1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
|
//$$ bandmat.cpp Band matrix definitions
// Copyright (C) 1991,2,3,4,9: R B Davies
#define WANT_MATH // include.h will get math fns
//#define WANT_STREAM
#include "include.h"
#include "config.h"
#include "newmat.h"
#include "newmatrc.h"
#ifdef use_namespace
namespace NEWMAT {
#endif
#ifdef DO_REPORT
#define REPORT { static ExeCounter ExeCount(__LINE__,10); ++ExeCount; }
#else
#define REPORT {}
#endif
static inline int my_min(int x, int y) { return x < y ? x : y; }
static inline int my_max(int x, int y) { return x > y ? x : y; }
BandMatrix::BandMatrix(const BaseMatrix& M)
{
REPORT // CheckConversion(M);
// MatrixConversionCheck mcc;
GeneralMatrix* gmx=((BaseMatrix&)M).Evaluate(MatrixType::BM);
GetMatrix(gmx); CornerClear();
}
void BandMatrix::SetParameters(const GeneralMatrix* gmx)
{
REPORT
MatrixBandWidth bw = gmx->BandWidth();
lower = bw.lower; upper = bw.upper;
}
void BandMatrix::ReSize(int n, int lb, int ub)
{
REPORT
Tracer tr("BandMatrix::ReSize");
if (lb<0 || ub<0) Throw(ProgramException("Undefined bandwidth"));
lower = (lb<=n) ? lb : n-1; upper = (ub<=n) ? ub : n-1;
GeneralMatrix::ReSize(n,n,n*(lower+1+upper)); CornerClear();
}
// SimpleAddOK shows when we can add etc two matrices by a simple vector add
// and when we can add one matrix into another
// *gm must be the same type as *this
// return 0 if simple add is OK
// return 1 if we can add into *gm only
// return 2 if we can add into *this only
// return 3 if we can't add either way
// For SP this will still be valid if we swap 1 and 2
short BandMatrix::SimpleAddOK(const GeneralMatrix* gm)
{
const BandMatrix* bm = (const BandMatrix*)gm;
if (bm->lower == lower && bm->upper == upper) { REPORT return 0; }
else if (bm->lower >= lower && bm->upper >= upper) { REPORT return 1; }
else if (bm->lower <= lower && bm->upper <= upper) { REPORT return 2; }
else { REPORT return 3; }
}
short SymmetricBandMatrix::SimpleAddOK(const GeneralMatrix* gm)
{
const SymmetricBandMatrix* bm = (const SymmetricBandMatrix*)gm;
if (bm->lower == lower) { REPORT return 0; }
else if (bm->lower > lower) { REPORT return 1; }
else { REPORT return 2; }
}
void UpperBandMatrix::ReSize(int n, int lb, int ub)
{
REPORT
if (lb != 0)
{
Tracer tr("UpperBandMatrix::ReSize");
Throw(ProgramException("UpperBandMatrix with non-zero lower band" ));
}
BandMatrix::ReSize(n, lb, ub);
}
void LowerBandMatrix::ReSize(int n, int lb, int ub)
{
REPORT
if (ub != 0)
{
Tracer tr("LowerBandMatrix::ReSize");
Throw(ProgramException("LowerBandMatrix with non-zero upper band" ));
}
BandMatrix::ReSize(n, lb, ub);
}
void BandMatrix::ReSize(const GeneralMatrix& A)
{
REPORT
int n = A.Nrows();
if (n != A.Ncols())
{
Tracer tr("BandMatrix::ReSize(GM)");
Throw(NotSquareException(*this));
}
MatrixBandWidth mbw = A.BandWidth();
ReSize(n, mbw.Lower(), mbw.Upper());
}
bool BandMatrix::SameStorageType(const GeneralMatrix& A) const
{
if (Type() != A.Type()) { REPORT return false; }
REPORT
return BandWidth() == A.BandWidth();
}
void BandMatrix::ReSizeForAdd(const GeneralMatrix& A, const GeneralMatrix& B)
{
REPORT
Tracer tr("BandMatrix::ReSizeForAdd");
MatrixBandWidth A_BW = A.BandWidth(); MatrixBandWidth B_BW = B.BandWidth();
if ((A_BW.Lower() < 0) | (A_BW.Upper() < 0) | (B_BW.Lower() < 0)
| (A_BW.Upper() < 0))
Throw(ProgramException("Can't ReSize to BandMatrix" ));
// already know A and B are square
ReSize(A.Nrows(), my_max(A_BW.Lower(), B_BW.Lower()),
my_max(A_BW.Upper(), B_BW.Upper()));
}
void BandMatrix::ReSizeForSP(const GeneralMatrix& A, const GeneralMatrix& B)
{
REPORT
Tracer tr("BandMatrix::ReSizeForSP");
MatrixBandWidth A_BW = A.BandWidth(); MatrixBandWidth B_BW = B.BandWidth();
if ((A_BW.Lower() < 0) | (A_BW.Upper() < 0) | (B_BW.Lower() < 0)
| (A_BW.Upper() < 0))
Throw(ProgramException("Can't ReSize to BandMatrix" ));
// already know A and B are square
ReSize(A.Nrows(), my_min(A_BW.Lower(), B_BW.Lower()),
my_min(A_BW.Upper(), B_BW.Upper()));
}
void BandMatrix::operator=(const BaseMatrix& X)
{
REPORT // CheckConversion(X);
// MatrixConversionCheck mcc;
Eq(X,MatrixType::BM); CornerClear();
}
void BandMatrix::CornerClear() const
{
// set unused parts of BandMatrix to zero
REPORT
int i = lower; Real* s = store; int bw = lower + 1 + upper;
while (i)
{ int j = i--; Real* sj = s; s += bw; while (j--) *sj++ = 0.0; }
i = upper; s = store + storage;
while (i)
{ int j = i--; Real* sj = s; s -= bw; while (j--) *(--sj) = 0.0; }
}
MatrixBandWidth MatrixBandWidth::operator+(const MatrixBandWidth& bw) const
{
REPORT
int l = bw.lower; int u = bw.upper;
l = (lower < 0 || l < 0) ? -1 : (lower > l) ? lower : l;
u = (upper < 0 || u < 0) ? -1 : (upper > u) ? upper : u;
return MatrixBandWidth(l,u);
}
MatrixBandWidth MatrixBandWidth::operator*(const MatrixBandWidth& bw) const
{
REPORT
int l = bw.lower; int u = bw.upper;
l = (lower < 0 || l < 0) ? -1 : lower+l;
u = (upper < 0 || u < 0) ? -1 : upper+u;
return MatrixBandWidth(l,u);
}
MatrixBandWidth MatrixBandWidth::minimum(const MatrixBandWidth& bw) const
{
REPORT
int l = bw.lower; int u = bw.upper;
if ((lower >= 0) && ( (l < 0) || (l > lower) )) l = lower;
if ((upper >= 0) && ( (u < 0) || (u > upper) )) u = upper;
return MatrixBandWidth(l,u);
}
UpperBandMatrix::UpperBandMatrix(const BaseMatrix& M)
{
REPORT // CheckConversion(M);
// MatrixConversionCheck mcc;
GeneralMatrix* gmx=((BaseMatrix&)M).Evaluate(MatrixType::UB);
GetMatrix(gmx); CornerClear();
}
void UpperBandMatrix::operator=(const BaseMatrix& X)
{
REPORT // CheckConversion(X);
// MatrixConversionCheck mcc;
Eq(X,MatrixType::UB); CornerClear();
}
LowerBandMatrix::LowerBandMatrix(const BaseMatrix& M)
{
REPORT // CheckConversion(M);
// MatrixConversionCheck mcc;
GeneralMatrix* gmx=((BaseMatrix&)M).Evaluate(MatrixType::LB);
GetMatrix(gmx); CornerClear();
}
void LowerBandMatrix::operator=(const BaseMatrix& X)
{
REPORT // CheckConversion(X);
// MatrixConversionCheck mcc;
Eq(X,MatrixType::LB); CornerClear();
}
BandLUMatrix::BandLUMatrix(const BaseMatrix& m)
{
REPORT
Tracer tr("BandLUMatrix");
storage2 = 0; store2 = 0; // in event of exception during build
GeneralMatrix* gm = ((BaseMatrix&)m).Evaluate(MatrixType::BM);
m1 = ((BandMatrix*)gm)->lower; m2 = ((BandMatrix*)gm)->upper;
GetMatrix(gm);
if (nrows!=ncols) Throw(NotSquareException(*this));
d = true; sing = false;
indx = new int [nrows]; MatrixErrorNoSpace(indx);
MONITOR_INT_NEW("Index (BndLUMat)",nrows,indx)
storage2 = nrows * m1;
store2 = new Real [storage2]; MatrixErrorNoSpace(store2);
MONITOR_REAL_NEW("Make (BandLUMat)",storage2,store2)
ludcmp();
}
BandLUMatrix::~BandLUMatrix()
{
REPORT
MONITOR_INT_DELETE("Index (BndLUMat)",nrows,indx)
MONITOR_REAL_DELETE("Delete (BndLUMt)",storage2,store2)
delete [] indx; delete [] store2;
}
MatrixType BandLUMatrix::Type() const { REPORT return MatrixType::BC; }
LogAndSign BandLUMatrix::LogDeterminant() const
{
REPORT
if (sing) return 0.0;
Real* a = store; int w = m1+1+m2; LogAndSign sum; int i = nrows;
// while (i--) { sum *= *a; a += w; }
if (i) for (;;) { sum *= *a; if (!(--i)) break; a += w; }
if (!d) sum.ChangeSign(); return sum;
}
GeneralMatrix* BandMatrix::MakeSolver()
{
REPORT
GeneralMatrix* gm = new BandLUMatrix(*this);
MatrixErrorNoSpace(gm); gm->ReleaseAndDelete(); return gm;
}
void BandLUMatrix::ludcmp()
{
REPORT
Real* a = store2; int i = storage2;
// clear store2 - so unused locations are always zero -
// required by operator==
while (i--) *a++ = 0.0;
a = store;
i = m1; int j = m2; int k; int n = nrows; int w = m1 + 1 + m2;
while (i)
{
Real* ai = a + i;
k = ++j; while (k--) *a++ = *ai++;
k = i--; while (k--) *a++ = 0.0;
}
a = store; int l = m1;
for (k=0; k<n; k++)
{
Real x = *a; i = k; Real* aj = a;
if (l < n) l++;
for (j=k+1; j<l; j++)
{ aj += w; if (fabs(x) < fabs(*aj)) { x = *aj; i = j; } }
indx[k] = i;
if (x==0) { sing = true; return; }
if (i!=k)
{
d = !d; Real* ak = a; Real* ai = store + i * w; j = w;
while (j--) { x = *ak; *ak++ = *ai; *ai++ = x; }
}
aj = a + w; Real* m = store2 + m1 * k;
for (j=k+1; j<l; j++)
{
*m++ = x = *aj / *a; i = w; Real* ak = a;
while (--i) { Real* aj1 = aj++; *aj1 = *aj - x * *(++ak); }
*aj++ = 0.0;
}
a += w;
}
}
void BandLUMatrix::lubksb(Real* B, int mini)
{
REPORT
Tracer tr("BandLUMatrix::lubksb");
if (sing) Throw(SingularException(*this));
int n = nrows; int l = m1; int w = m1 + 1 + m2;
for (int k=0; k<n; k++)
{
int i = indx[k];
if (i!=k) { Real x=B[k]; B[k]=B[i]; B[i]=x; }
if (l<n) l++;
Real* m = store2 + k*m1; Real* b = B+k; Real* bi = b;
for (i=k+1; i<l; i++) *(++bi) -= *m++ * *b;
}
l = -m1;
for (int i = n-1; i>=mini; i--)
{
Real* b = B + i; Real* bk = b; Real x = *bk;
Real* a = store + w*i; Real y = *a;
int k = l+m1; while (k--) x -= *(++a) * *(++bk);
*b = x / y;
if (l < m2) l++;
}
}
void BandLUMatrix::Solver(MatrixColX& mcout, const MatrixColX& mcin)
{
REPORT
int i = mcin.skip; Real* el = mcin.data-i; Real* el1=el;
while (i--) *el++ = 0.0;
el += mcin.storage; i = nrows - mcin.skip - mcin.storage;
while (i--) *el++ = 0.0;
lubksb(el1, mcout.skip);
}
// Do we need check for entirely zero output?
void UpperBandMatrix::Solver(MatrixColX& mcout,
const MatrixColX& mcin)
{
REPORT
int i = mcin.skip-mcout.skip; Real* elx = mcin.data-i;
while (i-- > 0) *elx++ = 0.0;
int nr = mcin.skip+mcin.storage;
elx = mcin.data+mcin.storage; Real* el = elx;
int j = mcout.skip+mcout.storage-nr; i = nr-mcout.skip;
while (j-- > 0) *elx++ = 0.0;
Real* Ael = store + (upper+1)*(i-1)+1; j = 0;
if (i > 0) for(;;)
{
elx = el; Real sum = 0.0; int jx = j;
while (jx--) sum += *(--Ael) * *(--elx);
elx--; *elx = (*elx - sum) / *(--Ael);
if (--i <= 0) break;
if (j<upper) Ael -= upper - (++j); else el--;
}
}
void LowerBandMatrix::Solver(MatrixColX& mcout,
const MatrixColX& mcin)
{
REPORT
int i = mcin.skip-mcout.skip; Real* elx = mcin.data-i;
while (i-- > 0) *elx++ = 0.0;
int nc = mcin.skip; i = nc+mcin.storage; elx = mcin.data+mcin.storage;
int nr = mcout.skip+mcout.storage; int j = nr-i; i = nr-nc;
while (j-- > 0) *elx++ = 0.0;
Real* el = mcin.data; Real* Ael = store + (lower+1)*nc + lower; j = 0;
if (i > 0) for(;;)
{
elx = el; Real sum = 0.0; int jx = j;
while (jx--) sum += *Ael++ * *elx++;
*elx = (*elx - sum) / *Ael++;
if (--i <= 0) break;
if (j<lower) Ael += lower - (++j); else el++;
}
}
LogAndSign BandMatrix::LogDeterminant() const
{
REPORT
BandLUMatrix C(*this); return C.LogDeterminant();
}
LogAndSign LowerBandMatrix::LogDeterminant() const
{
REPORT
int i = nrows; LogAndSign sum; Real* s = store + lower; int j = lower + 1;
// while (i--) { sum *= *s; s += j; }
if (i) for (;;) { sum *= *s; if (!(--i)) break; s += j; }
((GeneralMatrix&)*this).tDelete(); return sum;
}
LogAndSign UpperBandMatrix::LogDeterminant() const
{
REPORT
int i = nrows; LogAndSign sum; Real* s = store; int j = upper + 1;
// while (i--) { sum *= *s; s += j; }
if (i) for (;;) { sum *= *s; if (!(--i)) break; s += j; }
((GeneralMatrix&)*this).tDelete(); return sum;
}
GeneralMatrix* SymmetricBandMatrix::MakeSolver()
{
REPORT
GeneralMatrix* gm = new BandLUMatrix(*this);
MatrixErrorNoSpace(gm); gm->ReleaseAndDelete(); return gm;
}
SymmetricBandMatrix::SymmetricBandMatrix(const BaseMatrix& M)
{
REPORT // CheckConversion(M);
// MatrixConversionCheck mcc;
GeneralMatrix* gmx=((BaseMatrix&)M).Evaluate(MatrixType::SB);
GetMatrix(gmx);
}
GeneralMatrix* SymmetricBandMatrix::Transpose(TransposedMatrix*, MatrixType mt)
{ REPORT return Evaluate(mt); }
LogAndSign SymmetricBandMatrix::LogDeterminant() const
{
REPORT
BandLUMatrix C(*this); return C.LogDeterminant();
}
void SymmetricBandMatrix::SetParameters(const GeneralMatrix* gmx)
{ REPORT lower = gmx->BandWidth().lower; }
void SymmetricBandMatrix::ReSize(int n, int lb)
{
REPORT
Tracer tr("SymmetricBandMatrix::ReSize");
if (lb<0) Throw(ProgramException("Undefined bandwidth"));
lower = (lb<=n) ? lb : n-1;
GeneralMatrix::ReSize(n,n,n*(lower+1));
}
void SymmetricBandMatrix::ReSize(const GeneralMatrix& A)
{
REPORT
int n = A.Nrows();
if (n != A.Ncols())
{
Tracer tr("SymmetricBandMatrix::ReSize(GM)");
Throw(NotSquareException(*this));
}
MatrixBandWidth mbw = A.BandWidth(); int b = mbw.Lower();
if (b != mbw.Upper())
{
Tracer tr("SymmetricBandMatrix::ReSize(GM)");
Throw(ProgramException("Upper and lower band-widths not equal"));
}
ReSize(n, b);
}
bool SymmetricBandMatrix::SameStorageType(const GeneralMatrix& A) const
{
if (Type() != A.Type()) { REPORT return false; }
REPORT
return BandWidth() == A.BandWidth();
}
void SymmetricBandMatrix::ReSizeForAdd(const GeneralMatrix& A,
const GeneralMatrix& B)
{
REPORT
Tracer tr("SymmetricBandMatrix::ReSizeForAdd");
MatrixBandWidth A_BW = A.BandWidth(); MatrixBandWidth B_BW = B.BandWidth();
if ((A_BW.Lower() < 0) | (B_BW.Lower() < 0))
Throw(ProgramException("Can't ReSize to SymmetricBandMatrix" ));
// already know A and B are square
ReSize(A.Nrows(), my_max(A_BW.Lower(), B_BW.Lower()));
}
void SymmetricBandMatrix::ReSizeForSP(const GeneralMatrix& A,
const GeneralMatrix& B)
{
REPORT
Tracer tr("SymmetricBandMatrix::ReSizeForSP");
MatrixBandWidth A_BW = A.BandWidth(); MatrixBandWidth B_BW = B.BandWidth();
if ((A_BW.Lower() < 0) | (B_BW.Lower() < 0))
Throw(ProgramException("Can't ReSize to SymmetricBandMatrix" ));
// already know A and B are square
ReSize(A.Nrows(), my_min(A_BW.Lower(), B_BW.Lower()));
}
void SymmetricBandMatrix::operator=(const BaseMatrix& X)
{
REPORT // CheckConversion(X);
// MatrixConversionCheck mcc;
Eq(X,MatrixType::SB);
}
void SymmetricBandMatrix::CornerClear() const
{
// set unused parts of BandMatrix to zero
REPORT
int i = lower; Real* s = store; int bw = lower + 1;
if (i) for(;;)
{
int j = i;
Real* sj = s;
while (j--) *sj++ = 0.0;
if (!(--i)) break;
s += bw;
}
}
MatrixBandWidth SymmetricBandMatrix::BandWidth() const
{ REPORT return MatrixBandWidth(lower,lower); }
inline Real square(Real x) { return x*x; }
Real SymmetricBandMatrix::SumSquare() const
{
REPORT
CornerClear();
Real sum1=0.0; Real sum2=0.0; Real* s=store; int i=nrows; int l=lower;
while (i--)
{ int j = l; while (j--) sum2 += square(*s++); sum1 += square(*s++); }
((GeneralMatrix&)*this).tDelete(); return sum1 + 2.0 * sum2;
}
Real SymmetricBandMatrix::SumAbsoluteValue() const
{
REPORT
CornerClear();
Real sum1=0.0; Real sum2=0.0; Real* s=store; int i=nrows; int l=lower;
while (i--)
{ int j = l; while (j--) sum2 += fabs(*s++); sum1 += fabs(*s++); }
((GeneralMatrix&)*this).tDelete(); return sum1 + 2.0 * sum2;
}
Real SymmetricBandMatrix::Sum() const
{
REPORT
CornerClear();
Real sum1=0.0; Real sum2=0.0; Real* s=store; int i=nrows; int l=lower;
while (i--)
{ int j = l; while (j--) sum2 += *s++; sum1 += *s++; }
((GeneralMatrix&)*this).tDelete(); return sum1 + 2.0 * sum2;
}
#ifdef use_namespace
}
#endif
|