File: bandmat.cpp

package info (click to toggle)
newmat 1.10.4-9
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,908 kB
  • sloc: cpp: 31,314; makefile: 56
file content (570 lines) | stat: -rw-r--r-- 15,872 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
//$$ bandmat.cpp                     Band matrix definitions

// Copyright (C) 1991,2,3,4,9: R B Davies

#define WANT_MATH                    // include.h will get math fns

//#define WANT_STREAM

#include "include.h"
#include "config.h"

#include "newmat.h"
#include "newmatrc.h"

#ifdef use_namespace
namespace NEWMAT {
#endif



#ifdef DO_REPORT
#define REPORT { static ExeCounter ExeCount(__LINE__,10); ++ExeCount; }
#else
#define REPORT {}
#endif

static inline int my_min(int x, int y) { return x < y ? x : y; }
static inline int my_max(int x, int y) { return x > y ? x : y; }


BandMatrix::BandMatrix(const BaseMatrix& M)
{
   REPORT // CheckConversion(M);
   // MatrixConversionCheck mcc;
   GeneralMatrix* gmx=((BaseMatrix&)M).Evaluate(MatrixType::BM);
   GetMatrix(gmx); CornerClear();
}

void BandMatrix::SetParameters(const GeneralMatrix* gmx)
{
   REPORT
   MatrixBandWidth bw = gmx->BandWidth();
   lower = bw.lower; upper = bw.upper;
}

void BandMatrix::ReSize(int n, int lb, int ub)
{
   REPORT
   Tracer tr("BandMatrix::ReSize");
   if (lb<0 || ub<0) Throw(ProgramException("Undefined bandwidth"));
   lower = (lb<=n) ? lb : n-1; upper = (ub<=n) ? ub : n-1;
   GeneralMatrix::ReSize(n,n,n*(lower+1+upper)); CornerClear();
}

// SimpleAddOK shows when we can add etc two matrices by a simple vector add
// and when we can add one matrix into another
// *gm must be the same type as *this
// return 0 if simple add is OK
// return 1 if we can add into *gm only
// return 2 if we can add into *this only
// return 3 if we can't add either way
// For SP this will still be valid if we swap 1 and 2

short BandMatrix::SimpleAddOK(const GeneralMatrix* gm)
{
   const BandMatrix* bm = (const BandMatrix*)gm;
   if (bm->lower == lower && bm->upper == upper) { REPORT return 0; }
   else if (bm->lower >= lower && bm->upper >= upper) { REPORT return 1; }
   else if (bm->lower <= lower && bm->upper <= upper) { REPORT return 2; }
   else { REPORT return 3; }
}

short SymmetricBandMatrix::SimpleAddOK(const GeneralMatrix* gm)
{
   const SymmetricBandMatrix* bm = (const SymmetricBandMatrix*)gm;
   if (bm->lower == lower) { REPORT return 0; }
   else if (bm->lower > lower) { REPORT return 1; }
   else { REPORT return 2; }
}

void UpperBandMatrix::ReSize(int n, int lb, int ub)
{
   REPORT
   if (lb != 0)
   {
      Tracer tr("UpperBandMatrix::ReSize");
      Throw(ProgramException("UpperBandMatrix with non-zero lower band" ));
   }
   BandMatrix::ReSize(n, lb, ub);
}

void LowerBandMatrix::ReSize(int n, int lb, int ub)
{
   REPORT
   if (ub != 0)
   {
      Tracer tr("LowerBandMatrix::ReSize");
      Throw(ProgramException("LowerBandMatrix with non-zero upper band" ));
   }
   BandMatrix::ReSize(n, lb, ub);
}

void BandMatrix::ReSize(const GeneralMatrix& A)
{
   REPORT
   int n = A.Nrows();
   if (n != A.Ncols())
   {
      Tracer tr("BandMatrix::ReSize(GM)");
      Throw(NotSquareException(*this));
   }
   MatrixBandWidth mbw = A.BandWidth();
   ReSize(n, mbw.Lower(), mbw.Upper());
}

bool BandMatrix::SameStorageType(const GeneralMatrix& A) const
{
   if (Type() != A.Type()) { REPORT return false; }
   REPORT
   return BandWidth() == A.BandWidth();
}

void BandMatrix::ReSizeForAdd(const GeneralMatrix& A, const GeneralMatrix& B)
{
   REPORT
   Tracer tr("BandMatrix::ReSizeForAdd");
   MatrixBandWidth A_BW = A.BandWidth(); MatrixBandWidth B_BW = B.BandWidth();
   if ((A_BW.Lower() < 0) | (A_BW.Upper() < 0) | (B_BW.Lower() < 0)
      | (A_BW.Upper() < 0))
         Throw(ProgramException("Can't ReSize to BandMatrix" ));
   // already know A and B are square
   ReSize(A.Nrows(), my_max(A_BW.Lower(), B_BW.Lower()),
      my_max(A_BW.Upper(), B_BW.Upper()));
}

void BandMatrix::ReSizeForSP(const GeneralMatrix& A, const GeneralMatrix& B)
{
   REPORT
   Tracer tr("BandMatrix::ReSizeForSP");
   MatrixBandWidth A_BW = A.BandWidth(); MatrixBandWidth B_BW = B.BandWidth();
   if ((A_BW.Lower() < 0) | (A_BW.Upper() < 0) | (B_BW.Lower() < 0)
      | (A_BW.Upper() < 0))
         Throw(ProgramException("Can't ReSize to BandMatrix" ));
   // already know A and B are square
   ReSize(A.Nrows(), my_min(A_BW.Lower(), B_BW.Lower()),
      my_min(A_BW.Upper(), B_BW.Upper()));
}


void BandMatrix::operator=(const BaseMatrix& X)
{
   REPORT // CheckConversion(X);
   // MatrixConversionCheck mcc;
   Eq(X,MatrixType::BM); CornerClear();
}

void BandMatrix::CornerClear() const
{
   // set unused parts of BandMatrix to zero
   REPORT
   int i = lower; Real* s = store; int bw = lower + 1 + upper;
   while (i)
      { int j = i--; Real* sj = s; s += bw; while (j--) *sj++ = 0.0; }
   i = upper; s = store + storage;
   while (i)
      { int j = i--; Real* sj = s; s -= bw; while (j--) *(--sj) = 0.0; }
}

MatrixBandWidth MatrixBandWidth::operator+(const MatrixBandWidth& bw) const
{
   REPORT
   int l = bw.lower; int u = bw.upper;
   l = (lower < 0 || l < 0) ? -1 : (lower > l) ? lower : l;
   u = (upper < 0 || u < 0) ? -1 : (upper > u) ? upper : u;
   return MatrixBandWidth(l,u);
}

MatrixBandWidth MatrixBandWidth::operator*(const MatrixBandWidth& bw) const
{
   REPORT
   int l = bw.lower; int u = bw.upper;
   l = (lower < 0 || l < 0) ? -1 : lower+l;
   u = (upper < 0 || u < 0) ? -1 : upper+u;
   return MatrixBandWidth(l,u);
}

MatrixBandWidth MatrixBandWidth::minimum(const MatrixBandWidth& bw) const
{
   REPORT
   int l = bw.lower; int u = bw.upper;
   if ((lower >= 0) && ( (l < 0) || (l > lower) )) l = lower;
   if ((upper >= 0) && ( (u < 0) || (u > upper) )) u = upper;
   return MatrixBandWidth(l,u);
}

UpperBandMatrix::UpperBandMatrix(const BaseMatrix& M)
{
   REPORT // CheckConversion(M);
   // MatrixConversionCheck mcc;
   GeneralMatrix* gmx=((BaseMatrix&)M).Evaluate(MatrixType::UB);
   GetMatrix(gmx); CornerClear();
}

void UpperBandMatrix::operator=(const BaseMatrix& X)
{
   REPORT // CheckConversion(X);
   // MatrixConversionCheck mcc;
   Eq(X,MatrixType::UB); CornerClear();
}

LowerBandMatrix::LowerBandMatrix(const BaseMatrix& M)
{
   REPORT // CheckConversion(M);
   // MatrixConversionCheck mcc;
   GeneralMatrix* gmx=((BaseMatrix&)M).Evaluate(MatrixType::LB);
   GetMatrix(gmx); CornerClear();
}

void LowerBandMatrix::operator=(const BaseMatrix& X)
{
   REPORT // CheckConversion(X);
   // MatrixConversionCheck mcc;
   Eq(X,MatrixType::LB); CornerClear();
}

BandLUMatrix::BandLUMatrix(const BaseMatrix& m)
{
   REPORT
   Tracer tr("BandLUMatrix");
   storage2 = 0; store2 = 0;  // in event of exception during build
   GeneralMatrix* gm = ((BaseMatrix&)m).Evaluate(MatrixType::BM);
   m1 = ((BandMatrix*)gm)->lower; m2 = ((BandMatrix*)gm)->upper;
   GetMatrix(gm);
   if (nrows!=ncols) Throw(NotSquareException(*this));
   d = true; sing = false;
   indx = new int [nrows]; MatrixErrorNoSpace(indx);
   MONITOR_INT_NEW("Index (BndLUMat)",nrows,indx)
   storage2 = nrows * m1;
   store2 = new Real [storage2]; MatrixErrorNoSpace(store2);
   MONITOR_REAL_NEW("Make (BandLUMat)",storage2,store2)
   ludcmp();
}

BandLUMatrix::~BandLUMatrix()
{
   REPORT
   MONITOR_INT_DELETE("Index (BndLUMat)",nrows,indx)
   MONITOR_REAL_DELETE("Delete (BndLUMt)",storage2,store2)
   delete [] indx; delete [] store2;
}

MatrixType BandLUMatrix::Type() const { REPORT return MatrixType::BC; }


LogAndSign BandLUMatrix::LogDeterminant() const
{
   REPORT
   if (sing) return 0.0;
   Real* a = store; int w = m1+1+m2; LogAndSign sum; int i = nrows;
   // while (i--) { sum *= *a; a += w; }
   if (i) for (;;) { sum *= *a; if (!(--i)) break; a += w; }
   if (!d) sum.ChangeSign(); return sum;
}

GeneralMatrix* BandMatrix::MakeSolver()
{
   REPORT
   GeneralMatrix* gm = new BandLUMatrix(*this);
   MatrixErrorNoSpace(gm); gm->ReleaseAndDelete(); return gm;
}


void BandLUMatrix::ludcmp()
{
   REPORT
   Real* a = store2; int i = storage2;
   // clear store2 - so unused locations are always zero -
   // required by operator==
   while (i--) *a++ = 0.0;
   a = store;
   i = m1; int j = m2; int k; int n = nrows; int w = m1 + 1 + m2;
   while (i)
   {
      Real* ai = a + i;
      k = ++j; while (k--) *a++ = *ai++;
      k = i--; while (k--) *a++ = 0.0;
   }

   a = store; int l = m1;
   for (k=0; k<n; k++)
   {
      Real x = *a; i = k; Real* aj = a;
      if (l < n) l++;
      for (j=k+1; j<l; j++)
         { aj += w; if (fabs(x) < fabs(*aj)) { x = *aj; i = j; } }
      indx[k] = i;
      if (x==0) { sing = true; return; }
      if (i!=k)
      {
         d = !d; Real* ak = a; Real* ai = store + i * w; j = w;
         while (j--) { x = *ak; *ak++ = *ai; *ai++ = x; }
      }
      aj = a + w; Real* m = store2 + m1 * k;
      for (j=k+1; j<l; j++)
      {
         *m++ = x = *aj / *a; i = w; Real* ak = a;
	 while (--i) { Real* aj1 = aj++; *aj1 = *aj - x * *(++ak); }
         *aj++ = 0.0;
      }
      a += w;
   }
}

void BandLUMatrix::lubksb(Real* B, int mini)
{
   REPORT
   Tracer tr("BandLUMatrix::lubksb");
   if (sing) Throw(SingularException(*this));
   int n = nrows; int l = m1; int w = m1 + 1 + m2;

   for (int k=0; k<n; k++)
   {
      int i = indx[k];
      if (i!=k) { Real x=B[k]; B[k]=B[i]; B[i]=x; }
      if (l<n) l++;
      Real* m = store2 + k*m1; Real* b = B+k; Real* bi = b;
      for (i=k+1; i<l; i++)  *(++bi) -= *m++ * *b;
   }

   l = -m1;
   for (int i = n-1; i>=mini; i--)
   {
      Real* b = B + i; Real* bk = b; Real x = *bk;
      Real* a = store + w*i; Real y = *a;
      int k = l+m1; while (k--) x -=  *(++a) * *(++bk);
      *b = x / y;
      if (l < m2) l++;
   }
}

void BandLUMatrix::Solver(MatrixColX& mcout, const MatrixColX& mcin)
{
   REPORT
   int i = mcin.skip; Real* el = mcin.data-i; Real* el1=el;
   while (i--) *el++ = 0.0;
   el += mcin.storage; i = nrows - mcin.skip - mcin.storage;
   while (i--) *el++ = 0.0;
   lubksb(el1, mcout.skip);
}

// Do we need check for entirely zero output?


void UpperBandMatrix::Solver(MatrixColX& mcout,
   const MatrixColX& mcin)
{
   REPORT
   int i = mcin.skip-mcout.skip; Real* elx = mcin.data-i;
   while (i-- > 0) *elx++ = 0.0;
   int nr = mcin.skip+mcin.storage;
   elx = mcin.data+mcin.storage; Real* el = elx;
   int j = mcout.skip+mcout.storage-nr; i = nr-mcout.skip;
   while (j-- > 0) *elx++ = 0.0;

   Real* Ael = store + (upper+1)*(i-1)+1; j = 0;
   if (i > 0) for(;;)
   {
      elx = el; Real sum = 0.0; int jx = j;
      while (jx--) sum += *(--Ael) * *(--elx);
      elx--; *elx = (*elx - sum) / *(--Ael);
      if (--i <= 0) break;
      if (j<upper) Ael -= upper - (++j); else el--;
   }
}

void LowerBandMatrix::Solver(MatrixColX& mcout,
   const MatrixColX& mcin)
{
   REPORT
   int i = mcin.skip-mcout.skip; Real* elx = mcin.data-i;
   while (i-- > 0) *elx++ = 0.0;
   int nc = mcin.skip; i = nc+mcin.storage; elx = mcin.data+mcin.storage;
   int nr = mcout.skip+mcout.storage; int j = nr-i; i = nr-nc;
   while (j-- > 0) *elx++ = 0.0;

   Real* el = mcin.data; Real* Ael = store + (lower+1)*nc + lower; j = 0;
   if (i > 0) for(;;)
   {
      elx = el; Real sum = 0.0; int jx = j;
      while (jx--) sum += *Ael++ * *elx++;
      *elx = (*elx - sum) / *Ael++;
      if (--i <= 0) break;
      if (j<lower) Ael += lower - (++j); else el++;
   }
}


LogAndSign BandMatrix::LogDeterminant() const
{
   REPORT
   BandLUMatrix C(*this); return C.LogDeterminant();
}

LogAndSign LowerBandMatrix::LogDeterminant() const
{
   REPORT
   int i = nrows; LogAndSign sum; Real* s = store + lower; int j = lower + 1;
//   while (i--) { sum *= *s; s += j; }
   if (i) for (;;) { sum *= *s; if (!(--i)) break; s += j; }
   ((GeneralMatrix&)*this).tDelete(); return sum;
}

LogAndSign UpperBandMatrix::LogDeterminant() const
{
   REPORT
   int i = nrows; LogAndSign sum; Real* s = store; int j = upper + 1;
//   while (i--) { sum *= *s; s += j; }
   if (i) for (;;) { sum *= *s; if (!(--i)) break; s += j; }
   ((GeneralMatrix&)*this).tDelete(); return sum;
}

GeneralMatrix* SymmetricBandMatrix::MakeSolver()
{
   REPORT
   GeneralMatrix* gm = new BandLUMatrix(*this);
   MatrixErrorNoSpace(gm); gm->ReleaseAndDelete(); return gm;
}

SymmetricBandMatrix::SymmetricBandMatrix(const BaseMatrix& M)
{
   REPORT  // CheckConversion(M);
   // MatrixConversionCheck mcc;
   GeneralMatrix* gmx=((BaseMatrix&)M).Evaluate(MatrixType::SB);
   GetMatrix(gmx);
}

GeneralMatrix* SymmetricBandMatrix::Transpose(TransposedMatrix*, MatrixType mt)
{ REPORT  return Evaluate(mt); }

LogAndSign SymmetricBandMatrix::LogDeterminant() const
{
   REPORT
   BandLUMatrix C(*this); return C.LogDeterminant();
}

void SymmetricBandMatrix::SetParameters(const GeneralMatrix* gmx)
{ REPORT lower = gmx->BandWidth().lower; }

void SymmetricBandMatrix::ReSize(int n, int lb)
{
   REPORT
   Tracer tr("SymmetricBandMatrix::ReSize");
   if (lb<0) Throw(ProgramException("Undefined bandwidth"));
   lower = (lb<=n) ? lb : n-1;
   GeneralMatrix::ReSize(n,n,n*(lower+1));
}

void SymmetricBandMatrix::ReSize(const GeneralMatrix& A)
{
   REPORT
   int n = A.Nrows();
   if (n != A.Ncols())
   {
      Tracer tr("SymmetricBandMatrix::ReSize(GM)");
      Throw(NotSquareException(*this));
   }
   MatrixBandWidth mbw = A.BandWidth(); int b = mbw.Lower();
   if (b != mbw.Upper())
   {
      Tracer tr("SymmetricBandMatrix::ReSize(GM)");
      Throw(ProgramException("Upper and lower band-widths not equal"));
   }
   ReSize(n, b);
}

bool SymmetricBandMatrix::SameStorageType(const GeneralMatrix& A) const
{
   if (Type() != A.Type()) { REPORT return false; }
   REPORT
   return BandWidth() == A.BandWidth();
}

void SymmetricBandMatrix::ReSizeForAdd(const GeneralMatrix& A,
   const GeneralMatrix& B)
{
   REPORT
   Tracer tr("SymmetricBandMatrix::ReSizeForAdd");
   MatrixBandWidth A_BW = A.BandWidth(); MatrixBandWidth B_BW = B.BandWidth();
   if ((A_BW.Lower() < 0) | (B_BW.Lower() < 0))
         Throw(ProgramException("Can't ReSize to SymmetricBandMatrix" ));
   // already know A and B are square
   ReSize(A.Nrows(), my_max(A_BW.Lower(), B_BW.Lower()));
}

void SymmetricBandMatrix::ReSizeForSP(const GeneralMatrix& A,
   const GeneralMatrix& B)
{
   REPORT
   Tracer tr("SymmetricBandMatrix::ReSizeForSP");
   MatrixBandWidth A_BW = A.BandWidth(); MatrixBandWidth B_BW = B.BandWidth();
   if ((A_BW.Lower() < 0) | (B_BW.Lower() < 0))
         Throw(ProgramException("Can't ReSize to SymmetricBandMatrix" ));
   // already know A and B are square
   ReSize(A.Nrows(), my_min(A_BW.Lower(), B_BW.Lower()));
}


void SymmetricBandMatrix::operator=(const BaseMatrix& X)
{
   REPORT // CheckConversion(X);
   // MatrixConversionCheck mcc;
   Eq(X,MatrixType::SB);
}

void SymmetricBandMatrix::CornerClear() const
{
   // set unused parts of BandMatrix to zero
   REPORT
   int i = lower; Real* s = store; int bw = lower + 1;
   if (i) for(;;)
   {
      int j = i;
      Real* sj = s;
      while (j--) *sj++ = 0.0;
      if (!(--i)) break;
      s += bw;
   }
}

MatrixBandWidth SymmetricBandMatrix::BandWidth() const
   { REPORT return MatrixBandWidth(lower,lower); }

inline Real square(Real x) { return x*x; }


Real SymmetricBandMatrix::SumSquare() const
{
   REPORT
   CornerClear();
   Real sum1=0.0; Real sum2=0.0; Real* s=store; int i=nrows; int l=lower;
   while (i--)
      { int j = l; while (j--) sum2 += square(*s++); sum1 += square(*s++); }
   ((GeneralMatrix&)*this).tDelete(); return sum1 + 2.0 * sum2;
}

Real SymmetricBandMatrix::SumAbsoluteValue() const
{
   REPORT
   CornerClear();
   Real sum1=0.0; Real sum2=0.0; Real* s=store; int i=nrows; int l=lower;
   while (i--)
      { int j = l; while (j--) sum2 += fabs(*s++); sum1 += fabs(*s++); }
   ((GeneralMatrix&)*this).tDelete(); return sum1 + 2.0 * sum2;
}

Real SymmetricBandMatrix::Sum() const
{
   REPORT
   CornerClear();
   Real sum1=0.0; Real sum2=0.0; Real* s=store; int i=nrows; int l=lower;
   while (i--)
      { int j = l; while (j--) sum2 += *s++; sum1 += *s++; }
   ((GeneralMatrix&)*this).tDelete(); return sum1 + 2.0 * sum2;
}


#ifdef use_namespace
}
#endif