File: tmt8.cpp

package info (click to toggle)
newmat 1.10.4-5
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd, squeeze, wheezy
  • size: 1,240 kB
  • ctags: 1,984
  • sloc: cpp: 16,900; makefile: 76; sh: 10
file content (268 lines) | stat: -rw-r--r-- 8,851 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268

//#define WANT_STREAM

#include "include.h"

#include "newmatap.h"

#include "tmt.h"

#ifdef use_namespace
using namespace NEWMAT;
#endif



// **************************** test program ******************************


void Transposer(const GenericMatrix& GM1, GenericMatrix&GM2)
   { GM2 = GM1.t(); }

// this is a routine in "Numerical Recipes in C" format
// if R is a row vector, C a column vector and D diagonal
// make matrix DCR

static void DCR(Real d[], Real c[], int m, Real r[], int n, Real **dcr)
{
   int i, j;
   for (i = 1; i <= m; i++) for (j = 1; j <= n; j++)
   dcr[i][j] = d[i] * c[i] * r[j];
}

ReturnMatrix TestReturn(const GeneralMatrix& gm) { return gm; }

void trymat8()
{
//   cout << "\nEighth test of Matrix package\n";
   Tracer et("Eighth test of Matrix package");
   Tracer::PrintTrace();

   int i;


   DiagonalMatrix D(6);
   for (i=1;i<=6;i++)  D(i,i)=i*i+i-10;
   DiagonalMatrix D2=D;
   Matrix MD=D;

   DiagonalMatrix D1(6); for (i=1;i<=6;i++) D1(i,i)=-100+i*i*i;
   Matrix MD1=D1;
   Print(Matrix(D*D1-MD*MD1));
   Print(Matrix((-D)*D1+MD*MD1));
   Print(Matrix(D*(-D1)+MD*MD1));
   DiagonalMatrix DX=D;
   {
      Tracer et1("Stage 1");
      DX=(DX+D1)*DX; Print(Matrix(DX-(MD+MD1)*MD));
      DX=D;
      DX=-DX*DX+(DX-(-D1))*((-D1)+DX);
      // Matrix MX = Matrix(MD1);
      // MD1=DX+(MX.t())*(MX.t()); Print(MD1);
      MD1=DX+(Matrix(MD1).t())*(Matrix(MD1).t()); Print(MD1);
      DX=D; DX=DX; DX=D2-DX; Print(DiagonalMatrix(DX));
      DX=D;
   }
   {
      Tracer et1("Stage 2");
      D.Release(2);
      D1=D; D2=D;
      Print(DiagonalMatrix(D1-DX));
      Print(DiagonalMatrix(D2-DX));
      MD1=1.0;
      Print(Matrix(MD1-1.0));
   }
   {
      Tracer et1("Stage 3");
      //GenericMatrix
      LowerTriangularMatrix LT(4);
      LT << 1 << 2 << 3 << 4 << 5 << 6  << 7 << 8 << 9 << 10;
      UpperTriangularMatrix UT = LT.t() * 2.0;
      GenericMatrix GM1 = LT;
      LowerTriangularMatrix LT1 = GM1-LT; Print(LT1);
      GenericMatrix GM2 = GM1; LT1 = GM2; LT1 = LT1-LT; Print(LT1);
      GM2 = GM1; LT1 = GM2; LT1 = LT1-LT; Print(LT1);
      GM2 = GM1*2; LT1 = GM2; LT1 = LT1-LT*2; Print(LT1);
      GM1.Release();
      GM1=GM1; LT1=GM1-LT; Print(LT1); LT1=GM1-LT; Print(LT1);
      GM1.Release();
      GM1=GM1*4; LT1=GM1-LT*4; Print(LT1);
      LT1=GM1-LT*4; Print(LT1); GM1.CleanUp();
      GM1=LT; GM2=UT; GM1=GM1*GM2; Matrix M=GM1; M=M-LT*UT; Print(M);
      Transposer(LT,GM2); LT1 = LT - GM2.t(); Print(LT1);
      GM1=LT; Transposer(GM1,GM2); LT1 = LT - GM2.t(); Print(LT1);
      GM1 = LT; GM1 = GM1 + GM1; LT1 = LT*2-GM1; Print(LT1);
      DiagonalMatrix D; D << LT; GM1 = D; LT1 = GM1; LT1 -= D; Print(LT1);
      UpperTriangularMatrix UT1 = GM1; UT1 -= D; Print(UT1);
   }
   {
      Tracer et1("Stage 4");
      // Another test of SVD
      Matrix M(12,12); M = 0;
      M(1,1) = M(2,2) = M(4,4) = M(6,6) =
         M(7,7) = M(8,8) = M(10,10) = M(12,12) = -1;
      M(1,6) = M(1,12) = -5.601594;
      M(3,6) = M(3,12) = -0.000165;
      M(7,6) = M(7,12) = -0.008294;
      DiagonalMatrix D;
      SVD(M,D);
      SortDescending(D);
      // answer given by matlab
      DiagonalMatrix DX(12);
      DX(1) = 8.0461;
      DX(2) = DX(3) = DX(4) = DX(5) = DX(6) = DX(7) = 1;
      DX(8) = 0.1243;
      DX(9) = DX(10) = DX(11) = DX(12) = 0;
      D -= DX; Clean(D,0.0001); Print(D);
   }
#ifndef DONT_DO_NRIC
   {
      Tracer et1("Stage 5");
      // test numerical recipes in C interface
      DiagonalMatrix D(10);
      D << 1 << 4 << 6 << 2 << 1 << 6 << 4 << 7 << 3 << 1;
      ColumnVector C(10);
      C << 3 << 7 << 5 << 1 << 4 << 2 << 3 << 9 << 1 << 3;
      RowVector R(6);
      R << 2 << 3 << 5 << 7 << 11 << 13;
      nricMatrix M(10, 6);
      DCR( D.nric(), C.nric(), 10, R.nric(), 6, M.nric() );
      M -= D * C * R;  Print(M);

      D.ReSize(5);
      D << 1.25 << 4.75 << 9.5 << 1.25 << 3.75;
      C.ReSize(5);
      C << 1.5 << 7.5 << 4.25 << 0.0 << 7.25;
      R.ReSize(9);
      R << 2.5 << 3.25 << 5.5 << 7 << 11.25 << 13.5 << 0.0 << 1.5 << 3.5;
      Matrix MX = D * C * R;
      M.ReSize(MX);
      DCR( D.nric(), C.nric(), 5, R.nric(), 9, M.nric() );
      M -= MX;  Print(M);
   }
#endif
   {
      Tracer et1("Stage 6");
      // test dotproduct
      DiagonalMatrix test(5); test = 1;
      ColumnVector C(10);
      C << 3 << 7 << 5 << 1 << 4 << 2 << 3 << 9 << 1 << 3;
      RowVector R(10);
      R << 2 << 3 << 5 << 7 << 11 << 13 << -3 << -4 << 2 << 4;
      test(1) = (R * C).AsScalar() - DotProduct(C, R);
      test(2) = C.SumSquare() - DotProduct(C, C);
      test(3) = 6.0 * (C.t() * R.t()).AsScalar() - DotProduct(2.0 * C, 3.0 * R);
      Matrix MC = C.AsMatrix(2,5), MR = R.AsMatrix(5,2);
      test(4) = DotProduct(MC, MR) - (R * C).AsScalar();
      UpperTriangularMatrix UT(5);
      UT << 3 << 5 << 2 << 1 << 7
              << 1 << 1 << 8 << 2
                   << 7 << 0 << 1
                        << 3 << 5
                             << 6;
      LowerTriangularMatrix LT(5);
      LT << 5
         << 2 << 3
         << 1 << 0 << 7
         << 9 << 8 << 1 << 2
         << 0 << 2 << 1 << 9 << 2;
      test(5) = DotProduct(UT, LT) - Sum(SP(UT, LT));
      Print(test);
      // check row-wise load;
      LowerTriangularMatrix LT1(5);
      LT1.Row(1) << 5;
      LT1.Row(2) << 2   << 3;
      LT1.Row(3) << 1   << 0   << 7;
      LT1.Row(4) << 9   << 8   << 1   << 2;
      LT1.Row(5) << 0   << 2   << 1   << 9   << 2;
      Matrix M = LT1 - LT; Print(M);
      // check solution with identity matrix
      IdentityMatrix IM(5); IM *= 2;
      LinearEquationSolver LES1(IM);
      LowerTriangularMatrix LTX = LES1.i() * LT;
      M = LTX * 2 - LT; Print(M);
      DiagonalMatrix D = IM;
      LinearEquationSolver LES2(IM);
      LTX = LES2.i() * LT;
      M = LTX * 2 - LT; Print(M);
      UpperTriangularMatrix UTX = LES1.i() * UT;
      M = UTX * 2 - UT; Print(M);
      UTX = LES2.i() * UT;
      M = UTX * 2 - UT; Print(M);
   }

   {
      Tracer et1("Stage 7");
      // Some more GenericMatrix stuff with *= |= &=
      // but don't any additional checks
      BandMatrix BM1(6,2,3);
      BM1.Row(1) << 3 << 8 << 4 << 1;
      BM1.Row(2) << 5 << 1 << 9 << 7 << 2;
      BM1.Row(3) << 1 << 0 << 6 << 3 << 1 << 3;
      BM1.Row(4)      << 4 << 2 << 5 << 2 << 4;
      BM1.Row(5)           << 3 << 3 << 9 << 1;
      BM1.Row(6)                << 4 << 2 << 9;
      BandMatrix BM2(6,1,1);
      BM2.Row(1) << 2.5 << 7.5;
      BM2.Row(2) << 1.5 << 3.0 << 8.5;
      BM2.Row(3)        << 6.0 << 6.5 << 7.0;
      BM2.Row(4)               << 2.5 << 2.0 << 8.0;
      BM2.Row(5)                      << 0.5 << 4.5 << 3.5;
      BM2.Row(6)                             << 9.5 << 7.5;
      Matrix RM1 = BM1, RM2 = BM2;
      Matrix X;
      GenericMatrix GRM1 = RM1, GBM1 = BM1, GRM2 = RM2, GBM2 = BM2;
      Matrix Z(6,0); Z = 5; Print(Z);
      GRM1 |= Z; GBM1 |= Z; GRM2 &= Z.t(); GBM2 &= Z.t();
      X = GRM1 - BM1; Print(X); X = GBM1 - BM1; Print(X);
      X = GRM2 - BM2; Print(X); X = GBM2 - BM2; Print(X);

      GRM1 = RM1; GBM1 = BM1; GRM2 = RM2; GBM2 = BM2;
      GRM1 *= GRM2; GBM1 *= GBM2;
      X = GRM1 - BM1 * BM2; Print(X);
      X = RM1 * RM2 - GBM1; Print(X);

      GRM1 = RM1; GBM1 = BM1; GRM2 = RM2; GBM2 = BM2;
      GRM1 *= GBM2; GBM1 *= GRM2;          // Bs and Rs swapped on LHS
      X = GRM1 - BM1 * BM2; Print(X);
      X = RM1 * RM2 - GBM1; Print(X);

      X = BM1.t(); BandMatrix BM1X = BM1.t();
      GRM1 = RM1; X -= GRM1.t(); Print(X); X = BM1X - BM1.t(); Print(X);

      // check that linear equation solver works with Identity Matrix
      IdentityMatrix IM(6); IM *= 2;
      GBM1 = BM1; GBM1 *= 4; GRM1 = RM1; GRM1 *= 4;
      DiagonalMatrix D = IM;
      LinearEquationSolver LES1(D);
      BandMatrix BX;
      BX = LES1.i() * GBM1; BX -= BM1 * 2; X = BX; Print(X);
      LinearEquationSolver LES2(IM);
      BX = LES2.i() * GBM1; BX -= BM1 * 2; X = BX; Print(X);
      BX = D.i() * GBM1; BX -= BM1 * 2; X = BX; Print(X);
      BX = IM.i() * GBM1; BX -= BM1 * 2; X = BX; Print(X);
      BX = IM.i(); BX *= GBM1; BX -= BM1 * 2; X = BX; Print(X);

      // try symmetric band matrices
      SymmetricBandMatrix SBM; SBM << SP(BM1, BM1.t());
      SBM << IM.i() * SBM;
      X = 2 * SBM - SP(RM1, RM1.t()); Print(X);

      // Do this again with more general D
      D << 2.5 << 7.5 << 2 << 5 << 4.5 << 7.5;
      BX = D.i() * BM1; X = BX - D.i() * RM1;
      Clean(X,0.00000001); Print(X);
      BX = D.i(); BX *= BM1; X = BX - D.i() * RM1;
      Clean(X,0.00000001); Print(X);
      SBM << SP(BM1, BM1.t());
      BX = D.i() * SBM; X = BX - D.i() * SP(RM1, RM1.t());
      Clean(X,0.00000001); Print(X);

      // test return
      BX = TestReturn(BM1); X = BX - BM1;
      if (BX.BandWidth() != BM1.BandWidth()) X = 5;
      Print(X);
   }

//   cout << "\nEnd of eighth test\n";
}