1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
|
//$ newfft.cpp
// This is originally by Sande and Gentleman in 1967! I have translated from
// Fortran into C and a little bit of C++.
// It takes about twice as long as fftw
// (http://theory.lcs.mit.edu/~fftw/homepage.html)
// but is much shorter than fftw and so despite its age
// might represent a reasonable
// compromise between speed and complexity.
// If you really need the speed get fftw.
// THIS SUBROUTINE WAS WRITTEN BY G.SANDE OF PRINCETON UNIVERSITY AND
// W.M.GENTLMAN OF THE BELL TELEPHONE LAB. IT WAS BROUGHT TO LONDON
// BY DR. M.D. GODFREY AT THE IMPERIAL COLLEGE AND WAS ADAPTED FOR
// BURROUGHS 6700 BY D. R. BRILLINGER AND J. PEMBERTON
// IT REPRESENTS THE STATE OF THE ART OF COMPUTING COMPLETE FINITE
// DISCRETE FOURIER TRANSFORMS AS OF NOV.1967.
// OTHER PROGRAMS REQUIRED.
// ONLY THOSE SUBROUTINES INCLUDED HERE.
// USAGE.
// CALL AR1DFT(N,X,Y)
// WHERE N IS THE NUMBER OF POINTS IN THE SEQUENCE .
// X - IS A ONE-DIMENSIONAL ARRAY CONTAINING THE REAL
// PART OF THE SEQUENCE.
// Y - IS A ONE-DIMENSIONAL ARRAY CONTAINING THE
// IMAGINARY PART OF THE SEQUENCE.
// THE TRANSFORM IS RETURNED IN X AND Y.
// METHOD
// FOR A GENERAL DISCUSSION OF THESE TRANSFORMS AND OF
// THE FAST METHOD FOR COMPUTING THEM, SEE GENTLEMAN AND SANDE,
// @FAST FOURIER TRANSFORMS - FOR FUN AND PROFIT,@ 1966 FALL JOINT
// COMPUTER CONFERENCE.
// THIS PROGRAM COMPUTES THIS FOR A COMPLEX SEQUENCE Z(T) OF LENGTH
// N WHOSE ELEMENTS ARE STORED AT(X(I) , Y(I)) AND RETURNS THE
// TRANSFORM COEFFICIENTS AT (X(I), Y(I)).
// DESCRIPTION
// AR1DFT IS A HIGHLY MODULAR ROUTINE CAPABLE OF COMPUTING IN PLACE
// THE COMPLETE FINITE DISCRETE FOURIER TRANSFORM OF A ONE-
// DIMENSIONAL SEQUENCE OF RATHER GENERAL LENGTH N.
// THE MAIN ROUTINE , AR1DFT ITSELF, FACTORS N. IT THEN CALLS ON
// ON GR 1D FT TO COMPUTE THE ACTUAL TRANSFORMS, USING THESE FACTORS.
// THIS GR 1D FT DOES, CALLING AT EACH STAGE ON THE APPROPRIATE KERN
// EL R2FTK, R4FTK, R8FTK, R16FTK, R3FTK, R5FTK, OR RPFTK TO PERFORM
// THE COMPUTATIONS FOR THIS PASS OVER THE SEQUENCE, DEPENDING ON
// WHETHER THE CORRESPONDING FACTOR IS 2, 4, 8, 16, 3, 5, OR SOME
// MORE GENERAL PRIME P. WHEN GR1DFT IS FINISHED THE TRANSFORM IS
// COMPUTED, HOWEVER, THE RESULTS ARE STORED IN "DIGITS REVERSED"
// ORDER. AR1DFT THEREFORE, CALLS UPON GR 1S FS TO SORT THEM OUT.
// TO RETURN TO THE FACTORIZATION, SINGLETON HAS POINTED OUT THAT
// THE TRANSFORMS ARE MORE EFFICIENT IF THE SAMPLE SIZE N, IS OF THE
// FORM B*A**2 AND B CONSISTS OF A SINGLE FACTOR. IN SUCH A CASE
// IF WE PROCESS THE FACTORS IN THE ORDER ABA THEN
// THE REORDERING CAN BE DONE AS FAST IN PLACE, AS WITH SCRATCH
// STORAGE. BUT AS B BECOMES MORE COMPLICATED, THE COST OF THE DIGIT
// REVERSING DUE TO B PART BECOMES VERY EXPENSIVE IF WE TRY TO DO IT
// IN PLACE. IN SUCH A CASE IT MIGHT BE BETTER TO USE EXTRA STORAGE
// A ROUTINE TO DO THIS IS, HOWEVER, NOT INCLUDED HERE.
// ANOTHER FEATURE INFLUENCING THE FACTORIZATION IS THAT FOR ANY FIXED
// FACTOR N WE CAN PREPARE A SPECIAL KERNEL WHICH WILL COMPUTE
// THAT STAGE OF THE TRANSFORM MORE EFFICIENTLY THAN WOULD A KERNEL
// FOR GENERAL FACTORS, ESPECIALLY IF THE GENERAL KERNEL HAD TO BE
// APPLIED SEVERAL TIMES. FOR EXAMPLE, FACTORS OF 4 ARE MORE
// EFFICIENT THAN FACTORS OF 2, FACTORS OF 8 MORE EFFICIENT THAN 4,ETC
// ON THE OTHER HAND DIMINISHING RETURNS RAPIDLY SET IN, ESPECIALLY
// SINCE THE LENGTH OF THE KERNEL FOR A SPECIAL CASE IS ROUGHLY
// PROPORTIONAL TO THE FACTOR IT DEALS WITH. HENCE THESE PROBABLY ARE
// ALL THE KERNELS WE WISH TO HAVE.
// RESTRICTIONS.
// AN UNFORTUNATE FEATURE OF THE SORTING PROBLEM IS THAT THE MOST
// EFFICIENT WAY TO DO IT IS WITH NESTED DO LOOPS, ONE FOR EACH
// FACTOR. THIS PUTS A RESTRICTION ON N AS TO HOW MANY FACTORS IT
// CAN HAVE. CURRENTLY THE LIMIT IS 16, BUT THE LIMIT CAN BE READILY
// RAISED IF NECESSARY.
// A SECOND RESTRICTION OF THE PROGRAM IS THAT LOCAL STORAGE OF THE
// THE ORDER P**2 IS REQUIRED BY THE GENERAL KERNEL RPFTK, SO SOME
// LIMIT MUST BE SET ON P. CURRENTLY THIS IS 19, BUT IT CAN BE INCRE
// INCREASED BY TRIVIAL CHANGES.
// OTHER COMMENTS.
//(1) THE ROUTINE IS ADAPTED TO CHECK WHETHER A GIVEN N WILL MEET THE
// ABOVE FACTORING REQUIREMENTS AN, IF NOT, TO RETURN THE NEXT HIGHER
// NUMBER, NX, SAY, WHICH WILL MEET THESE REQUIREMENTS.
// THIS CAN BE ACCHIEVED BY A STATEMENT OF THE FORM
// CALL FACTR(N,X,Y).
// IF A DIFFERENT N, SAY NX, IS RETURNED THEN THE TRANSFORMS COULD BE
// OBTAINED BY EXTENDING THE SIZE OF THE X-ARRAY AND Y-ARRAY TO NX,
// AND SETTING X(I) = Y(I) = 0., FOR I = N+1, NX.
//(2) IF THE SEQUENCE Z IS ONLY A REAL SEQUENCE, THEN THE IMAGINARY PART
// Y(I)=0., THIS WILL RETURN THE COSINE TRANSFORM OF THE REAL SEQUENCE
// IN X, AND THE SINE TRANSFORM IN Y.
#define WANT_STREAM
#define WANT_MATH
#include "newmatap.h"
#ifdef use_namespace
namespace NEWMAT {
#endif
#ifdef DO_REPORT
#define REPORT { static ExeCounter ExeCount(__LINE__,20); ++ExeCount; }
#else
#define REPORT {}
#endif
inline Real square(Real x) { return x*x; }
inline int square(int x) { return x*x; }
static void GR_1D_FS (int PTS, int N_SYM, int N_UN_SYM,
const SimpleIntArray& SYM, int P_SYM, const SimpleIntArray& UN_SYM,
Real* X, Real* Y);
static void GR_1D_FT (int N, int N_FACTOR, const SimpleIntArray& FACTOR,
Real* X, Real* Y);
static void R_P_FTK (int N, int M, int P, Real* X, Real* Y);
static void R_2_FTK (int N, int M, Real* X0, Real* Y0, Real* X1, Real* Y1);
static void R_3_FTK (int N, int M, Real* X0, Real* Y0, Real* X1, Real* Y1,
Real* X2, Real* Y2);
static void R_4_FTK (int N, int M,
Real* X0, Real* Y0, Real* X1, Real* Y1,
Real* X2, Real* Y2, Real* X3, Real* Y3);
static void R_5_FTK (int N, int M,
Real* X0, Real* Y0, Real* X1, Real* Y1, Real* X2, Real* Y2,
Real* X3, Real* Y3, Real* X4, Real* Y4);
static void R_8_FTK (int N, int M,
Real* X0, Real* Y0, Real* X1, Real* Y1,
Real* X2, Real* Y2, Real* X3, Real* Y3,
Real* X4, Real* Y4, Real* X5, Real* Y5,
Real* X6, Real* Y6, Real* X7, Real* Y7);
static void R_16_FTK (int N, int M,
Real* X0, Real* Y0, Real* X1, Real* Y1,
Real* X2, Real* Y2, Real* X3, Real* Y3,
Real* X4, Real* Y4, Real* X5, Real* Y5,
Real* X6, Real* Y6, Real* X7, Real* Y7,
Real* X8, Real* Y8, Real* X9, Real* Y9,
Real* X10, Real* Y10, Real* X11, Real* Y11,
Real* X12, Real* Y12, Real* X13, Real* Y13,
Real* X14, Real* Y14, Real* X15, Real* Y15);
static int BitReverse(int x, int prod, int n, const SimpleIntArray& f);
bool FFT_Controller::ar_1d_ft (int PTS, Real* X, Real *Y)
{
// ARBITRARY RADIX ONE DIMENSIONAL FOURIER TRANSFORM
REPORT
int F,J,N,NF,P,PMAX,P_SYM,P_TWO,Q,R,TWO_GRP;
// NP is maximum number of squared factors allows PTS up to 2**32 at least
// NQ is number of not-squared factors - increase if we increase PMAX
const int NP = 16, NQ = 10;
SimpleIntArray PP(NP), QQ(NQ);
TWO_GRP=16; PMAX=19;
// PMAX is the maximum factor size
// TWO_GRP is the maximum power of 2 handled as a single factor
// Doesn't take advantage of combining powers of 2 when calculating
// number of factors
if (PTS<=1) return true;
N=PTS; P_SYM=1; F=2; P=0; Q=0;
// P counts the number of squared factors
// Q counts the number of the rest
// R = 0 for no non-squared factors; 1 otherwise
// FACTOR holds all the factors - non-squared ones in the middle
// - length is 2*P+Q
// SYM also holds all the factors but with the non-squared ones
// multiplied together - length is 2*P+R
// PP holds the values of the squared factors - length is P
// QQ holds the values of the rest - length is Q
// P_SYM holds the product of the squared factors
// find the factors - load into PP and QQ
while (N > 1)
{
bool fail = true;
for (J=F; J<=PMAX; J++)
if (N % J == 0) { fail = false; F=J; break; }
if (fail || P >= NP || Q >= NQ) return false; // can't factor
N /= F;
if (N % F != 0) QQ[Q++] = F;
else { N /= F; PP[P++] = F; P_SYM *= F; }
}
R = (Q == 0) ? 0 : 1; // R = 0 if no not-squared factors, 1 otherwise
NF = 2*P + Q;
SimpleIntArray FACTOR(NF + 1), SYM(2*P + R);
FACTOR[NF] = 0; // we need this in the "combine powers of 2"
// load into SYM and FACTOR
for (J=0; J<P; J++)
{ SYM[J]=FACTOR[J]=PP[P-1-J]; FACTOR[P+Q+J]=SYM[P+R+J]=PP[J]; }
if (Q>0)
{
REPORT
for (J=0; J<Q; J++) FACTOR[P+J]=QQ[J];
SYM[P]=PTS/square(P_SYM);
}
// combine powers of 2
P_TWO = 1;
for (J=0; J < NF; J++)
{
if (FACTOR[J]!=2) continue;
P_TWO=P_TWO*2; FACTOR[J]=1;
if (P_TWO<TWO_GRP && FACTOR[J+1]==2) continue;
FACTOR[J]=P_TWO; P_TWO=1;
}
if (P==0) R=0;
if (Q<=1) Q=0;
// do the analysis
GR_1D_FT(PTS,NF,FACTOR,X,Y); // the transform
GR_1D_FS(PTS,2*P+R,Q,SYM,P_SYM,QQ,X,Y); // the reshuffling
return true;
}
static void GR_1D_FS (int PTS, int N_SYM, int N_UN_SYM,
const SimpleIntArray& SYM, int P_SYM, const SimpleIntArray& UN_SYM,
Real* X, Real* Y)
{
// GENERAL RADIX ONE DIMENSIONAL FOURIER SORT
// PTS = number of points
// N_SYM = length of SYM
// N_UN_SYM = length of UN_SYM
// SYM: squared factors + product of non-squared factors + squared factors
// P_SYM = product of squared factors (each included only once)
// UN_SYM: not-squared factors
REPORT
Real T;
int JJ,KK,P_UN_SYM;
// I have replaced the multiple for-loop used by Sande-Gentleman code
// by the following code which does not limit the number of factors
if (N_SYM > 0)
{
REPORT
SimpleIntArray U(N_SYM);
for(MultiRadixCounter MRC(N_SYM, SYM, U); !MRC.Finish(); ++MRC)
{
if (MRC.Swap())
{
int P = MRC.Reverse(); int JJ = MRC.Counter(); Real T;
T=X[JJ]; X[JJ]=X[P]; X[P]=T; T=Y[JJ]; Y[JJ]=Y[P]; Y[P]=T;
}
}
}
int J,JL,K,L,M,MS;
// UN_SYM contains the non-squared factors
// I have replaced the Sande-Gentleman code as it runs into
// integer overflow problems
// My code (and theirs) would be improved by using a bit array
// as suggested by Van Loan
if (N_UN_SYM==0) { REPORT return; }
P_UN_SYM=PTS/square(P_SYM); JL=(P_UN_SYM-3)*P_SYM; MS=P_UN_SYM*P_SYM;
for (J = P_SYM; J<=JL; J+=P_SYM)
{
K=J;
do K = P_SYM * BitReverse(K / P_SYM, P_UN_SYM, N_UN_SYM, UN_SYM);
while (K<J);
if (K!=J)
{
REPORT
for (L=0; L<P_SYM; L++) for (M=L; M<PTS; M+=MS)
{
JJ=M+J; KK=M+K;
T=X[JJ]; X[JJ]=X[KK]; X[KK]=T; T=Y[JJ]; Y[JJ]=Y[KK]; Y[KK]=T;
}
}
}
return;
}
static void GR_1D_FT (int N, int N_FACTOR, const SimpleIntArray& FACTOR,
Real* X, Real* Y)
{
// GENERAL RADIX ONE DIMENSIONAL FOURIER TRANSFORM;
REPORT
int M = N;
for (int i = 0; i < N_FACTOR; i++)
{
int P = FACTOR[i]; M /= P;
switch(P)
{
case 1: REPORT break;
case 2: REPORT R_2_FTK (N,M,X,Y,X+M,Y+M); break;
case 3: REPORT R_3_FTK (N,M,X,Y,X+M,Y+M,X+2*M,Y+2*M); break;
case 4: REPORT R_4_FTK (N,M,X,Y,X+M,Y+M,X+2*M,Y+2*M,X+3*M,Y+3*M); break;
case 5:
REPORT
R_5_FTK (N,M,X,Y,X+M,Y+M,X+2*M,Y+2*M,X+3*M,Y+3*M,X+4*M,Y+4*M);
break;
case 8:
REPORT
R_8_FTK (N,M,X,Y,X+M,Y+M,X+2*M,Y+2*M,
X+3*M,Y+3*M,X+4*M,Y+4*M,X+5*M,Y+5*M,
X+6*M,Y+6*M,X+7*M,Y+7*M);
break;
case 16:
REPORT
R_16_FTK (N,M,X,Y,X+M,Y+M,X+2*M,Y+2*M,
X+3*M,Y+3*M,X+4*M,Y+4*M,X+5*M,Y+5*M,
X+6*M,Y+6*M,X+7*M,Y+7*M,X+8*M,Y+8*M,
X+9*M,Y+9*M,X+10*M,Y+10*M,X+11*M,Y+11*M,
X+12*M,Y+12*M,X+13*M,Y+13*M,X+14*M,Y+14*M,
X+15*M,Y+15*M);
break;
default: REPORT R_P_FTK (N,M,P,X,Y); break;
}
}
}
static void R_P_FTK (int N, int M, int P, Real* X, Real* Y)
// RADIX PRIME FOURIER TRANSFORM KERNEL;
// X and Y are treated as M * P matrices with Fortran storage
{
REPORT
bool NO_FOLD,ZERO;
Real ANGLE,IS,IU,RS,RU,T,TWOPI,XT,YT;
int J,JJ,K0,K,M_OVER_2,MP,PM,PP,U,V;
Real AA [9][9], BB [9][9];
Real A [18], B [18], C [18], S [18];
Real IA [9], IB [9], RA [9], RB [9];
TWOPI=8.0*atan(1.0);
M_OVER_2=M/2+1; MP=M*P; PP=P/2; PM=P-1;
for (U=0; U<PP; U++)
{
ANGLE=TWOPI*Real(U+1)/Real(P);
JJ=P-U-2;
A[U]=cos(ANGLE); B[U]=sin(ANGLE);
A[JJ]=A[U]; B[JJ]= -B[U];
}
for (U=1; U<=PP; U++)
{
for (V=1; V<=PP; V++)
{ JJ=U*V-U*V/P*P; AA[V-1][U-1]=A[JJ-1]; BB[V-1][U-1]=B[JJ-1]; }
}
for (J=0; J<M_OVER_2; J++)
{
NO_FOLD = (J==0 || 2*J==M);
K0=J;
ANGLE=TWOPI*Real(J)/Real(MP); ZERO=ANGLE==0.0;
C[0]=cos(ANGLE); S[0]=sin(ANGLE);
for (U=1; U<PM; U++)
{
C[U]=C[U-1]*C[0]-S[U-1]*S[0];
S[U]=S[U-1]*C[0]+C[U-1]*S[0];
}
goto L700;
L500:
REPORT
if (NO_FOLD) { REPORT goto L1500; }
REPORT
NO_FOLD=true; K0=M-J;
for (U=0; U<PM; U++)
{ T=C[U]*A[U]+S[U]*B[U]; S[U]= -S[U]*A[U]+C[U]*B[U]; C[U]=T; }
L700:
REPORT
for (K=K0; K<N; K+=MP)
{
XT=X[K]; YT=Y[K];
for (U=1; U<=PP; U++)
{
RA[U-1]=XT; IA[U-1]=YT;
RB[U-1]=0.0; IB[U-1]=0.0;
}
for (U=1; U<=PP; U++)
{
JJ=P-U;
RS=X[K+M*U]+X[K+M*JJ]; IS=Y[K+M*U]+Y[K+M*JJ];
RU=X[K+M*U]-X[K+M*JJ]; IU=Y[K+M*U]-Y[K+M*JJ];
XT=XT+RS; YT=YT+IS;
for (V=0; V<PP; V++)
{
RA[V]=RA[V]+RS*AA[V][U-1]; IA[V]=IA[V]+IS*AA[V][U-1];
RB[V]=RB[V]+RU*BB[V][U-1]; IB[V]=IB[V]+IU*BB[V][U-1];
}
}
X[K]=XT; Y[K]=YT;
for (U=1; U<=PP; U++)
{
if (!ZERO)
{
REPORT
XT=RA[U-1]+IB[U-1]; YT=IA[U-1]-RB[U-1];
X[K+M*U]=XT*C[U-1]+YT*S[U-1]; Y[K+M*U]=YT*C[U-1]-XT*S[U-1];
JJ=P-U;
XT=RA[U-1]-IB[U-1]; YT=IA[U-1]+RB[U-1];
X[K+M*JJ]=XT*C[JJ-1]+YT*S[JJ-1];
Y[K+M*JJ]=YT*C[JJ-1]-XT*S[JJ-1];
}
else
{
REPORT
X[K+M*U]=RA[U-1]+IB[U-1]; Y[K+M*U]=IA[U-1]-RB[U-1];
JJ=P-U;
X[K+M*JJ]=RA[U-1]-IB[U-1]; Y[K+M*JJ]=IA[U-1]+RB[U-1];
}
}
}
goto L500;
L1500: ;
}
return;
}
static void R_2_FTK (int N, int M, Real* X0, Real* Y0, Real* X1, Real* Y1)
// RADIX TWO FOURIER TRANSFORM KERNEL;
{
REPORT
bool NO_FOLD,ZERO;
int J,K,K0,M2,M_OVER_2;
Real ANGLE,C,IS,IU,RS,RU,S,TWOPI;
M2=M*2; M_OVER_2=M/2+1;
TWOPI=8.0*atan(1.0);
for (J=0; J<M_OVER_2; J++)
{
NO_FOLD = (J==0 || 2*J==M);
K0=J;
ANGLE=TWOPI*Real(J)/Real(M2); ZERO=ANGLE==0.0;
C=cos(ANGLE); S=sin(ANGLE);
goto L200;
L100:
REPORT
if (NO_FOLD) { REPORT goto L600; }
REPORT
NO_FOLD=true; K0=M-J; C= -C;
L200:
REPORT
for (K=K0; K<N; K+=M2)
{
RS=X0[K]+X1[K]; IS=Y0[K]+Y1[K];
RU=X0[K]-X1[K]; IU=Y0[K]-Y1[K];
X0[K]=RS; Y0[K]=IS;
if (!ZERO) { X1[K]=RU*C+IU*S; Y1[K]=IU*C-RU*S; }
else { X1[K]=RU; Y1[K]=IU; }
}
goto L100;
L600: ;
}
return;
}
static void R_3_FTK (int N, int M, Real* X0, Real* Y0, Real* X1, Real* Y1,
Real* X2, Real* Y2)
// RADIX THREE FOURIER TRANSFORM KERNEL
{
REPORT
bool NO_FOLD,ZERO;
int J,K,K0,M3,M_OVER_2;
Real ANGLE,A,B,C1,C2,S1,S2,T,TWOPI;
Real I0,I1,I2,IA,IB,IS,R0,R1,R2,RA,RB,RS;
M3=M*3; M_OVER_2=M/2+1; TWOPI=8.0*atan(1.0);
A=cos(TWOPI/3.0); B=sin(TWOPI/3.0);
for (J=0; J<M_OVER_2; J++)
{
NO_FOLD = (J==0 || 2*J==M);
K0=J;
ANGLE=TWOPI*Real(J)/Real(M3); ZERO=ANGLE==0.0;
C1=cos(ANGLE); S1=sin(ANGLE);
C2=C1*C1-S1*S1; S2=S1*C1+C1*S1;
goto L200;
L100:
REPORT
if (NO_FOLD) { REPORT goto L600; }
REPORT
NO_FOLD=true; K0=M-J;
T=C1*A+S1*B; S1=C1*B-S1*A; C1=T;
T=C2*A-S2*B; S2= -C2*B-S2*A; C2=T;
L200:
REPORT
for (K=K0; K<N; K+=M3)
{
R0 = X0[K]; I0 = Y0[K];
RS=X1[K]+X2[K]; IS=Y1[K]+Y2[K];
X0[K]=R0+RS; Y0[K]=I0+IS;
RA=R0+RS*A; IA=I0+IS*A;
RB=(X1[K]-X2[K])*B; IB=(Y1[K]-Y2[K])*B;
if (!ZERO)
{
REPORT
R1=RA+IB; I1=IA-RB; R2=RA-IB; I2=IA+RB;
X1[K]=R1*C1+I1*S1; Y1[K]=I1*C1-R1*S1;
X2[K]=R2*C2+I2*S2; Y2[K]=I2*C2-R2*S2;
}
else { REPORT X1[K]=RA+IB; Y1[K]=IA-RB; X2[K]=RA-IB; Y2[K]=IA+RB; }
}
goto L100;
L600: ;
}
return;
}
static void R_4_FTK (int N, int M,
Real* X0, Real* Y0, Real* X1, Real* Y1,
Real* X2, Real* Y2, Real* X3, Real* Y3)
// RADIX FOUR FOURIER TRANSFORM KERNEL
{
REPORT
bool NO_FOLD,ZERO;
int J,K,K0,M4,M_OVER_2;
Real ANGLE,C1,C2,C3,S1,S2,S3,T,TWOPI;
Real I1,I2,I3,IS0,IS1,IU0,IU1,R1,R2,R3,RS0,RS1,RU0,RU1;
M4=M*4; M_OVER_2=M/2+1;
TWOPI=8.0*atan(1.0);
for (J=0; J<M_OVER_2; J++)
{
NO_FOLD = (J==0 || 2*J==M);
K0=J;
ANGLE=TWOPI*Real(J)/Real(M4); ZERO=ANGLE==0.0;
C1=cos(ANGLE); S1=sin(ANGLE);
C2=C1*C1-S1*S1; S2=S1*C1+C1*S1;
C3=C2*C1-S2*S1; S3=S2*C1+C2*S1;
goto L200;
L100:
REPORT
if (NO_FOLD) { REPORT goto L600; }
REPORT
NO_FOLD=true; K0=M-J;
T=C1; C1=S1; S1=T;
C2= -C2;
T=C3; C3= -S3; S3= -T;
L200:
REPORT
for (K=K0; K<N; K+=M4)
{
RS0=X0[K]+X2[K]; IS0=Y0[K]+Y2[K];
RU0=X0[K]-X2[K]; IU0=Y0[K]-Y2[K];
RS1=X1[K]+X3[K]; IS1=Y1[K]+Y3[K];
RU1=X1[K]-X3[K]; IU1=Y1[K]-Y3[K];
X0[K]=RS0+RS1; Y0[K]=IS0+IS1;
if (!ZERO)
{
REPORT
R1=RU0+IU1; I1=IU0-RU1;
R2=RS0-RS1; I2=IS0-IS1;
R3=RU0-IU1; I3=IU0+RU1;
X2[K]=R1*C1+I1*S1; Y2[K]=I1*C1-R1*S1;
X1[K]=R2*C2+I2*S2; Y1[K]=I2*C2-R2*S2;
X3[K]=R3*C3+I3*S3; Y3[K]=I3*C3-R3*S3;
}
else
{
REPORT
X2[K]=RU0+IU1; Y2[K]=IU0-RU1;
X1[K]=RS0-RS1; Y1[K]=IS0-IS1;
X3[K]=RU0-IU1; Y3[K]=IU0+RU1;
}
}
goto L100;
L600: ;
}
return;
}
static void R_5_FTK (int N, int M,
Real* X0, Real* Y0, Real* X1, Real* Y1, Real* X2, Real* Y2,
Real* X3, Real* Y3, Real* X4, Real* Y4)
// RADIX FIVE FOURIER TRANSFORM KERNEL
{
REPORT
bool NO_FOLD,ZERO;
int J,K,K0,M5,M_OVER_2;
Real ANGLE,A1,A2,B1,B2,C1,C2,C3,C4,S1,S2,S3,S4,T,TWOPI;
Real R0,R1,R2,R3,R4,RA1,RA2,RB1,RB2,RS1,RS2,RU1,RU2;
Real I0,I1,I2,I3,I4,IA1,IA2,IB1,IB2,IS1,IS2,IU1,IU2;
M5=M*5; M_OVER_2=M/2+1;
TWOPI=8.0*atan(1.0);
A1=cos(TWOPI/5.0); B1=sin(TWOPI/5.0);
A2=cos(2.0*TWOPI/5.0); B2=sin(2.0*TWOPI/5.0);
for (J=0; J<M_OVER_2; J++)
{
NO_FOLD = (J==0 || 2*J==M);
K0=J;
ANGLE=TWOPI*Real(J)/Real(M5); ZERO=ANGLE==0.0;
C1=cos(ANGLE); S1=sin(ANGLE);
C2=C1*C1-S1*S1; S2=S1*C1+C1*S1;
C3=C2*C1-S2*S1; S3=S2*C1+C2*S1;
C4=C2*C2-S2*S2; S4=S2*C2+C2*S2;
goto L200;
L100:
REPORT
if (NO_FOLD) { REPORT goto L600; }
REPORT
NO_FOLD=true; K0=M-J;
T=C1*A1+S1*B1; S1=C1*B1-S1*A1; C1=T;
T=C2*A2+S2*B2; S2=C2*B2-S2*A2; C2=T;
T=C3*A2-S3*B2; S3= -C3*B2-S3*A2; C3=T;
T=C4*A1-S4*B1; S4= -C4*B1-S4*A1; C4=T;
L200:
REPORT
for (K=K0; K<N; K+=M5)
{
R0=X0[K]; I0=Y0[K];
RS1=X1[K]+X4[K]; IS1=Y1[K]+Y4[K];
RU1=X1[K]-X4[K]; IU1=Y1[K]-Y4[K];
RS2=X2[K]+X3[K]; IS2=Y2[K]+Y3[K];
RU2=X2[K]-X3[K]; IU2=Y2[K]-Y3[K];
X0[K]=R0+RS1+RS2; Y0[K]=I0+IS1+IS2;
RA1=R0+RS1*A1+RS2*A2; IA1=I0+IS1*A1+IS2*A2;
RA2=R0+RS1*A2+RS2*A1; IA2=I0+IS1*A2+IS2*A1;
RB1=RU1*B1+RU2*B2; IB1=IU1*B1+IU2*B2;
RB2=RU1*B2-RU2*B1; IB2=IU1*B2-IU2*B1;
if (!ZERO)
{
REPORT
R1=RA1+IB1; I1=IA1-RB1;
R2=RA2+IB2; I2=IA2-RB2;
R3=RA2-IB2; I3=IA2+RB2;
R4=RA1-IB1; I4=IA1+RB1;
X1[K]=R1*C1+I1*S1; Y1[K]=I1*C1-R1*S1;
X2[K]=R2*C2+I2*S2; Y2[K]=I2*C2-R2*S2;
X3[K]=R3*C3+I3*S3; Y3[K]=I3*C3-R3*S3;
X4[K]=R4*C4+I4*S4; Y4[K]=I4*C4-R4*S4;
}
else
{
REPORT
X1[K]=RA1+IB1; Y1[K]=IA1-RB1;
X2[K]=RA2+IB2; Y2[K]=IA2-RB2;
X3[K]=RA2-IB2; Y3[K]=IA2+RB2;
X4[K]=RA1-IB1; Y4[K]=IA1+RB1;
}
}
goto L100;
L600: ;
}
return;
}
static void R_8_FTK (int N, int M,
Real* X0, Real* Y0, Real* X1, Real* Y1,
Real* X2, Real* Y2, Real* X3, Real* Y3,
Real* X4, Real* Y4, Real* X5, Real* Y5,
Real* X6, Real* Y6, Real* X7, Real* Y7)
// RADIX EIGHT FOURIER TRANSFORM KERNEL
{
REPORT
bool NO_FOLD,ZERO;
int J,K,K0,M8,M_OVER_2;
Real ANGLE,C1,C2,C3,C4,C5,C6,C7,E,S1,S2,S3,S4,S5,S6,S7,T,TWOPI;
Real R1,R2,R3,R4,R5,R6,R7,RS0,RS1,RS2,RS3,RU0,RU1,RU2,RU3;
Real I1,I2,I3,I4,I5,I6,I7,IS0,IS1,IS2,IS3,IU0,IU1,IU2,IU3;
Real RSS0,RSS1,RSU0,RSU1,RUS0,RUS1,RUU0,RUU1;
Real ISS0,ISS1,ISU0,ISU1,IUS0,IUS1,IUU0,IUU1;
M8=M*8; M_OVER_2=M/2+1;
TWOPI=8.0*atan(1.0); E=cos(TWOPI/8.0);
for (J=0;J<M_OVER_2;J++)
{
NO_FOLD= (J==0 || 2*J==M);
K0=J;
ANGLE=TWOPI*Real(J)/Real(M8); ZERO=ANGLE==0.0;
C1=cos(ANGLE); S1=sin(ANGLE);
C2=C1*C1-S1*S1; S2=C1*S1+S1*C1;
C3=C2*C1-S2*S1; S3=S2*C1+C2*S1;
C4=C2*C2-S2*S2; S4=S2*C2+C2*S2;
C5=C4*C1-S4*S1; S5=S4*C1+C4*S1;
C6=C4*C2-S4*S2; S6=S4*C2+C4*S2;
C7=C4*C3-S4*S3; S7=S4*C3+C4*S3;
goto L200;
L100:
REPORT
if (NO_FOLD) { REPORT goto L600; }
REPORT
NO_FOLD=true; K0=M-J;
T=(C1+S1)*E; S1=(C1-S1)*E; C1=T;
T=S2; S2=C2; C2=T;
T=(-C3+S3)*E; S3=(C3+S3)*E; C3=T;
C4= -C4;
T= -(C5+S5)*E; S5=(-C5+S5)*E; C5=T;
T= -S6; S6= -C6; C6=T;
T=(C7-S7)*E; S7= -(C7+S7)*E; C7=T;
L200:
REPORT
for (K=K0; K<N; K+=M8)
{
RS0=X0[K]+X4[K]; IS0=Y0[K]+Y4[K];
RU0=X0[K]-X4[K]; IU0=Y0[K]-Y4[K];
RS1=X1[K]+X5[K]; IS1=Y1[K]+Y5[K];
RU1=X1[K]-X5[K]; IU1=Y1[K]-Y5[K];
RS2=X2[K]+X6[K]; IS2=Y2[K]+Y6[K];
RU2=X2[K]-X6[K]; IU2=Y2[K]-Y6[K];
RS3=X3[K]+X7[K]; IS3=Y3[K]+Y7[K];
RU3=X3[K]-X7[K]; IU3=Y3[K]-Y7[K];
RSS0=RS0+RS2; ISS0=IS0+IS2;
RSU0=RS0-RS2; ISU0=IS0-IS2;
RSS1=RS1+RS3; ISS1=IS1+IS3;
RSU1=RS1-RS3; ISU1=IS1-IS3;
RUS0=RU0-IU2; IUS0=IU0+RU2;
RUU0=RU0+IU2; IUU0=IU0-RU2;
RUS1=RU1-IU3; IUS1=IU1+RU3;
RUU1=RU1+IU3; IUU1=IU1-RU3;
T=(RUS1+IUS1)*E; IUS1=(IUS1-RUS1)*E; RUS1=T;
T=(RUU1+IUU1)*E; IUU1=(IUU1-RUU1)*E; RUU1=T;
X0[K]=RSS0+RSS1; Y0[K]=ISS0+ISS1;
if (!ZERO)
{
REPORT
R1=RUU0+RUU1; I1=IUU0+IUU1;
R2=RSU0+ISU1; I2=ISU0-RSU1;
R3=RUS0+IUS1; I3=IUS0-RUS1;
R4=RSS0-RSS1; I4=ISS0-ISS1;
R5=RUU0-RUU1; I5=IUU0-IUU1;
R6=RSU0-ISU1; I6=ISU0+RSU1;
R7=RUS0-IUS1; I7=IUS0+RUS1;
X4[K]=R1*C1+I1*S1; Y4[K]=I1*C1-R1*S1;
X2[K]=R2*C2+I2*S2; Y2[K]=I2*C2-R2*S2;
X6[K]=R3*C3+I3*S3; Y6[K]=I3*C3-R3*S3;
X1[K]=R4*C4+I4*S4; Y1[K]=I4*C4-R4*S4;
X5[K]=R5*C5+I5*S5; Y5[K]=I5*C5-R5*S5;
X3[K]=R6*C6+I6*S6; Y3[K]=I6*C6-R6*S6;
X7[K]=R7*C7+I7*S7; Y7[K]=I7*C7-R7*S7;
}
else
{
REPORT
X4[K]=RUU0+RUU1; Y4[K]=IUU0+IUU1;
X2[K]=RSU0+ISU1; Y2[K]=ISU0-RSU1;
X6[K]=RUS0+IUS1; Y6[K]=IUS0-RUS1;
X1[K]=RSS0-RSS1; Y1[K]=ISS0-ISS1;
X5[K]=RUU0-RUU1; Y5[K]=IUU0-IUU1;
X3[K]=RSU0-ISU1; Y3[K]=ISU0+RSU1;
X7[K]=RUS0-IUS1; Y7[K]=IUS0+RUS1;
}
}
goto L100;
L600: ;
}
return;
}
static void R_16_FTK (int N, int M,
Real* X0, Real* Y0, Real* X1, Real* Y1,
Real* X2, Real* Y2, Real* X3, Real* Y3,
Real* X4, Real* Y4, Real* X5, Real* Y5,
Real* X6, Real* Y6, Real* X7, Real* Y7,
Real* X8, Real* Y8, Real* X9, Real* Y9,
Real* X10, Real* Y10, Real* X11, Real* Y11,
Real* X12, Real* Y12, Real* X13, Real* Y13,
Real* X14, Real* Y14, Real* X15, Real* Y15)
// RADIX SIXTEEN FOURIER TRANSFORM KERNEL
{
REPORT
bool NO_FOLD,ZERO;
int J,K,K0,M16,M_OVER_2;
Real ANGLE,EI1,ER1,E2,EI3,ER3,EI5,ER5,T,TWOPI;
Real RS0,RS1,RS2,RS3,RS4,RS5,RS6,RS7;
Real IS0,IS1,IS2,IS3,IS4,IS5,IS6,IS7;
Real RU0,RU1,RU2,RU3,RU4,RU5,RU6,RU7;
Real IU0,IU1,IU2,IU3,IU4,IU5,IU6,IU7;
Real RUS0,RUS1,RUS2,RUS3,RUU0,RUU1,RUU2,RUU3;
Real ISS0,ISS1,ISS2,ISS3,ISU0,ISU1,ISU2,ISU3;
Real RSS0,RSS1,RSS2,RSS3,RSU0,RSU1,RSU2,RSU3;
Real IUS0,IUS1,IUS2,IUS3,IUU0,IUU1,IUU2,IUU3;
Real RSSS0,RSSS1,RSSU0,RSSU1,RSUS0,RSUS1,RSUU0,RSUU1;
Real ISSS0,ISSS1,ISSU0,ISSU1,ISUS0,ISUS1,ISUU0,ISUU1;
Real RUSS0,RUSS1,RUSU0,RUSU1,RUUS0,RUUS1,RUUU0,RUUU1;
Real IUSS0,IUSS1,IUSU0,IUSU1,IUUS0,IUUS1,IUUU0,IUUU1;
Real R1,R2,R3,R4,R5,R6,R7,R8,R9,R10,R11,R12,R13,R14,R15;
Real I1,I2,I3,I4,I5,I6,I7,I8,I9,I10,I11,I12,I13,I14,I15;
Real C1,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C14,C15;
Real S1,S2,S3,S4,S5,S6,S7,S8,S9,S10,S11,S12,S13,S14,S15;
M16=M*16; M_OVER_2=M/2+1;
TWOPI=8.0*atan(1.0);
ER1=cos(TWOPI/16.0); EI1=sin(TWOPI/16.0);
E2=cos(TWOPI/8.0);
ER3=cos(3.0*TWOPI/16.0); EI3=sin(3.0*TWOPI/16.0);
ER5=cos(5.0*TWOPI/16.0); EI5=sin(5.0*TWOPI/16.0);
for (J=0; J<M_OVER_2; J++)
{
NO_FOLD = (J==0 || 2*J==M);
K0=J;
ANGLE=TWOPI*Real(J)/Real(M16);
ZERO=ANGLE==0.0;
C1=cos(ANGLE); S1=sin(ANGLE);
C2=C1*C1-S1*S1; S2=C1*S1+S1*C1;
C3=C2*C1-S2*S1; S3=S2*C1+C2*S1;
C4=C2*C2-S2*S2; S4=S2*C2+C2*S2;
C5=C4*C1-S4*S1; S5=S4*C1+C4*S1;
C6=C4*C2-S4*S2; S6=S4*C2+C4*S2;
C7=C4*C3-S4*S3; S7=S4*C3+C4*S3;
C8=C4*C4-S4*S4; S8=C4*S4+S4*C4;
C9=C8*C1-S8*S1; S9=S8*C1+C8*S1;
C10=C8*C2-S8*S2; S10=S8*C2+C8*S2;
C11=C8*C3-S8*S3; S11=S8*C3+C8*S3;
C12=C8*C4-S8*S4; S12=S8*C4+C8*S4;
C13=C8*C5-S8*S5; S13=S8*C5+C8*S5;
C14=C8*C6-S8*S6; S14=S8*C6+C8*S6;
C15=C8*C7-S8*S7; S15=S8*C7+C8*S7;
goto L200;
L100:
REPORT
if (NO_FOLD) { REPORT goto L600; }
REPORT
NO_FOLD=true; K0=M-J;
T=C1*ER1+S1*EI1; S1= -S1*ER1+C1*EI1; C1=T;
T=(C2+S2)*E2; S2=(C2-S2)*E2; C2=T;
T=C3*ER3+S3*EI3; S3= -S3*ER3+C3*EI3; C3=T;
T=S4; S4=C4; C4=T;
T=S5*ER1-C5*EI1; S5=C5*ER1+S5*EI1; C5=T;
T=(-C6+S6)*E2; S6=(C6+S6)*E2; C6=T;
T=S7*ER3-C7*EI3; S7=C7*ER3+S7*EI3; C7=T;
C8= -C8;
T= -(C9*ER1+S9*EI1); S9=S9*ER1-C9*EI1; C9=T;
T= -(C10+S10)*E2; S10=(-C10+S10)*E2; C10=T;
T= -(C11*ER3+S11*EI3); S11=S11*ER3-C11*EI3; C11=T;
T= -S12; S12= -C12; C12=T;
T= -S13*ER1+C13*EI1; S13= -(C13*ER1+S13*EI1); C13=T;
T=(C14-S14)*E2; S14= -(C14+S14)*E2; C14=T;
T= -S15*ER3+C15*EI3; S15= -(C15*ER3+S15*EI3); C15=T;
L200:
REPORT
for (K=K0; K<N; K+=M16)
{
RS0=X0[K]+X8[K]; IS0=Y0[K]+Y8[K];
RU0=X0[K]-X8[K]; IU0=Y0[K]-Y8[K];
RS1=X1[K]+X9[K]; IS1=Y1[K]+Y9[K];
RU1=X1[K]-X9[K]; IU1=Y1[K]-Y9[K];
RS2=X2[K]+X10[K]; IS2=Y2[K]+Y10[K];
RU2=X2[K]-X10[K]; IU2=Y2[K]-Y10[K];
RS3=X3[K]+X11[K]; IS3=Y3[K]+Y11[K];
RU3=X3[K]-X11[K]; IU3=Y3[K]-Y11[K];
RS4=X4[K]+X12[K]; IS4=Y4[K]+Y12[K];
RU4=X4[K]-X12[K]; IU4=Y4[K]-Y12[K];
RS5=X5[K]+X13[K]; IS5=Y5[K]+Y13[K];
RU5=X5[K]-X13[K]; IU5=Y5[K]-Y13[K];
RS6=X6[K]+X14[K]; IS6=Y6[K]+Y14[K];
RU6=X6[K]-X14[K]; IU6=Y6[K]-Y14[K];
RS7=X7[K]+X15[K]; IS7=Y7[K]+Y15[K];
RU7=X7[K]-X15[K]; IU7=Y7[K]-Y15[K];
RSS0=RS0+RS4; ISS0=IS0+IS4;
RSS1=RS1+RS5; ISS1=IS1+IS5;
RSS2=RS2+RS6; ISS2=IS2+IS6;
RSS3=RS3+RS7; ISS3=IS3+IS7;
RSU0=RS0-RS4; ISU0=IS0-IS4;
RSU1=RS1-RS5; ISU1=IS1-IS5;
RSU2=RS2-RS6; ISU2=IS2-IS6;
RSU3=RS3-RS7; ISU3=IS3-IS7;
RUS0=RU0-IU4; IUS0=IU0+RU4;
RUS1=RU1-IU5; IUS1=IU1+RU5;
RUS2=RU2-IU6; IUS2=IU2+RU6;
RUS3=RU3-IU7; IUS3=IU3+RU7;
RUU0=RU0+IU4; IUU0=IU0-RU4;
RUU1=RU1+IU5; IUU1=IU1-RU5;
RUU2=RU2+IU6; IUU2=IU2-RU6;
RUU3=RU3+IU7; IUU3=IU3-RU7;
T=(RSU1+ISU1)*E2; ISU1=(ISU1-RSU1)*E2; RSU1=T;
T=(RSU3+ISU3)*E2; ISU3=(ISU3-RSU3)*E2; RSU3=T;
T=RUS1*ER3+IUS1*EI3; IUS1=IUS1*ER3-RUS1*EI3; RUS1=T;
T=(RUS2+IUS2)*E2; IUS2=(IUS2-RUS2)*E2; RUS2=T;
T=RUS3*ER5+IUS3*EI5; IUS3=IUS3*ER5-RUS3*EI5; RUS3=T;
T=RUU1*ER1+IUU1*EI1; IUU1=IUU1*ER1-RUU1*EI1; RUU1=T;
T=(RUU2+IUU2)*E2; IUU2=(IUU2-RUU2)*E2; RUU2=T;
T=RUU3*ER3+IUU3*EI3; IUU3=IUU3*ER3-RUU3*EI3; RUU3=T;
RSSS0=RSS0+RSS2; ISSS0=ISS0+ISS2;
RSSS1=RSS1+RSS3; ISSS1=ISS1+ISS3;
RSSU0=RSS0-RSS2; ISSU0=ISS0-ISS2;
RSSU1=RSS1-RSS3; ISSU1=ISS1-ISS3;
RSUS0=RSU0-ISU2; ISUS0=ISU0+RSU2;
RSUS1=RSU1-ISU3; ISUS1=ISU1+RSU3;
RSUU0=RSU0+ISU2; ISUU0=ISU0-RSU2;
RSUU1=RSU1+ISU3; ISUU1=ISU1-RSU3;
RUSS0=RUS0-IUS2; IUSS0=IUS0+RUS2;
RUSS1=RUS1-IUS3; IUSS1=IUS1+RUS3;
RUSU0=RUS0+IUS2; IUSU0=IUS0-RUS2;
RUSU1=RUS1+IUS3; IUSU1=IUS1-RUS3;
RUUS0=RUU0+RUU2; IUUS0=IUU0+IUU2;
RUUS1=RUU1+RUU3; IUUS1=IUU1+IUU3;
RUUU0=RUU0-RUU2; IUUU0=IUU0-IUU2;
RUUU1=RUU1-RUU3; IUUU1=IUU1-IUU3;
X0[K]=RSSS0+RSSS1; Y0[K]=ISSS0+ISSS1;
if (!ZERO)
{
REPORT
R1=RUUS0+RUUS1; I1=IUUS0+IUUS1;
R2=RSUU0+RSUU1; I2=ISUU0+ISUU1;
R3=RUSU0+RUSU1; I3=IUSU0+IUSU1;
R4=RSSU0+ISSU1; I4=ISSU0-RSSU1;
R5=RUUU0+IUUU1; I5=IUUU0-RUUU1;
R6=RSUS0+ISUS1; I6=ISUS0-RSUS1;
R7=RUSS0+IUSS1; I7=IUSS0-RUSS1;
R8=RSSS0-RSSS1; I8=ISSS0-ISSS1;
R9=RUUS0-RUUS1; I9=IUUS0-IUUS1;
R10=RSUU0-RSUU1; I10=ISUU0-ISUU1;
R11=RUSU0-RUSU1; I11=IUSU0-IUSU1;
R12=RSSU0-ISSU1; I12=ISSU0+RSSU1;
R13=RUUU0-IUUU1; I13=IUUU0+RUUU1;
R14=RSUS0-ISUS1; I14=ISUS0+RSUS1;
R15=RUSS0-IUSS1; I15=IUSS0+RUSS1;
X8[K]=R1*C1+I1*S1; Y8[K]=I1*C1-R1*S1;
X4[K]=R2*C2+I2*S2; Y4[K]=I2*C2-R2*S2;
X12[K]=R3*C3+I3*S3; Y12[K]=I3*C3-R3*S3;
X2[K]=R4*C4+I4*S4; Y2[K]=I4*C4-R4*S4;
X10[K]=R5*C5+I5*S5; Y10[K]=I5*C5-R5*S5;
X6[K]=R6*C6+I6*S6; Y6[K]=I6*C6-R6*S6;
X14[K]=R7*C7+I7*S7; Y14[K]=I7*C7-R7*S7;
X1[K]=R8*C8+I8*S8; Y1[K]=I8*C8-R8*S8;
X9[K]=R9*C9+I9*S9; Y9[K]=I9*C9-R9*S9;
X5[K]=R10*C10+I10*S10; Y5[K]=I10*C10-R10*S10;
X13[K]=R11*C11+I11*S11; Y13[K]=I11*C11-R11*S11;
X3[K]=R12*C12+I12*S12; Y3[K]=I12*C12-R12*S12;
X11[K]=R13*C13+I13*S13; Y11[K]=I13*C13-R13*S13;
X7[K]=R14*C14+I14*S14; Y7[K]=I14*C14-R14*S14;
X15[K]=R15*C15+I15*S15; Y15[K]=I15*C15-R15*S15;
}
else
{
REPORT
X8[K]=RUUS0+RUUS1; Y8[K]=IUUS0+IUUS1;
X4[K]=RSUU0+RSUU1; Y4[K]=ISUU0+ISUU1;
X12[K]=RUSU0+RUSU1; Y12[K]=IUSU0+IUSU1;
X2[K]=RSSU0+ISSU1; Y2[K]=ISSU0-RSSU1;
X10[K]=RUUU0+IUUU1; Y10[K]=IUUU0-RUUU1;
X6[K]=RSUS0+ISUS1; Y6[K]=ISUS0-RSUS1;
X14[K]=RUSS0+IUSS1; Y14[K]=IUSS0-RUSS1;
X1[K]=RSSS0-RSSS1; Y1[K]=ISSS0-ISSS1;
X9[K]=RUUS0-RUUS1; Y9[K]=IUUS0-IUUS1;
X5[K]=RSUU0-RSUU1; Y5[K]=ISUU0-ISUU1;
X13[K]=RUSU0-RUSU1; Y13[K]=IUSU0-IUSU1;
X3[K]=RSSU0-ISSU1; Y3[K]=ISSU0+RSSU1;
X11[K]=RUUU0-IUUU1; Y11[K]=IUUU0+RUUU1;
X7[K]=RSUS0-ISUS1; Y7[K]=ISUS0+RSUS1;
X15[K]=RUSS0-IUSS1; Y15[K]=IUSS0+RUSS1;
}
}
goto L100;
L600: ;
}
return;
}
// can the number of points be factorised sufficiently
// for the fft to run
bool FFT_Controller::CanFactor(int PTS)
{
REPORT
const int NP = 16, NQ = 10, PMAX=19;
if (PTS<=1) { REPORT return true; }
int N = PTS, F = 2, P = 0, Q = 0;
while (N > 1)
{
bool fail = true;
for (int J = F; J <= PMAX; J++)
if (N % J == 0) { fail = false; F=J; break; }
if (fail || P >= NP || Q >= NQ) { REPORT return false; }
N /= F;
if (N % F != 0) Q++; else { N /= F; P++; }
}
return true; // can factorise
}
bool FFT_Controller::OnlyOldFFT; // static variable
// **************************** multi radix counter **********************
MultiRadixCounter::MultiRadixCounter(int nx, const SimpleIntArray& rx,
SimpleIntArray& vx)
: Radix(rx), Value(vx), n(nx), reverse(0),
product(1), counter(0), finish(false)
{
REPORT for (int k = 0; k < n; k++) { Value[k] = 0; product *= Radix[k]; }
}
void MultiRadixCounter::operator++()
{
REPORT
counter++; int p = product;
for (int k = 0; k < n; k++)
{
Value[k]++; int p1 = p / Radix[k]; reverse += p1;
if (Value[k] == Radix[k]) { REPORT Value[k] = 0; reverse -= p; p = p1; }
else { REPORT return; }
}
finish = true;
}
static int BitReverse(int x, int prod, int n, const SimpleIntArray& f)
{
// x = c[0]+f[0]*(c[1]+f[1]*(c[2]+...
// return c[n-1]+f[n-1]*(c[n-2]+f[n-2]*(c[n-3]+...
// prod is the product of the f[i]
// n is the number of f[i] (don't assume f has the correct length)
REPORT
const int* d = f.Data() + n; int sum = 0; int q = 1;
while (n--)
{
prod /= *(--d);
int c = x / prod; x-= c * prod;
sum += q * c; q *= *d;
}
return sum;
}
#ifdef use_namespace
}
#endif
|