File: fft.cpp

package info (click to toggle)
newmat 1.10.4-9
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,908 kB
  • sloc: cpp: 31,314; makefile: 56
file content (451 lines) | stat: -rw-r--r-- 14,599 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
//$$ fft.cpp                         Fast fourier transform

// Copyright (C) 1991,2,3,4,8: R B Davies


#define WANT_MATH
// #define WANT_STREAM

#include "include.h"
#include "config.h"

#include "newmatap.h"

// #include "newmatio.h"

#ifdef use_namespace
namespace NEWMAT {
#endif

#ifdef DO_REPORT
#define REPORT { static ExeCounter ExeCount(__LINE__,19); ++ExeCount; }
#else
#define REPORT {}
#endif

static void cossin(int n, int d, Real& c, Real& s)
// calculate cos(twopi*n/d) and sin(twopi*n/d)
// minimise roundoff error
{
   REPORT
   long n4 = n * 4; int sector = (int)floor( (Real)n4 / (Real)d + 0.5 );
   n4 -= sector * d;
   if (sector < 0) { REPORT sector = 3 - (3 - sector) % 4; }
   else  { REPORT sector %= 4; }
   Real ratio = 1.5707963267948966192 * (Real)n4 / (Real)d;

   switch (sector)
   {
   case 0: REPORT c =  cos(ratio); s =  sin(ratio); break;
   case 1: REPORT c = -sin(ratio); s =  cos(ratio); break;
   case 2: REPORT c = -cos(ratio); s = -sin(ratio); break;
   case 3: REPORT c =  sin(ratio); s = -cos(ratio); break;
   }
}

static void fftstep(ColumnVector& A, ColumnVector& B, ColumnVector& X,
   ColumnVector& Y, int after, int now, int before)
{
   REPORT
   Tracer trace("FFT(step)");
   // const Real twopi = 6.2831853071795864769;
   const int gamma = after * before;  const int delta = now * after;
   // const Real angle = twopi / delta;  Real temp;
   // Real r_omega = cos(angle);  Real i_omega = -sin(angle);
   Real r_arg = 1.0;  Real i_arg = 0.0;
   Real* x = X.Store();  Real* y = Y.Store();   // pointers to array storage
   const int m = A.Nrows() - gamma;

   for (int j = 0; j < now; j++)
   {
      Real* a = A.Store(); Real* b = B.Store(); // pointers to array storage
      Real* x1 = x; Real* y1 = y; x += after; y += after;
      for (int ia = 0; ia < after; ia++)
      {
         // generate sins & cosines explicitly rather than iteratively
         // for more accuracy; but slower
         cossin(-(j*after+ia), delta, r_arg, i_arg);

         Real* a1 = a++; Real* b1 = b++; Real* x2 = x1++; Real* y2 = y1++;
         if (now==2)
         {
            REPORT int ib = before;
            if (ib) for (;;)
            {
               REPORT
               Real* a2 = m + a1; Real* b2 = m + b1; a1 += after; b1 += after;
               Real r_value = *a2; Real i_value = *b2;
               *x2 = r_value * r_arg - i_value * i_arg + *(a2-gamma);
               *y2 = r_value * i_arg + i_value * r_arg + *(b2-gamma);
               if (!(--ib)) break;
               x2 += delta; y2 += delta;
            }
         }
         else
         {
            REPORT int ib = before;
            if (ib) for (;;)
            {
               REPORT
               Real* a2 = m + a1; Real* b2 = m + b1; a1 += after; b1 += after;
               Real r_value = *a2; Real i_value = *b2;
               int in = now-1; while (in--)
               {
                  // it should be possible to make this faster
                  // hand code for now = 2,3,4,5,8
                  // use symmetry to halve number of operations
                  a2 -= gamma; b2 -= gamma;  Real temp = r_value;
                  r_value = r_value * r_arg - i_value * i_arg + *a2;
                  i_value = temp    * i_arg + i_value * r_arg + *b2;
               }
               *x2 = r_value; *y2 = i_value;
               if (!(--ib)) break;
               x2 += delta; y2 += delta;
            }
         }

         // temp = r_arg;
         // r_arg = r_arg * r_omega - i_arg * i_omega;
         // i_arg = temp  * i_omega + i_arg * r_omega;

      }
   }
}


void FFTI(const ColumnVector& U, const ColumnVector& V,
   ColumnVector& X, ColumnVector& Y)
{
   // Inverse transform
   Tracer trace("FFTI");
   REPORT
   FFT(U,-V,X,Y);
   const Real n = X.Nrows(); X /= n; Y /= (-n);
}

void RealFFT(const ColumnVector& U, ColumnVector& X, ColumnVector& Y)
{
   // Fourier transform of a real series
   Tracer trace("RealFFT");
   REPORT
   const int n = U.Nrows();                     // length of arrays
   const int n2 = n / 2;
   if (n != 2 * n2)
      Throw(ProgramException("Vector length not multiple of 2", U));
   ColumnVector A(n2), B(n2);
   Real* a = A.Store(); Real* b = B.Store(); Real* u = U.Store(); int i = n2;
   while (i--) { *a++ = *u++; *b++ = *u++; }
   FFT(A,B,A,B);
   int n21 = n2 + 1;
   X.ReSize(n21); Y.ReSize(n21);
   i = n2 - 1;
   a = A.Store(); b = B.Store();              // first els of A and B
   Real* an = a + i; Real* bn = b + i;        // last els of A and B
   Real* x = X.Store(); Real* y = Y.Store();  // first els of X and Y
   Real* xn = x + n2; Real* yn = y + n2;      // last els of X and Y

   *x++ = *a + *b; *y++ = 0.0;                // first complex element
   *xn-- = *a++ - *b++; *yn-- = 0.0;          // last complex element

   int j = -1; i = n2/2;
   while (i--)
   {
      Real c,s; cossin(j--,n,c,s);
      Real am = *a - *an; Real ap = *a++ + *an--;
      Real bm = *b - *bn; Real bp = *b++ + *bn--;
      Real samcbp = s * am + c * bp; Real sbpcam = s * bp - c * am;
      *x++  =  0.5 * ( ap + samcbp); *y++  =  0.5 * ( bm + sbpcam);
      *xn-- =  0.5 * ( ap - samcbp); *yn-- =  0.5 * (-bm + sbpcam);
   }
}

void RealFFTI(const ColumnVector& A, const ColumnVector& B, ColumnVector& U)
{
   // inverse of a Fourier transform of a real series
   Tracer trace("RealFFTI");
   REPORT
   const int n21 = A.Nrows();                     // length of arrays
   if (n21 != B.Nrows() || n21 == 0)
      Throw(ProgramException("Vector lengths unequal or zero", A, B));
   const int n2 = n21 - 1;  const int n = 2 * n2;  int i = n2 - 1;

   ColumnVector X(n2), Y(n2);
   Real* a = A.Store(); Real* b = B.Store();  // first els of A and B
   Real* an = a + n2;   Real* bn = b + n2;    // last els of A and B
   Real* x = X.Store(); Real* y = Y.Store();  // first els of X and Y
   Real* xn = x + i;    Real* yn = y + i;     // last els of X and Y

   Real hn = 0.5 / n2;
   *x++  = hn * (*a + *an);  *y++  = - hn * (*a - *an);
   a++; an--; b++; bn--;
   int j = -1;  i = n2/2;
   while (i--)
   {
      Real c,s; cossin(j--,n,c,s);
      Real am = *a - *an; Real ap = *a++ + *an--;
      Real bm = *b - *bn; Real bp = *b++ + *bn--;
      Real samcbp = s * am - c * bp; Real sbpcam = s * bp + c * am;
      *x++  =  hn * ( ap + samcbp); *y++  =  - hn * ( bm + sbpcam);
      *xn-- =  hn * ( ap - samcbp); *yn-- =  - hn * (-bm + sbpcam);
   }
   FFT(X,Y,X,Y);             // have done inverting elsewhere
   U.ReSize(n); i = n2;
   x = X.Store(); y = Y.Store(); Real* u = U.Store();
   while (i--) { *u++ = *x++; *u++ = - *y++; }
}

void FFT(const ColumnVector& U, const ColumnVector& V,
   ColumnVector& X, ColumnVector& Y)
{
   // from Carl de Boor (1980), Siam J Sci Stat Comput, 1 173-8
   // but first try Sande and Gentleman
   Tracer trace("FFT");
   REPORT
   const int n = U.Nrows();                     // length of arrays
   if (n != V.Nrows() || n == 0)
      Throw(ProgramException("Vector lengths unequal or zero", U, V));
   if (n == 1) { REPORT X = U; Y = V; return; }

   // see if we can use the newfft routine
   if (!FFT_Controller::OnlyOldFFT && FFT_Controller::CanFactor(n))
   {
      REPORT
      X = U; Y = V;
      if ( FFT_Controller::ar_1d_ft(n,X.Store(),Y.Store()) ) return;
   }

   ColumnVector B = V;
   ColumnVector A = U;
   X.ReSize(n); Y.ReSize(n);
   const int nextmx = 8;
#ifndef ATandT
   int prime[8] = { 2,3,5,7,11,13,17,19 };
#else
   int prime[8];
   prime[0]=2; prime[1]=3; prime[2]=5; prime[3]=7;
   prime[4]=11; prime[5]=13; prime[6]=17; prime[7]=19;
#endif
   int after = 1; int before = n; int next = 0; bool inzee = true;
   int now = 0; int b1;             // initialised to keep gnu happy

   do
   {
      for (;;)
      {
	 if (next < nextmx) { REPORT now = prime[next]; }
	 b1 = before / now;  if (b1 * now == before) { REPORT break; }
	 next++; now += 2;
      }
      before = b1;

      if (inzee) { REPORT fftstep(A, B, X, Y, after, now, before); }
      else { REPORT fftstep(X, Y, A, B, after, now, before); }

      inzee = !inzee; after *= now;
   }
   while (before != 1);

   if (inzee) { REPORT A.Release(); X = A; B.Release(); Y = B; }
}

// Trigonometric transforms
// see Charles Van Loan (1992) "Computational frameworks for the fast
// Fourier transform" published by SIAM; section 4.4.

void DCT_II(const ColumnVector& U, ColumnVector& V)
{
   // Discrete cosine transform, type II, of a real series
   Tracer trace("DCT_II");
   REPORT
   const int n = U.Nrows();                     // length of arrays
   const int n2 = n / 2; const int n4 = n * 4;
   if (n != 2 * n2)
      Throw(ProgramException("Vector length not multiple of 2", U));
   ColumnVector A(n);
   Real* a = A.Store(); Real* b = a + n; Real* u = U.Store();
   int i = n2;
   while (i--) { *a++ = *u++; *(--b) = *u++; }
   ColumnVector X, Y;
   RealFFT(A, X, Y); A.CleanUp();
   V.ReSize(n);
   Real* x = X.Store(); Real* y = Y.Store();
   Real* v = V.Store(); Real* w = v + n;
   *v = *x;
   int k = 0; i = n2;
   while (i--)
   {
      Real c, s; cossin(++k, n4, c, s);
      Real xi = *(++x); Real yi = *(++y);
      *(++v) = xi * c + yi * s; *(--w) = xi * s - yi * c;
   }
}

void DCT_II_inverse(const ColumnVector& V, ColumnVector& U)
{
   // Inverse of discrete cosine transform, type II
   Tracer trace("DCT_II_inverse");
   REPORT
   const int n = V.Nrows();                     // length of array
   const int n2 = n / 2; const int n4 = n * 4; const int n21 = n2 + 1;
   if (n != 2 * n2)
      Throw(ProgramException("Vector length not multiple of 2", V));
   ColumnVector X(n21), Y(n21);
   Real* x = X.Store(); Real* y = Y.Store();
   Real* v = V.Store(); Real* w = v + n;
   *x = *v; *y = 0.0;
   int i = n2; int k = 0;
   while (i--)
   {
      Real c, s; cossin(++k, n4, c, s);
      Real vi = *(++v); Real wi = *(--w);
      *(++x) = vi * c + wi * s; *(++y) = vi * s - wi * c;
   }
   ColumnVector A; RealFFTI(X, Y, A);
   X.CleanUp(); Y.CleanUp(); U.ReSize(n);
   Real* a = A.Store(); Real* b = a + n; Real* u = U.Store();
   i = n2;
   while (i--) { *u++ = *a++; *u++ = *(--b); }
}

void DST_II(const ColumnVector& U, ColumnVector& V)
{
   // Discrete sine transform, type II, of a real series
   Tracer trace("DST_II");
   REPORT
   const int n = U.Nrows();                     // length of arrays
   const int n2 = n / 2; const int n4 = n * 4;
   if (n != 2 * n2)
      Throw(ProgramException("Vector length not multiple of 2", U));
   ColumnVector A(n);
   Real* a = A.Store(); Real* b = a + n; Real* u = U.Store();
   int i = n2;
   while (i--) { *a++ = *u++; *(--b) = -(*u++); }
   ColumnVector X, Y;
   RealFFT(A, X, Y); A.CleanUp();
   V.ReSize(n);
   Real* x = X.Store(); Real* y = Y.Store();
   Real* v = V.Store(); Real* w = v + n;
   *(--w) = *x;
   int k = 0; i = n2;
   while (i--)
   {
      Real c, s; cossin(++k, n4, c, s);
      Real xi = *(++x); Real yi = *(++y);
      *v++ = xi * s - yi * c; *(--w) = xi * c + yi * s;
   }
}

void DST_II_inverse(const ColumnVector& V, ColumnVector& U)
{
   // Inverse of discrete sine transform, type II
   Tracer trace("DST_II_inverse");
   REPORT
   const int n = V.Nrows();                     // length of array
   const int n2 = n / 2; const int n4 = n * 4; const int n21 = n2 + 1;
   if (n != 2 * n2)
      Throw(ProgramException("Vector length not multiple of 2", V));
   ColumnVector X(n21), Y(n21);
   Real* x = X.Store(); Real* y = Y.Store();
   Real* v = V.Store(); Real* w = v + n;
   *x = *(--w); *y = 0.0;
   int i = n2; int k = 0;
   while (i--)
   {
      Real c, s; cossin(++k, n4, c, s);
      Real vi = *v++; Real wi = *(--w);
      *(++x) = vi * s + wi * c; *(++y) = - vi * c + wi * s;
   }
   ColumnVector A; RealFFTI(X, Y, A);
   X.CleanUp(); Y.CleanUp(); U.ReSize(n);
   Real* a = A.Store(); Real* b = a + n; Real* u = U.Store();
   i = n2;
   while (i--) { *u++ = *a++; *u++ = -(*(--b)); }
}

void DCT_inverse(const ColumnVector& V, ColumnVector& U)
{
   // Inverse of discrete cosine transform, type I
   Tracer trace("DCT_inverse");
   REPORT
   const int n = V.Nrows()-1;                     // length of transform
   const int n2 = n / 2; const int n21 = n2 + 1;
   if (n != 2 * n2)
      Throw(ProgramException("Vector length not multiple of 2", V));
   ColumnVector X(n21), Y(n21);
   Real* x = X.Store(); Real* y = Y.Store(); Real* v = V.Store();
   Real vi = *v++; *x++ = vi; *y++ = 0.0;
   Real sum1 = vi / 2.0; Real sum2 = sum1; vi = *v++;
   int i = n2-1;
   while (i--)
   {
      Real vi2 = *v++; sum1 += vi2 + vi; sum2 += vi2 - vi;
      *x++ = vi2; vi2 = *v++; *y++ = vi - vi2; vi = vi2;
   }
   sum1 += vi; sum2 -= vi;
   vi = *v; *x = vi; *y = 0.0; vi /= 2.0; sum1 += vi; sum2 += vi;
   ColumnVector A; RealFFTI(X, Y, A);
   X.CleanUp(); Y.CleanUp(); U.ReSize(n+1);
   Real* a = A.Store(); Real* b = a + n; Real* u = U.Store(); v = u + n;
   i = n2; int k = 0; *u++ = sum1 / n2; *v-- = sum2 / n2;
   while (i--)
   {
      Real s = sin(1.5707963267948966192 * (++k) / n2);
      Real ai = *(++a); Real bi = *(--b);
      Real bz = (ai - bi) / 4 / s; Real az = (ai + bi) / 2;
      *u++ = az - bz; *v-- = az + bz;
   }
}

void DCT(const ColumnVector& U, ColumnVector& V)
{
   // Discrete cosine transform, type I
   Tracer trace("DCT");
   REPORT
   DCT_inverse(U, V);
   V *= (V.Nrows()-1)/2;
}

void DST_inverse(const ColumnVector& V, ColumnVector& U)
{
   // Inverse of discrete sine transform, type I
   Tracer trace("DST_inverse");
   REPORT
   const int n = V.Nrows()-1;                     // length of transform
   const int n2 = n / 2; const int n21 = n2 + 1;
   if (n != 2 * n2)
      Throw(ProgramException("Vector length not multiple of 2", V));
   ColumnVector X(n21), Y(n21);
   Real* x = X.Store(); Real* y = Y.Store(); Real* v = V.Store();
   Real vi = *(++v); *x++ = 2 * vi; *y++ = 0.0;
   int i = n2-1;
   while (i--) { *y++ = *(++v); Real vi2 = *(++v); *x++ = vi2 - vi; vi = vi2; }
   *x = -2 * vi; *y = 0.0;
   ColumnVector A; RealFFTI(X, Y, A);
   X.CleanUp(); Y.CleanUp(); U.ReSize(n+1);
   Real* a = A.Store(); Real* b = a + n; Real* u = U.Store(); v = u + n;
   i = n2; int k = 0; *u++ = 0.0; *v-- = 0.0;
   while (i--)
   {
      Real s = sin(1.5707963267948966192 * (++k) / n2);
      Real ai = *(++a); Real bi = *(--b);
      Real az = (ai + bi) / 4 / s; Real bz = (ai - bi) / 2;
      *u++ = az - bz; *v-- = az + bz;
   }
}

void DST(const ColumnVector& U, ColumnVector& V)
{
   // Discrete sine transform, type I
   Tracer trace("DST");
   REPORT
   DST_inverse(U, V);
   V *= (V.Nrows()-1)/2;
}



#ifdef use_namespace
}
#endif