File: newfft.cpp

package info (click to toggle)
newmat 1.10.4-9
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,908 kB
  • sloc: cpp: 31,314; makefile: 56
file content (1059 lines) | stat: -rw-r--r-- 34,460 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
//$ newfft.cpp

// This is originally by Sande and Gentleman in 1967! I have translated from
// Fortran into C and a little bit of C++.

// It takes about twice as long as fftw
// (http://theory.lcs.mit.edu/~fftw/homepage.html)
// but is much shorter than fftw  and so despite its age
// might represent a reasonable
// compromise between speed and complexity.
// If you really need the speed get fftw.


//    THIS SUBROUTINE WAS WRITTEN BY G.SANDE OF PRINCETON UNIVERSITY AND
//    W.M.GENTLMAN OF THE BELL TELEPHONE LAB.  IT WAS BROUGHT TO LONDON
//    BY DR. M.D. GODFREY AT THE IMPERIAL COLLEGE AND WAS ADAPTED FOR
//    BURROUGHS 6700 BY D. R. BRILLINGER AND J. PEMBERTON
//    IT REPRESENTS THE STATE OF THE ART OF COMPUTING COMPLETE FINITE
//    DISCRETE FOURIER TRANSFORMS AS OF NOV.1967.
//    OTHER PROGRAMS REQUIRED.
//                                 ONLY THOSE SUBROUTINES INCLUDED HERE.
//                      USAGE.
//       CALL AR1DFT(N,X,Y)
//            WHERE  N IS THE NUMBER OF POINTS IN THE SEQUENCE .
//                   X - IS A ONE-DIMENSIONAL ARRAY CONTAINING THE REAL
//                       PART OF THE SEQUENCE.
//                   Y - IS A ONE-DIMENSIONAL ARRAY CONTAINING THE
//                       IMAGINARY PART OF THE SEQUENCE.
//    THE TRANSFORM IS RETURNED IN X AND Y.
//            METHOD
//               FOR A GENERAL DISCUSSION OF THESE TRANSFORMS AND OF
//    THE FAST METHOD FOR COMPUTING THEM, SEE GENTLEMAN AND SANDE,
//    @FAST FOURIER TRANSFORMS - FOR FUN AND PROFIT,@ 1966 FALL JOINT
//    COMPUTER CONFERENCE.
//    THIS PROGRAM COMPUTES THIS FOR A COMPLEX SEQUENCE Z(T) OF LENGTH
//    N WHOSE ELEMENTS ARE STORED AT(X(I) , Y(I)) AND RETURNS THE
//    TRANSFORM COEFFICIENTS AT (X(I), Y(I)).
//        DESCRIPTION
//    AR1DFT IS A HIGHLY MODULAR ROUTINE CAPABLE OF COMPUTING IN PLACE
//    THE COMPLETE FINITE DISCRETE FOURIER TRANSFORM  OF A ONE-
//    DIMENSIONAL SEQUENCE OF RATHER GENERAL LENGTH N.
//       THE MAIN ROUTINE , AR1DFT ITSELF, FACTORS N. IT THEN CALLS ON
//    ON GR 1D FT TO COMPUTE THE ACTUAL TRANSFORMS, USING THESE FACTORS.
//    THIS GR 1D FT DOES, CALLING AT EACH STAGE ON THE APPROPRIATE KERN
//    EL R2FTK, R4FTK, R8FTK, R16FTK, R3FTK, R5FTK, OR RPFTK TO PERFORM
//    THE COMPUTATIONS FOR THIS PASS OVER THE SEQUENCE, DEPENDING ON
//    WHETHER THE CORRESPONDING FACTOR IS 2, 4, 8, 16, 3, 5, OR SOME
//    MORE GENERAL PRIME P. WHEN GR1DFT IS FINISHED THE TRANSFORM IS
//    COMPUTED, HOWEVER, THE RESULTS ARE STORED IN "DIGITS REVERSED"
//    ORDER. AR1DFT THEREFORE, CALLS UPON GR 1S FS TO SORT THEM OUT.
//    TO RETURN TO THE FACTORIZATION, SINGLETON HAS POINTED OUT THAT
//    THE TRANSFORMS ARE MORE EFFICIENT IF THE SAMPLE SIZE N, IS OF THE
//    FORM B*A**2 AND B CONSISTS OF A SINGLE FACTOR.  IN SUCH A CASE
//    IF WE PROCESS THE FACTORS IN THE ORDER ABA  THEN
//    THE REORDERING CAN BE DONE AS FAST IN PLACE, AS WITH SCRATCH
//    STORAGE.  BUT AS B BECOMES MORE COMPLICATED, THE COST OF THE DIGIT
//    REVERSING DUE TO B PART BECOMES VERY EXPENSIVE IF WE TRY TO DO IT
//    IN PLACE.  IN SUCH A CASE IT MIGHT BE BETTER TO USE EXTRA STORAGE
//    A ROUTINE TO DO THIS IS, HOWEVER, NOT INCLUDED HERE.
//    ANOTHER FEATURE INFLUENCING THE FACTORIZATION IS THAT FOR ANY FIXED
//    FACTOR N WE CAN PREPARE A SPECIAL KERNEL WHICH WILL COMPUTE
//    THAT STAGE OF THE TRANSFORM MORE EFFICIENTLY THAN WOULD A KERNEL
//    FOR GENERAL FACTORS, ESPECIALLY IF THE GENERAL KERNEL HAD TO BE
//    APPLIED SEVERAL TIMES. FOR EXAMPLE, FACTORS OF 4 ARE MORE
//    EFFICIENT THAN FACTORS OF 2, FACTORS OF 8 MORE EFFICIENT THAN 4,ETC
//    ON THE OTHER HAND DIMINISHING RETURNS RAPIDLY SET IN, ESPECIALLY
//    SINCE THE LENGTH OF THE KERNEL FOR A SPECIAL CASE IS ROUGHLY
//    PROPORTIONAL TO THE FACTOR IT DEALS WITH. HENCE THESE PROBABLY ARE
//    ALL THE KERNELS WE WISH TO HAVE.
//            RESTRICTIONS.
//    AN UNFORTUNATE FEATURE OF THE SORTING PROBLEM IS THAT THE MOST
//    EFFICIENT WAY TO DO IT IS WITH NESTED DO LOOPS, ONE FOR EACH
//    FACTOR. THIS PUTS A RESTRICTION ON N AS TO HOW MANY FACTORS IT
//    CAN HAVE.  CURRENTLY THE LIMIT IS 16, BUT THE LIMIT CAN BE READILY
//    RAISED IF NECESSARY.
//    A SECOND RESTRICTION OF THE PROGRAM IS THAT LOCAL STORAGE OF THE
//    THE ORDER P**2 IS REQUIRED BY THE GENERAL KERNEL RPFTK, SO SOME
//    LIMIT MUST BE SET ON P.  CURRENTLY THIS IS 19, BUT IT CAN BE INCRE
//    INCREASED BY TRIVIAL CHANGES.
//       OTHER COMMENTS.
//(1) THE ROUTINE IS ADAPTED TO CHECK WHETHER A GIVEN N WILL MEET THE
//    ABOVE FACTORING REQUIREMENTS AN, IF NOT, TO RETURN THE NEXT HIGHER
//    NUMBER, NX, SAY, WHICH WILL MEET THESE REQUIREMENTS.
//    THIS CAN BE ACCHIEVED BY   A STATEMENT OF THE FORM
//            CALL FACTR(N,X,Y).
//    IF A DIFFERENT N, SAY NX, IS RETURNED THEN THE TRANSFORMS COULD BE
//    OBTAINED BY EXTENDING THE SIZE OF THE X-ARRAY AND Y-ARRAY TO NX,
//    AND SETTING X(I) = Y(I) = 0., FOR I = N+1, NX.
//(2) IF THE SEQUENCE Z IS ONLY A REAL SEQUENCE, THEN THE IMAGINARY PART
//    Y(I)=0., THIS WILL RETURN THE COSINE TRANSFORM OF THE REAL SEQUENCE
//    IN X, AND THE SINE TRANSFORM IN Y.


#define WANT_STREAM

#define WANT_MATH

#include "newmatap.h"

#ifdef use_namespace
namespace NEWMAT {
#endif

#ifdef DO_REPORT
#define REPORT { static ExeCounter ExeCount(__LINE__,20); ++ExeCount; }
#else
#define REPORT {}
#endif

inline Real square(Real x) { return x*x; }
inline int square(int x) { return x*x; }

static void GR_1D_FS (int PTS, int N_SYM, int N_UN_SYM,
   const SimpleIntArray& SYM, int P_SYM, const SimpleIntArray& UN_SYM,
   Real* X, Real* Y);
static void GR_1D_FT (int N, int N_FACTOR, const SimpleIntArray& FACTOR,
   Real* X, Real* Y);
static void R_P_FTK (int N, int M, int P, Real* X, Real* Y);
static void R_2_FTK (int N, int M, Real* X0, Real* Y0, Real* X1, Real* Y1);
static void R_3_FTK (int N, int M, Real* X0, Real* Y0, Real* X1, Real* Y1,
   Real* X2, Real* Y2);
static void R_4_FTK (int N, int M,
   Real* X0, Real* Y0, Real* X1, Real* Y1,
   Real* X2, Real* Y2, Real* X3, Real* Y3);
static void R_5_FTK (int N, int M,
   Real* X0, Real* Y0, Real* X1, Real* Y1, Real* X2, Real* Y2,
   Real* X3, Real* Y3, Real* X4, Real* Y4);
static void R_8_FTK (int N, int M,
   Real* X0, Real* Y0, Real* X1, Real* Y1,
   Real* X2, Real* Y2, Real* X3, Real* Y3,
   Real* X4, Real* Y4, Real* X5, Real* Y5,
   Real* X6, Real* Y6, Real* X7, Real* Y7);
static void R_16_FTK (int N, int M,
   Real* X0, Real* Y0, Real* X1, Real* Y1,
   Real* X2, Real* Y2, Real* X3, Real* Y3,
   Real* X4, Real* Y4, Real* X5, Real* Y5,
   Real* X6, Real* Y6, Real* X7, Real* Y7,
   Real* X8, Real* Y8, Real* X9, Real* Y9,
   Real* X10, Real* Y10, Real* X11, Real* Y11,
   Real* X12, Real* Y12, Real* X13, Real* Y13,
   Real* X14, Real* Y14, Real* X15, Real* Y15);
static int BitReverse(int x, int prod, int n, const SimpleIntArray& f);


bool FFT_Controller::ar_1d_ft (int PTS, Real* X, Real *Y)
{
//    ARBITRARY RADIX ONE DIMENSIONAL FOURIER TRANSFORM

   REPORT

   int  F,J,N,NF,P,PMAX,P_SYM,P_TWO,Q,R,TWO_GRP;

   // NP is maximum number of squared factors allows PTS up to 2**32 at least
   // NQ is number of not-squared factors - increase if we increase PMAX
   const int NP = 16, NQ = 10;
   SimpleIntArray PP(NP), QQ(NQ);

   TWO_GRP=16; PMAX=19;

   // PMAX is the maximum factor size
   // TWO_GRP is the maximum power of 2 handled as a single factor
   // Doesn't take advantage of combining powers of 2 when calculating
   // number of factors

   if (PTS<=1) return true;
   N=PTS; P_SYM=1; F=2; P=0; Q=0;

   // P counts the number of squared factors
   // Q counts the number of the rest
   // R = 0 for no non-squared factors; 1 otherwise

   // FACTOR holds all the factors - non-squared ones in the middle
   //   - length is 2*P+Q
   // SYM also holds all the factors but with the non-squared ones
   //   multiplied together - length is 2*P+R
   // PP holds the values of the squared factors - length is P
   // QQ holds the values of the rest - length is Q

   // P_SYM holds the product of the squared factors

   // find the factors - load into PP and QQ
   while (N > 1)
   {
      bool fail = true;
      for (J=F; J<=PMAX; J++)
         if (N % J == 0) { fail = false; F=J; break; }
      if (fail || P >= NP || Q >= NQ) return false; // can't factor
      N /= F;
      if (N % F != 0) QQ[Q++] = F;
      else { N /= F; PP[P++] = F; P_SYM *= F; }
   }

   R = (Q == 0) ? 0 : 1;  // R = 0 if no not-squared factors, 1 otherwise

   NF = 2*P + Q;
   SimpleIntArray FACTOR(NF + 1), SYM(2*P + R);
   FACTOR[NF] = 0;                // we need this in the "combine powers of 2"

   // load into SYM and FACTOR
   for (J=0; J<P; J++)
      { SYM[J]=FACTOR[J]=PP[P-1-J]; FACTOR[P+Q+J]=SYM[P+R+J]=PP[J]; }

   if (Q>0)
   {
      REPORT
      for (J=0; J<Q; J++) FACTOR[P+J]=QQ[J];
      SYM[P]=PTS/square(P_SYM);
   }

   // combine powers of 2
   P_TWO = 1;
   for (J=0; J < NF; J++)
   {
      if (FACTOR[J]!=2) continue;
      P_TWO=P_TWO*2; FACTOR[J]=1;
      if (P_TWO<TWO_GRP && FACTOR[J+1]==2) continue;
      FACTOR[J]=P_TWO; P_TWO=1;
   }

   if (P==0) R=0;
   if (Q<=1) Q=0;

   // do the analysis
   GR_1D_FT(PTS,NF,FACTOR,X,Y);                 // the transform
   GR_1D_FS(PTS,2*P+R,Q,SYM,P_SYM,QQ,X,Y);      // the reshuffling

   return true;

}

static void GR_1D_FS (int PTS, int N_SYM, int N_UN_SYM,
   const SimpleIntArray& SYM, int P_SYM, const SimpleIntArray& UN_SYM,
   Real* X, Real* Y)
{
//    GENERAL RADIX ONE DIMENSIONAL FOURIER SORT

// PTS = number of points
// N_SYM = length of SYM
// N_UN_SYM = length of UN_SYM
// SYM: squared factors + product of non-squared factors + squared factors
// P_SYM = product of squared factors (each included only once)
// UN_SYM: not-squared factors

   REPORT

   Real T;
   int  JJ,KK,P_UN_SYM;

   // I have replaced the multiple for-loop used by Sande-Gentleman code
   // by the following code which does not limit the number of factors

   if (N_SYM > 0)
   {
      REPORT
      SimpleIntArray U(N_SYM);
      for(MultiRadixCounter MRC(N_SYM, SYM, U); !MRC.Finish(); ++MRC)
      {
         if (MRC.Swap())
         {
            int P = MRC.Reverse(); int JJ = MRC.Counter(); Real T;
            T=X[JJ]; X[JJ]=X[P]; X[P]=T; T=Y[JJ]; Y[JJ]=Y[P]; Y[P]=T;
         }
      }
   }

   int J,JL,K,L,M,MS;

   // UN_SYM contains the non-squared factors
   // I have replaced the Sande-Gentleman code as it runs into
   // integer overflow problems
   // My code (and theirs) would be improved by using a bit array
   // as suggested by Van Loan

   if (N_UN_SYM==0) { REPORT return; }
   P_UN_SYM=PTS/square(P_SYM); JL=(P_UN_SYM-3)*P_SYM; MS=P_UN_SYM*P_SYM;

   for (J = P_SYM; J<=JL; J+=P_SYM)
   {
      K=J;
      do K = P_SYM * BitReverse(K / P_SYM, P_UN_SYM, N_UN_SYM, UN_SYM);
      while (K<J);

      if (K!=J)
      {
         REPORT
         for (L=0; L<P_SYM; L++) for (M=L; M<PTS; M+=MS)
         {
            JJ=M+J; KK=M+K;
            T=X[JJ]; X[JJ]=X[KK]; X[KK]=T; T=Y[JJ]; Y[JJ]=Y[KK]; Y[KK]=T;
         }
      }
   }

   return;
}

static void GR_1D_FT (int N, int N_FACTOR, const SimpleIntArray& FACTOR,
   Real* X, Real* Y)
{
//    GENERAL RADIX ONE DIMENSIONAL FOURIER TRANSFORM;

   REPORT

   int  M = N;

   for (int i = 0; i < N_FACTOR; i++)
   {
      int P = FACTOR[i]; M /= P;

      switch(P)
      {
      case 1: REPORT break;
      case 2: REPORT R_2_FTK (N,M,X,Y,X+M,Y+M); break;
      case 3: REPORT R_3_FTK (N,M,X,Y,X+M,Y+M,X+2*M,Y+2*M); break;
      case 4: REPORT R_4_FTK (N,M,X,Y,X+M,Y+M,X+2*M,Y+2*M,X+3*M,Y+3*M); break;
      case 5:
         REPORT
         R_5_FTK (N,M,X,Y,X+M,Y+M,X+2*M,Y+2*M,X+3*M,Y+3*M,X+4*M,Y+4*M);
         break;
      case 8:
         REPORT
         R_8_FTK (N,M,X,Y,X+M,Y+M,X+2*M,Y+2*M,
            X+3*M,Y+3*M,X+4*M,Y+4*M,X+5*M,Y+5*M,
            X+6*M,Y+6*M,X+7*M,Y+7*M);
         break;
      case 16:
         REPORT
         R_16_FTK (N,M,X,Y,X+M,Y+M,X+2*M,Y+2*M,
            X+3*M,Y+3*M,X+4*M,Y+4*M,X+5*M,Y+5*M,
            X+6*M,Y+6*M,X+7*M,Y+7*M,X+8*M,Y+8*M,
            X+9*M,Y+9*M,X+10*M,Y+10*M,X+11*M,Y+11*M,
            X+12*M,Y+12*M,X+13*M,Y+13*M,X+14*M,Y+14*M,
            X+15*M,Y+15*M);
         break;
      default: REPORT R_P_FTK (N,M,P,X,Y); break;
      }
   }

}

static void R_P_FTK (int N, int M, int P, Real* X, Real* Y)
//    RADIX PRIME FOURIER TRANSFORM KERNEL;
// X and Y are treated as M * P matrices with Fortran storage
{
   REPORT
   bool NO_FOLD,ZERO;
   Real ANGLE,IS,IU,RS,RU,T,TWOPI,XT,YT;
   int  J,JJ,K0,K,M_OVER_2,MP,PM,PP,U,V;

   Real AA [9][9], BB [9][9];
   Real A [18], B [18], C [18], S [18];
   Real IA [9], IB [9], RA [9], RB [9];

   TWOPI=8.0*atan(1.0);
   M_OVER_2=M/2+1; MP=M*P; PP=P/2; PM=P-1;

   for (U=0; U<PP; U++)
   {
      ANGLE=TWOPI*Real(U+1)/Real(P);
      JJ=P-U-2;
      A[U]=cos(ANGLE); B[U]=sin(ANGLE);
      A[JJ]=A[U]; B[JJ]= -B[U];
   }

   for (U=1; U<=PP; U++)
   {
      for (V=1; V<=PP; V++)
         { JJ=U*V-U*V/P*P; AA[V-1][U-1]=A[JJ-1]; BB[V-1][U-1]=B[JJ-1]; }
   }

   for (J=0; J<M_OVER_2; J++)
   {
      NO_FOLD = (J==0 || 2*J==M);
      K0=J;
      ANGLE=TWOPI*Real(J)/Real(MP); ZERO=ANGLE==0.0;
      C[0]=cos(ANGLE); S[0]=sin(ANGLE);
      for (U=1; U<PM; U++)
      {
         C[U]=C[U-1]*C[0]-S[U-1]*S[0];
         S[U]=S[U-1]*C[0]+C[U-1]*S[0];
      }
      goto L700;
   L500:
      REPORT
      if (NO_FOLD) { REPORT goto L1500; }
      REPORT
      NO_FOLD=true; K0=M-J;
      for (U=0; U<PM; U++)
         { T=C[U]*A[U]+S[U]*B[U]; S[U]= -S[U]*A[U]+C[U]*B[U]; C[U]=T; }
   L700:
      REPORT
      for (K=K0; K<N; K+=MP)
      {
         XT=X[K]; YT=Y[K];
         for (U=1; U<=PP; U++)
         {
            RA[U-1]=XT; IA[U-1]=YT;
            RB[U-1]=0.0; IB[U-1]=0.0;
         }
         for (U=1; U<=PP; U++)
         {
            JJ=P-U;
            RS=X[K+M*U]+X[K+M*JJ]; IS=Y[K+M*U]+Y[K+M*JJ];
            RU=X[K+M*U]-X[K+M*JJ]; IU=Y[K+M*U]-Y[K+M*JJ];
            XT=XT+RS; YT=YT+IS;
            for (V=0; V<PP; V++)
            {
               RA[V]=RA[V]+RS*AA[V][U-1]; IA[V]=IA[V]+IS*AA[V][U-1];
               RB[V]=RB[V]+RU*BB[V][U-1]; IB[V]=IB[V]+IU*BB[V][U-1];
            }
         }
         X[K]=XT; Y[K]=YT;
         for (U=1; U<=PP; U++)
         {
            if (!ZERO)
            {
               REPORT
               XT=RA[U-1]+IB[U-1]; YT=IA[U-1]-RB[U-1];
               X[K+M*U]=XT*C[U-1]+YT*S[U-1]; Y[K+M*U]=YT*C[U-1]-XT*S[U-1];
               JJ=P-U;
               XT=RA[U-1]-IB[U-1]; YT=IA[U-1]+RB[U-1];
               X[K+M*JJ]=XT*C[JJ-1]+YT*S[JJ-1];
               Y[K+M*JJ]=YT*C[JJ-1]-XT*S[JJ-1];
            }
            else
            {
               REPORT
               X[K+M*U]=RA[U-1]+IB[U-1]; Y[K+M*U]=IA[U-1]-RB[U-1];
               JJ=P-U;
               X[K+M*JJ]=RA[U-1]-IB[U-1]; Y[K+M*JJ]=IA[U-1]+RB[U-1];
            }
         }
      }
      goto L500;
L1500: ;
   }
   return;
}

static void R_2_FTK (int N, int M, Real* X0, Real* Y0, Real* X1, Real* Y1)
//    RADIX TWO FOURIER TRANSFORM KERNEL;
{
   REPORT
   bool NO_FOLD,ZERO;
   int  J,K,K0,M2,M_OVER_2;
   Real ANGLE,C,IS,IU,RS,RU,S,TWOPI;

   M2=M*2; M_OVER_2=M/2+1;
   TWOPI=8.0*atan(1.0);

   for (J=0; J<M_OVER_2; J++)
   {
      NO_FOLD = (J==0 || 2*J==M);
      K0=J;
      ANGLE=TWOPI*Real(J)/Real(M2); ZERO=ANGLE==0.0;
      C=cos(ANGLE); S=sin(ANGLE);
      goto L200;
   L100:
      REPORT
      if (NO_FOLD) { REPORT goto L600; }
      REPORT
      NO_FOLD=true; K0=M-J; C= -C;
   L200:
      REPORT
      for (K=K0; K<N; K+=M2)
      {
         RS=X0[K]+X1[K]; IS=Y0[K]+Y1[K];
         RU=X0[K]-X1[K]; IU=Y0[K]-Y1[K];
         X0[K]=RS; Y0[K]=IS;
         if (!ZERO) { X1[K]=RU*C+IU*S; Y1[K]=IU*C-RU*S; }
         else { X1[K]=RU; Y1[K]=IU; }
      }
      goto L100;
   L600: ;
   }

   return;
}

static void R_3_FTK (int N, int M, Real* X0, Real* Y0, Real* X1, Real* Y1,
   Real* X2, Real* Y2)
//    RADIX THREE FOURIER TRANSFORM KERNEL
{
   REPORT
   bool NO_FOLD,ZERO;
   int  J,K,K0,M3,M_OVER_2;
   Real ANGLE,A,B,C1,C2,S1,S2,T,TWOPI;
   Real I0,I1,I2,IA,IB,IS,R0,R1,R2,RA,RB,RS;

   M3=M*3; M_OVER_2=M/2+1; TWOPI=8.0*atan(1.0);
   A=cos(TWOPI/3.0); B=sin(TWOPI/3.0);

   for (J=0; J<M_OVER_2; J++)
   {
      NO_FOLD = (J==0 || 2*J==M);
      K0=J;
      ANGLE=TWOPI*Real(J)/Real(M3); ZERO=ANGLE==0.0;
      C1=cos(ANGLE); S1=sin(ANGLE);
      C2=C1*C1-S1*S1; S2=S1*C1+C1*S1;
      goto L200;
   L100:
      REPORT
      if (NO_FOLD) { REPORT goto L600; }
      REPORT
      NO_FOLD=true; K0=M-J;
      T=C1*A+S1*B; S1=C1*B-S1*A; C1=T;
      T=C2*A-S2*B; S2= -C2*B-S2*A; C2=T;
   L200:
      REPORT
      for (K=K0; K<N; K+=M3)
      {
         R0 = X0[K]; I0 = Y0[K];
         RS=X1[K]+X2[K]; IS=Y1[K]+Y2[K];
         X0[K]=R0+RS; Y0[K]=I0+IS;
         RA=R0+RS*A; IA=I0+IS*A;
         RB=(X1[K]-X2[K])*B; IB=(Y1[K]-Y2[K])*B;
         if (!ZERO)
         {
            REPORT
            R1=RA+IB; I1=IA-RB; R2=RA-IB; I2=IA+RB;
            X1[K]=R1*C1+I1*S1; Y1[K]=I1*C1-R1*S1;
            X2[K]=R2*C2+I2*S2; Y2[K]=I2*C2-R2*S2;
         }
         else { REPORT X1[K]=RA+IB; Y1[K]=IA-RB; X2[K]=RA-IB; Y2[K]=IA+RB; }
      }
      goto L100;
   L600: ;
   }

   return;
}

static void R_4_FTK (int N, int M,
   Real* X0, Real* Y0, Real* X1, Real* Y1,
   Real* X2, Real* Y2, Real* X3, Real* Y3)
//    RADIX FOUR FOURIER TRANSFORM KERNEL
{
   REPORT
   bool NO_FOLD,ZERO;
   int  J,K,K0,M4,M_OVER_2;
   Real ANGLE,C1,C2,C3,S1,S2,S3,T,TWOPI;
   Real I1,I2,I3,IS0,IS1,IU0,IU1,R1,R2,R3,RS0,RS1,RU0,RU1;

   M4=M*4; M_OVER_2=M/2+1;
   TWOPI=8.0*atan(1.0);

   for (J=0; J<M_OVER_2; J++)
   {
      NO_FOLD = (J==0 || 2*J==M);
      K0=J;
      ANGLE=TWOPI*Real(J)/Real(M4); ZERO=ANGLE==0.0;
      C1=cos(ANGLE); S1=sin(ANGLE);
      C2=C1*C1-S1*S1; S2=S1*C1+C1*S1;
      C3=C2*C1-S2*S1; S3=S2*C1+C2*S1;
      goto L200;
   L100:
      REPORT
      if (NO_FOLD) { REPORT goto L600; }
      REPORT
      NO_FOLD=true; K0=M-J;
      T=C1; C1=S1; S1=T;
      C2= -C2;
      T=C3; C3= -S3; S3= -T;
   L200:
      REPORT
      for (K=K0; K<N; K+=M4)
      {
         RS0=X0[K]+X2[K]; IS0=Y0[K]+Y2[K];
         RU0=X0[K]-X2[K]; IU0=Y0[K]-Y2[K];
         RS1=X1[K]+X3[K]; IS1=Y1[K]+Y3[K];
         RU1=X1[K]-X3[K]; IU1=Y1[K]-Y3[K];
         X0[K]=RS0+RS1; Y0[K]=IS0+IS1;
         if (!ZERO)
         {
            REPORT
            R1=RU0+IU1; I1=IU0-RU1;
            R2=RS0-RS1; I2=IS0-IS1;
            R3=RU0-IU1; I3=IU0+RU1;
            X2[K]=R1*C1+I1*S1; Y2[K]=I1*C1-R1*S1;
            X1[K]=R2*C2+I2*S2; Y1[K]=I2*C2-R2*S2;
            X3[K]=R3*C3+I3*S3; Y3[K]=I3*C3-R3*S3;
         }
         else
         {
            REPORT
            X2[K]=RU0+IU1; Y2[K]=IU0-RU1;
            X1[K]=RS0-RS1; Y1[K]=IS0-IS1;
            X3[K]=RU0-IU1; Y3[K]=IU0+RU1;
         }
      }
      goto L100;
   L600: ;
   }

   return;
}

static void R_5_FTK (int N, int M,
   Real* X0, Real* Y0, Real* X1, Real* Y1, Real* X2, Real* Y2,
   Real* X3, Real* Y3, Real* X4, Real* Y4)
//    RADIX FIVE FOURIER TRANSFORM KERNEL

{
   REPORT
   bool NO_FOLD,ZERO;
   int  J,K,K0,M5,M_OVER_2;
   Real ANGLE,A1,A2,B1,B2,C1,C2,C3,C4,S1,S2,S3,S4,T,TWOPI;
   Real R0,R1,R2,R3,R4,RA1,RA2,RB1,RB2,RS1,RS2,RU1,RU2;
   Real I0,I1,I2,I3,I4,IA1,IA2,IB1,IB2,IS1,IS2,IU1,IU2;

   M5=M*5; M_OVER_2=M/2+1;
   TWOPI=8.0*atan(1.0);
   A1=cos(TWOPI/5.0); B1=sin(TWOPI/5.0);
   A2=cos(2.0*TWOPI/5.0); B2=sin(2.0*TWOPI/5.0);

   for (J=0; J<M_OVER_2; J++)
   {
      NO_FOLD = (J==0 || 2*J==M);
      K0=J;
      ANGLE=TWOPI*Real(J)/Real(M5); ZERO=ANGLE==0.0;
      C1=cos(ANGLE); S1=sin(ANGLE);
      C2=C1*C1-S1*S1; S2=S1*C1+C1*S1;
      C3=C2*C1-S2*S1; S3=S2*C1+C2*S1;
      C4=C2*C2-S2*S2; S4=S2*C2+C2*S2;
      goto L200;
   L100:
      REPORT
      if (NO_FOLD) { REPORT goto L600; }
      REPORT
      NO_FOLD=true; K0=M-J;
      T=C1*A1+S1*B1; S1=C1*B1-S1*A1; C1=T;
      T=C2*A2+S2*B2; S2=C2*B2-S2*A2; C2=T;
      T=C3*A2-S3*B2; S3= -C3*B2-S3*A2; C3=T;
      T=C4*A1-S4*B1; S4= -C4*B1-S4*A1; C4=T;
   L200:
      REPORT
      for (K=K0; K<N; K+=M5)
      {
         R0=X0[K]; I0=Y0[K];
         RS1=X1[K]+X4[K]; IS1=Y1[K]+Y4[K];
         RU1=X1[K]-X4[K]; IU1=Y1[K]-Y4[K];
         RS2=X2[K]+X3[K]; IS2=Y2[K]+Y3[K];
         RU2=X2[K]-X3[K]; IU2=Y2[K]-Y3[K];
         X0[K]=R0+RS1+RS2; Y0[K]=I0+IS1+IS2;
         RA1=R0+RS1*A1+RS2*A2; IA1=I0+IS1*A1+IS2*A2;
         RA2=R0+RS1*A2+RS2*A1; IA2=I0+IS1*A2+IS2*A1;
         RB1=RU1*B1+RU2*B2; IB1=IU1*B1+IU2*B2;
         RB2=RU1*B2-RU2*B1; IB2=IU1*B2-IU2*B1;
         if (!ZERO)
         {
            REPORT
            R1=RA1+IB1; I1=IA1-RB1;
            R2=RA2+IB2; I2=IA2-RB2;
            R3=RA2-IB2; I3=IA2+RB2;
            R4=RA1-IB1; I4=IA1+RB1;
            X1[K]=R1*C1+I1*S1; Y1[K]=I1*C1-R1*S1;
            X2[K]=R2*C2+I2*S2; Y2[K]=I2*C2-R2*S2;
            X3[K]=R3*C3+I3*S3; Y3[K]=I3*C3-R3*S3;
            X4[K]=R4*C4+I4*S4; Y4[K]=I4*C4-R4*S4;
         }
         else
         {
            REPORT
            X1[K]=RA1+IB1; Y1[K]=IA1-RB1;
            X2[K]=RA2+IB2; Y2[K]=IA2-RB2;
            X3[K]=RA2-IB2; Y3[K]=IA2+RB2;
            X4[K]=RA1-IB1; Y4[K]=IA1+RB1;
         }
      }
      goto L100;
   L600: ;
   }

   return;
}

static void R_8_FTK (int N, int M,
   Real* X0, Real* Y0, Real* X1, Real* Y1,
   Real* X2, Real* Y2, Real* X3, Real* Y3,
   Real* X4, Real* Y4, Real* X5, Real* Y5,
   Real* X6, Real* Y6, Real* X7, Real* Y7)
//    RADIX EIGHT FOURIER TRANSFORM KERNEL
{
   REPORT
   bool NO_FOLD,ZERO;
   int  J,K,K0,M8,M_OVER_2;
   Real ANGLE,C1,C2,C3,C4,C5,C6,C7,E,S1,S2,S3,S4,S5,S6,S7,T,TWOPI;
   Real R1,R2,R3,R4,R5,R6,R7,RS0,RS1,RS2,RS3,RU0,RU1,RU2,RU3;
   Real I1,I2,I3,I4,I5,I6,I7,IS0,IS1,IS2,IS3,IU0,IU1,IU2,IU3;
   Real RSS0,RSS1,RSU0,RSU1,RUS0,RUS1,RUU0,RUU1;
   Real ISS0,ISS1,ISU0,ISU1,IUS0,IUS1,IUU0,IUU1;

   M8=M*8; M_OVER_2=M/2+1;
   TWOPI=8.0*atan(1.0); E=cos(TWOPI/8.0);

   for (J=0;J<M_OVER_2;J++)
   {
      NO_FOLD= (J==0 || 2*J==M);
      K0=J;
      ANGLE=TWOPI*Real(J)/Real(M8); ZERO=ANGLE==0.0;
      C1=cos(ANGLE); S1=sin(ANGLE);
      C2=C1*C1-S1*S1; S2=C1*S1+S1*C1;
      C3=C2*C1-S2*S1; S3=S2*C1+C2*S1;
      C4=C2*C2-S2*S2; S4=S2*C2+C2*S2;
      C5=C4*C1-S4*S1; S5=S4*C1+C4*S1;
      C6=C4*C2-S4*S2; S6=S4*C2+C4*S2;
      C7=C4*C3-S4*S3; S7=S4*C3+C4*S3;
      goto L200;
   L100:
      REPORT
      if (NO_FOLD) { REPORT goto L600; }
      REPORT
      NO_FOLD=true; K0=M-J;
      T=(C1+S1)*E; S1=(C1-S1)*E; C1=T;
      T=S2; S2=C2; C2=T;
      T=(-C3+S3)*E; S3=(C3+S3)*E; C3=T;
      C4= -C4;
      T= -(C5+S5)*E; S5=(-C5+S5)*E; C5=T;
      T= -S6; S6= -C6; C6=T;
      T=(C7-S7)*E; S7= -(C7+S7)*E; C7=T;
   L200:
      REPORT
      for (K=K0; K<N; K+=M8)
      {
         RS0=X0[K]+X4[K]; IS0=Y0[K]+Y4[K];
         RU0=X0[K]-X4[K]; IU0=Y0[K]-Y4[K];
         RS1=X1[K]+X5[K]; IS1=Y1[K]+Y5[K];
         RU1=X1[K]-X5[K]; IU1=Y1[K]-Y5[K];
         RS2=X2[K]+X6[K]; IS2=Y2[K]+Y6[K];
         RU2=X2[K]-X6[K]; IU2=Y2[K]-Y6[K];
         RS3=X3[K]+X7[K]; IS3=Y3[K]+Y7[K];
         RU3=X3[K]-X7[K]; IU3=Y3[K]-Y7[K];
         RSS0=RS0+RS2; ISS0=IS0+IS2;
         RSU0=RS0-RS2; ISU0=IS0-IS2;
         RSS1=RS1+RS3; ISS1=IS1+IS3;
         RSU1=RS1-RS3; ISU1=IS1-IS3;
         RUS0=RU0-IU2; IUS0=IU0+RU2;
         RUU0=RU0+IU2; IUU0=IU0-RU2;
         RUS1=RU1-IU3; IUS1=IU1+RU3;
         RUU1=RU1+IU3; IUU1=IU1-RU3;
         T=(RUS1+IUS1)*E; IUS1=(IUS1-RUS1)*E; RUS1=T;
         T=(RUU1+IUU1)*E; IUU1=(IUU1-RUU1)*E; RUU1=T;
         X0[K]=RSS0+RSS1; Y0[K]=ISS0+ISS1;
         if (!ZERO)
         {
            REPORT
            R1=RUU0+RUU1; I1=IUU0+IUU1;
            R2=RSU0+ISU1; I2=ISU0-RSU1;
            R3=RUS0+IUS1; I3=IUS0-RUS1;
            R4=RSS0-RSS1; I4=ISS0-ISS1;
            R5=RUU0-RUU1; I5=IUU0-IUU1;
            R6=RSU0-ISU1; I6=ISU0+RSU1;
            R7=RUS0-IUS1; I7=IUS0+RUS1;
            X4[K]=R1*C1+I1*S1; Y4[K]=I1*C1-R1*S1;
            X2[K]=R2*C2+I2*S2; Y2[K]=I2*C2-R2*S2;
            X6[K]=R3*C3+I3*S3; Y6[K]=I3*C3-R3*S3;
            X1[K]=R4*C4+I4*S4; Y1[K]=I4*C4-R4*S4;
            X5[K]=R5*C5+I5*S5; Y5[K]=I5*C5-R5*S5;
            X3[K]=R6*C6+I6*S6; Y3[K]=I6*C6-R6*S6;
            X7[K]=R7*C7+I7*S7; Y7[K]=I7*C7-R7*S7;
         }
         else
         {
            REPORT
            X4[K]=RUU0+RUU1; Y4[K]=IUU0+IUU1;
            X2[K]=RSU0+ISU1; Y2[K]=ISU0-RSU1;
            X6[K]=RUS0+IUS1; Y6[K]=IUS0-RUS1;
            X1[K]=RSS0-RSS1; Y1[K]=ISS0-ISS1;
            X5[K]=RUU0-RUU1; Y5[K]=IUU0-IUU1;
            X3[K]=RSU0-ISU1; Y3[K]=ISU0+RSU1;
            X7[K]=RUS0-IUS1; Y7[K]=IUS0+RUS1;
         }
      }
      goto L100;
   L600: ;
   }

   return;
}

static void R_16_FTK (int N, int M,
   Real* X0, Real* Y0, Real* X1, Real* Y1,
   Real* X2, Real* Y2, Real* X3, Real* Y3,
   Real* X4, Real* Y4, Real* X5, Real* Y5,
   Real* X6, Real* Y6, Real* X7, Real* Y7,
   Real* X8, Real* Y8, Real* X9, Real* Y9,
   Real* X10, Real* Y10, Real* X11, Real* Y11,
   Real* X12, Real* Y12, Real* X13, Real* Y13,
   Real* X14, Real* Y14, Real* X15, Real* Y15)
//    RADIX SIXTEEN FOURIER TRANSFORM KERNEL
{
   REPORT
   bool NO_FOLD,ZERO;
   int  J,K,K0,M16,M_OVER_2;
   Real ANGLE,EI1,ER1,E2,EI3,ER3,EI5,ER5,T,TWOPI;
   Real RS0,RS1,RS2,RS3,RS4,RS5,RS6,RS7;
   Real IS0,IS1,IS2,IS3,IS4,IS5,IS6,IS7;
   Real RU0,RU1,RU2,RU3,RU4,RU5,RU6,RU7;
   Real IU0,IU1,IU2,IU3,IU4,IU5,IU6,IU7;
   Real RUS0,RUS1,RUS2,RUS3,RUU0,RUU1,RUU2,RUU3;
   Real ISS0,ISS1,ISS2,ISS3,ISU0,ISU1,ISU2,ISU3;
   Real RSS0,RSS1,RSS2,RSS3,RSU0,RSU1,RSU2,RSU3;
   Real IUS0,IUS1,IUS2,IUS3,IUU0,IUU1,IUU2,IUU3;
   Real RSSS0,RSSS1,RSSU0,RSSU1,RSUS0,RSUS1,RSUU0,RSUU1;
   Real ISSS0,ISSS1,ISSU0,ISSU1,ISUS0,ISUS1,ISUU0,ISUU1;
   Real RUSS0,RUSS1,RUSU0,RUSU1,RUUS0,RUUS1,RUUU0,RUUU1;
   Real IUSS0,IUSS1,IUSU0,IUSU1,IUUS0,IUUS1,IUUU0,IUUU1;
   Real R1,R2,R3,R4,R5,R6,R7,R8,R9,R10,R11,R12,R13,R14,R15;
   Real I1,I2,I3,I4,I5,I6,I7,I8,I9,I10,I11,I12,I13,I14,I15;
   Real C1,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C14,C15;
   Real S1,S2,S3,S4,S5,S6,S7,S8,S9,S10,S11,S12,S13,S14,S15;

   M16=M*16; M_OVER_2=M/2+1;
   TWOPI=8.0*atan(1.0);
   ER1=cos(TWOPI/16.0); EI1=sin(TWOPI/16.0);
   E2=cos(TWOPI/8.0);
   ER3=cos(3.0*TWOPI/16.0); EI3=sin(3.0*TWOPI/16.0);
   ER5=cos(5.0*TWOPI/16.0); EI5=sin(5.0*TWOPI/16.0);

   for (J=0; J<M_OVER_2; J++)
   {
      NO_FOLD = (J==0 || 2*J==M);
      K0=J;
      ANGLE=TWOPI*Real(J)/Real(M16);
      ZERO=ANGLE==0.0;
      C1=cos(ANGLE); S1=sin(ANGLE);
      C2=C1*C1-S1*S1; S2=C1*S1+S1*C1;
      C3=C2*C1-S2*S1; S3=S2*C1+C2*S1;
      C4=C2*C2-S2*S2; S4=S2*C2+C2*S2;
      C5=C4*C1-S4*S1; S5=S4*C1+C4*S1;
      C6=C4*C2-S4*S2; S6=S4*C2+C4*S2;
      C7=C4*C3-S4*S3; S7=S4*C3+C4*S3;
      C8=C4*C4-S4*S4; S8=C4*S4+S4*C4;
      C9=C8*C1-S8*S1; S9=S8*C1+C8*S1;
      C10=C8*C2-S8*S2; S10=S8*C2+C8*S2;
      C11=C8*C3-S8*S3; S11=S8*C3+C8*S3;
      C12=C8*C4-S8*S4; S12=S8*C4+C8*S4;
      C13=C8*C5-S8*S5; S13=S8*C5+C8*S5;
      C14=C8*C6-S8*S6; S14=S8*C6+C8*S6;
      C15=C8*C7-S8*S7; S15=S8*C7+C8*S7;
      goto L200;
   L100:
      REPORT
      if (NO_FOLD) { REPORT goto L600; }
      REPORT
      NO_FOLD=true; K0=M-J;
      T=C1*ER1+S1*EI1; S1= -S1*ER1+C1*EI1; C1=T;
      T=(C2+S2)*E2; S2=(C2-S2)*E2; C2=T;
      T=C3*ER3+S3*EI3; S3= -S3*ER3+C3*EI3; C3=T;
      T=S4; S4=C4; C4=T;
      T=S5*ER1-C5*EI1; S5=C5*ER1+S5*EI1; C5=T;
      T=(-C6+S6)*E2; S6=(C6+S6)*E2; C6=T;
      T=S7*ER3-C7*EI3; S7=C7*ER3+S7*EI3; C7=T;
      C8= -C8;
      T= -(C9*ER1+S9*EI1); S9=S9*ER1-C9*EI1; C9=T;
      T= -(C10+S10)*E2; S10=(-C10+S10)*E2; C10=T;
      T= -(C11*ER3+S11*EI3); S11=S11*ER3-C11*EI3; C11=T;
      T= -S12; S12= -C12; C12=T;
      T= -S13*ER1+C13*EI1; S13= -(C13*ER1+S13*EI1); C13=T;
      T=(C14-S14)*E2; S14= -(C14+S14)*E2; C14=T;
      T= -S15*ER3+C15*EI3; S15= -(C15*ER3+S15*EI3); C15=T;
   L200:
      REPORT
      for (K=K0; K<N; K+=M16)
      {
         RS0=X0[K]+X8[K]; IS0=Y0[K]+Y8[K];
         RU0=X0[K]-X8[K]; IU0=Y0[K]-Y8[K];
         RS1=X1[K]+X9[K]; IS1=Y1[K]+Y9[K];
         RU1=X1[K]-X9[K]; IU1=Y1[K]-Y9[K];
         RS2=X2[K]+X10[K]; IS2=Y2[K]+Y10[K];
         RU2=X2[K]-X10[K]; IU2=Y2[K]-Y10[K];
         RS3=X3[K]+X11[K]; IS3=Y3[K]+Y11[K];
         RU3=X3[K]-X11[K]; IU3=Y3[K]-Y11[K];
         RS4=X4[K]+X12[K]; IS4=Y4[K]+Y12[K];
         RU4=X4[K]-X12[K]; IU4=Y4[K]-Y12[K];
         RS5=X5[K]+X13[K]; IS5=Y5[K]+Y13[K];
         RU5=X5[K]-X13[K]; IU5=Y5[K]-Y13[K];
         RS6=X6[K]+X14[K]; IS6=Y6[K]+Y14[K];
         RU6=X6[K]-X14[K]; IU6=Y6[K]-Y14[K];
         RS7=X7[K]+X15[K]; IS7=Y7[K]+Y15[K];
         RU7=X7[K]-X15[K]; IU7=Y7[K]-Y15[K];
         RSS0=RS0+RS4; ISS0=IS0+IS4;
         RSS1=RS1+RS5; ISS1=IS1+IS5;
         RSS2=RS2+RS6; ISS2=IS2+IS6;
         RSS3=RS3+RS7; ISS3=IS3+IS7;
         RSU0=RS0-RS4; ISU0=IS0-IS4;
         RSU1=RS1-RS5; ISU1=IS1-IS5;
         RSU2=RS2-RS6; ISU2=IS2-IS6;
         RSU3=RS3-RS7; ISU3=IS3-IS7;
         RUS0=RU0-IU4; IUS0=IU0+RU4;
         RUS1=RU1-IU5; IUS1=IU1+RU5;
         RUS2=RU2-IU6; IUS2=IU2+RU6;
         RUS3=RU3-IU7; IUS3=IU3+RU7;
         RUU0=RU0+IU4; IUU0=IU0-RU4;
         RUU1=RU1+IU5; IUU1=IU1-RU5;
         RUU2=RU2+IU6; IUU2=IU2-RU6;
         RUU3=RU3+IU7; IUU3=IU3-RU7;
         T=(RSU1+ISU1)*E2; ISU1=(ISU1-RSU1)*E2; RSU1=T;
         T=(RSU3+ISU3)*E2; ISU3=(ISU3-RSU3)*E2; RSU3=T;
         T=RUS1*ER3+IUS1*EI3; IUS1=IUS1*ER3-RUS1*EI3; RUS1=T;
         T=(RUS2+IUS2)*E2; IUS2=(IUS2-RUS2)*E2; RUS2=T;
         T=RUS3*ER5+IUS3*EI5; IUS3=IUS3*ER5-RUS3*EI5; RUS3=T;
         T=RUU1*ER1+IUU1*EI1; IUU1=IUU1*ER1-RUU1*EI1; RUU1=T;
         T=(RUU2+IUU2)*E2; IUU2=(IUU2-RUU2)*E2; RUU2=T;
         T=RUU3*ER3+IUU3*EI3; IUU3=IUU3*ER3-RUU3*EI3; RUU3=T;
         RSSS0=RSS0+RSS2; ISSS0=ISS0+ISS2;
         RSSS1=RSS1+RSS3; ISSS1=ISS1+ISS3;
         RSSU0=RSS0-RSS2; ISSU0=ISS0-ISS2;
         RSSU1=RSS1-RSS3; ISSU1=ISS1-ISS3;
         RSUS0=RSU0-ISU2; ISUS0=ISU0+RSU2;
         RSUS1=RSU1-ISU3; ISUS1=ISU1+RSU3;
         RSUU0=RSU0+ISU2; ISUU0=ISU0-RSU2;
         RSUU1=RSU1+ISU3; ISUU1=ISU1-RSU3;
         RUSS0=RUS0-IUS2; IUSS0=IUS0+RUS2;
         RUSS1=RUS1-IUS3; IUSS1=IUS1+RUS3;
         RUSU0=RUS0+IUS2; IUSU0=IUS0-RUS2;
         RUSU1=RUS1+IUS3; IUSU1=IUS1-RUS3;
         RUUS0=RUU0+RUU2; IUUS0=IUU0+IUU2;
         RUUS1=RUU1+RUU3; IUUS1=IUU1+IUU3;
         RUUU0=RUU0-RUU2; IUUU0=IUU0-IUU2;
         RUUU1=RUU1-RUU3; IUUU1=IUU1-IUU3;
         X0[K]=RSSS0+RSSS1; Y0[K]=ISSS0+ISSS1;
         if (!ZERO)
         {
            REPORT
            R1=RUUS0+RUUS1; I1=IUUS0+IUUS1;
            R2=RSUU0+RSUU1; I2=ISUU0+ISUU1;
            R3=RUSU0+RUSU1; I3=IUSU0+IUSU1;
            R4=RSSU0+ISSU1; I4=ISSU0-RSSU1;
            R5=RUUU0+IUUU1; I5=IUUU0-RUUU1;
            R6=RSUS0+ISUS1; I6=ISUS0-RSUS1;
            R7=RUSS0+IUSS1; I7=IUSS0-RUSS1;
            R8=RSSS0-RSSS1; I8=ISSS0-ISSS1;
            R9=RUUS0-RUUS1; I9=IUUS0-IUUS1;
            R10=RSUU0-RSUU1; I10=ISUU0-ISUU1;
            R11=RUSU0-RUSU1; I11=IUSU0-IUSU1;
            R12=RSSU0-ISSU1; I12=ISSU0+RSSU1;
            R13=RUUU0-IUUU1; I13=IUUU0+RUUU1;
            R14=RSUS0-ISUS1; I14=ISUS0+RSUS1;
            R15=RUSS0-IUSS1; I15=IUSS0+RUSS1;
            X8[K]=R1*C1+I1*S1; Y8[K]=I1*C1-R1*S1;
            X4[K]=R2*C2+I2*S2; Y4[K]=I2*C2-R2*S2;
            X12[K]=R3*C3+I3*S3; Y12[K]=I3*C3-R3*S3;
            X2[K]=R4*C4+I4*S4; Y2[K]=I4*C4-R4*S4;
            X10[K]=R5*C5+I5*S5; Y10[K]=I5*C5-R5*S5;
            X6[K]=R6*C6+I6*S6; Y6[K]=I6*C6-R6*S6;
            X14[K]=R7*C7+I7*S7; Y14[K]=I7*C7-R7*S7;
            X1[K]=R8*C8+I8*S8; Y1[K]=I8*C8-R8*S8;
            X9[K]=R9*C9+I9*S9; Y9[K]=I9*C9-R9*S9;
            X5[K]=R10*C10+I10*S10; Y5[K]=I10*C10-R10*S10;
            X13[K]=R11*C11+I11*S11; Y13[K]=I11*C11-R11*S11;
            X3[K]=R12*C12+I12*S12; Y3[K]=I12*C12-R12*S12;
            X11[K]=R13*C13+I13*S13; Y11[K]=I13*C13-R13*S13;
            X7[K]=R14*C14+I14*S14; Y7[K]=I14*C14-R14*S14;
            X15[K]=R15*C15+I15*S15; Y15[K]=I15*C15-R15*S15;
         }
         else
         {
            REPORT
            X8[K]=RUUS0+RUUS1; Y8[K]=IUUS0+IUUS1;
            X4[K]=RSUU0+RSUU1; Y4[K]=ISUU0+ISUU1;
            X12[K]=RUSU0+RUSU1; Y12[K]=IUSU0+IUSU1;
            X2[K]=RSSU0+ISSU1; Y2[K]=ISSU0-RSSU1;
            X10[K]=RUUU0+IUUU1; Y10[K]=IUUU0-RUUU1;
            X6[K]=RSUS0+ISUS1; Y6[K]=ISUS0-RSUS1;
            X14[K]=RUSS0+IUSS1; Y14[K]=IUSS0-RUSS1;
            X1[K]=RSSS0-RSSS1; Y1[K]=ISSS0-ISSS1;
            X9[K]=RUUS0-RUUS1; Y9[K]=IUUS0-IUUS1;
            X5[K]=RSUU0-RSUU1; Y5[K]=ISUU0-ISUU1;
            X13[K]=RUSU0-RUSU1; Y13[K]=IUSU0-IUSU1;
            X3[K]=RSSU0-ISSU1; Y3[K]=ISSU0+RSSU1;
            X11[K]=RUUU0-IUUU1; Y11[K]=IUUU0+RUUU1;
            X7[K]=RSUS0-ISUS1; Y7[K]=ISUS0+RSUS1;
            X15[K]=RUSS0-IUSS1; Y15[K]=IUSS0+RUSS1;
         }
      }
      goto L100;
   L600: ;
   }

   return;
}

// can the number of points be factorised sufficiently
// for the fft to run

bool FFT_Controller::CanFactor(int PTS)
{
   REPORT
   const int NP = 16, NQ = 10, PMAX=19;

   if (PTS<=1) { REPORT return true; }

   int N = PTS, F = 2, P = 0, Q = 0;

   while (N > 1)
   {
      bool fail = true;
      for (int J = F; J <= PMAX; J++)
         if (N % J == 0) { fail = false; F=J; break; }
      if (fail || P >= NP || Q >= NQ) { REPORT return false; }
      N /= F;
      if (N % F != 0) Q++; else { N /= F; P++; }
   }

   return true;    // can factorise

}

bool FFT_Controller::OnlyOldFFT;         // static variable

// **************************** multi radix counter **********************

MultiRadixCounter::MultiRadixCounter(int nx, const SimpleIntArray& rx,
   SimpleIntArray& vx)
   : Radix(rx), Value(vx), n(nx), reverse(0),
      product(1), counter(0), finish(false)
{
   REPORT for (int k = 0; k < n; k++) { Value[k] = 0; product *= Radix[k]; }
}

void MultiRadixCounter::operator++()
{
   REPORT
   counter++; int p = product;
   for (int k = 0; k < n; k++)
   {
      Value[k]++; int p1 = p / Radix[k]; reverse += p1;
      if (Value[k] == Radix[k]) { REPORT Value[k] = 0; reverse -= p; p = p1; }
      else { REPORT return; }
   }
   finish = true;
}


static int BitReverse(int x, int prod, int n, const SimpleIntArray& f)
{
   // x = c[0]+f[0]*(c[1]+f[1]*(c[2]+...
   // return c[n-1]+f[n-1]*(c[n-2]+f[n-2]*(c[n-3]+...
   // prod is the product of the f[i]
   // n is the number of f[i] (don't assume f has the correct length)

   REPORT
   const int* d = f.Data() + n; int sum = 0; int q = 1;
   while (n--)
   {
      prod /= *(--d);
      int c = x / prod; x-= c * prod;
      sum += q * c; q *= *d;
   }
   return sum;
}


#ifdef use_namespace
}
#endif