; GM += 10; M1 -= GM; Print(M1);
      GM = M; GM -= D; M1 = GM; GM = D; GM -= M; M1 += GM; Print(M1);
      GM = M; GM *= D; M1 = GM; GM = D; GM *= M.t();
      M1 -= GM.t(); Print(M1);
      GM = M; GM += 2 * GM; GM -= 3 * M; M1 = GM; Print(M1);
      GM = M; GM |= GM; GM -= (M | M); M1 = GM; Print(M1);
      GM = M; GM &= GM; GM -= (M & M); M1 = GM; Print(M1);
      M1 = M; M1 = (M1.t() & M.t()) - (M | M).t(); Print(M1);
      M1 = M; M1 = (M1.t() | M.t()) - (M & M).t(); Print(M1);

   }

   {
      Tracer et1("Stage 7");
      // test for bug in MS VC5
      int n = 3;
      int k; int j;
      Matrix A(n,n), B(n,n);

      //first version - MS VC++ 5 mis-compiles if optimisation is on
      for (k=1; k<=n; k++)
      {
         for (j = 1; j <= n; j++) A(k,j) = ((k-1) * (2*j-1));
      }

      //second version
      for (k=1; k<=n; k++)
      {
         const int k1 = k-1;          // otherwise Visual C++ 5 fails
         for (j = 1; j <= n; j++) B(k,j) = (k1 * (2*j-1));
      }

      if (A != B)
      {
         cout << "\nVisual C++ version 5 compiler error?";
         cout << "\nTurn off optimisation";
      }

      A -= B; Print(A);

   }

//   cout << "\nEnd of first test\n";
}