1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
|
//$$ newmat8.cpp Advanced LU transform, scalar functions
// Copyright (C) 1991,2,3,4,8: R B Davies
#define WANT_MATH
#include "include.h"
#include "config.h"
#include "newmat.h"
#include "newmatrc.h"
#include "precisio.h"
#ifdef use_namespace
namespace NEWMAT {
#endif
#ifdef DO_REPORT
#define REPORT { static ExeCounter ExeCount(__LINE__,8); ++ExeCount; }
#else
#define REPORT {}
#endif
/************************** LU transformation ****************************/
void CroutMatrix::ludcmp()
// LU decomposition from Golub & Van Loan, algorithm 3.4.1, (the "outer
// product" version).
// This replaces the code derived from Numerical Recipes in C in previous
// versions of newmat and being row oriented runs much faster with large
// matrices.
{
REPORT
Tracer trace( "Crout(ludcmp)" ); sing = false;
Real* akk = store; // runs down diagonal
Real big = fabs(*akk); int mu = 0; Real* ai = akk; int k;
for (k = 1; k < nrows; k++)
{
ai += nrows; const Real trybig = fabs(*ai);
if (big < trybig) { big = trybig; mu = k; }
}
if (nrows) for (k = 0;;)
{
/*
int mu1;
{
Real big = fabs(*akk); mu1 = k; Real* ai = akk; int i;
for (i = k+1; i < nrows; i++)
{
ai += nrows; const Real trybig = fabs(*ai);
if (big < trybig) { big = trybig; mu1 = i; }
}
}
if (mu1 != mu) cout << k << " " << mu << " " << mu1 << endl;
*/
indx[k] = mu;
if (mu != k) //row swap
{
Real* a1 = store + nrows * k; Real* a2 = store + nrows * mu; d = !d;
int j = nrows;
while (j--) { const Real temp = *a1; *a1++ = *a2; *a2++ = temp; }
}
Real diag = *akk; big = 0; mu = k + 1;
if (diag != 0)
{
ai = akk; int i = nrows - k - 1;
while (i--)
{
ai += nrows; Real* al = ai; Real mult = *al / diag; *al = mult;
int l = nrows - k - 1; Real* aj = akk;
// work out the next pivot as part of this loop
// this saves a column operation
if (l-- != 0)
{
*(++al) -= (mult * *(++aj));
const Real trybig = fabs(*al);
if (big < trybig) { big = trybig; mu = nrows - i - 1; }
while (l--) *(++al) -= (mult * *(++aj));
}
}
}
else sing = true;
if (++k == nrows) break; // so next line won't overflow
akk += nrows + 1;
}
}
void CroutMatrix::lubksb(Real* B, int mini)
{
REPORT
// this has been adapted from Numerical Recipes in C. The code has been
// substantially streamlined, so I do not think much of the original
// copyright remains. However there is not much opportunity for
// variation in the code, so it is still similar to the NR code.
// I follow the NR code in skipping over initial zeros in the B vector.
Tracer trace("Crout(lubksb)");
if (sing) Throw(SingularException(*this));
int i, j, ii = nrows; // ii initialised : B might be all zeros
// scan for first non-zero in B
for (i = 0; i < nrows; i++)
{
int ip = indx[i]; Real temp = B[ip]; B[ip] = B[i]; B[i] = temp;
if (temp != 0.0) { ii = i; break; }
}
Real* bi; Real* ai;
i = ii + 1;
if (i < nrows)
{
bi = B + ii; ai = store + ii + i * nrows;
for (;;)
{
int ip = indx[i]; Real sum = B[ip]; B[ip] = B[i];
Real* aij = ai; Real* bj = bi; j = i - ii;
while (j--) sum -= *aij++ * *bj++;
B[i] = sum;
if (++i == nrows) break;
ai += nrows;
}
}
ai = store + nrows * nrows;
for (i = nrows - 1; i >= mini; i--)
{
Real* bj = B+i; ai -= nrows; Real* ajx = ai+i;
Real sum = *bj; Real diag = *ajx;
j = nrows - i; while(--j) sum -= *(++ajx) * *(++bj);
B[i] = sum / diag;
}
}
/****************************** scalar functions ****************************/
inline Real square(Real x) { return x*x; }
Real GeneralMatrix::SumSquare() const
{
REPORT
Real sum = 0.0; int i = storage; Real* s = store;
while (i--) sum += square(*s++);
((GeneralMatrix&)*this).tDelete(); return sum;
}
Real GeneralMatrix::SumAbsoluteValue() const
{
REPORT
Real sum = 0.0; int i = storage; Real* s = store;
while (i--) sum += fabs(*s++);
((GeneralMatrix&)*this).tDelete(); return sum;
}
Real GeneralMatrix::Sum() const
{
REPORT
Real sum = 0.0; int i = storage; Real* s = store;
while (i--) sum += *s++;
((GeneralMatrix&)*this).tDelete(); return sum;
}
// maxima and minima
// There are three sets of routines
// MaximumAbsoluteValue, MinimumAbsoluteValue, Maximum, Minimum
// ... these find just the maxima and minima
// MaximumAbsoluteValue1, MinimumAbsoluteValue1, Maximum1, Minimum1
// ... these find the maxima and minima and their locations in a
// one dimensional object
// MaximumAbsoluteValue2, MinimumAbsoluteValue2, Maximum2, Minimum2
// ... these find the maxima and minima and their locations in a
// two dimensional object
// If the matrix has no values throw an exception
// If we do not want the location find the maximum or minimum on the
// array stored by GeneralMatrix
// This won't work for BandMatrices. We call ClearCorner for
// MaximumAbsoluteValue but for the others use the AbsoluteMinimumValue2
// version and discard the location.
// For one dimensional objects, when we want the location of the
// maximum or minimum, work with the array stored by GeneralMatrix
// For two dimensional objects where we want the location of the maximum or
// minimum proceed as follows:
// For rectangular matrices use the array stored by GeneralMatrix and
// deduce the location from the location in the GeneralMatrix
// For other two dimensional matrices use the Matrix Row routine to find the
// maximum or minimum for each row.
static void NullMatrixError(const GeneralMatrix* gm)
{
((GeneralMatrix&)*gm).tDelete();
Throw(ProgramException("Maximum or minimum of null matrix"));
}
Real GeneralMatrix::MaximumAbsoluteValue() const
{
REPORT
if (storage == 0) NullMatrixError(this);
Real maxval = 0.0; int l = storage; Real* s = store;
while (l--) { Real a = fabs(*s++); if (maxval < a) maxval = a; }
((GeneralMatrix&)*this).tDelete(); return maxval;
}
Real GeneralMatrix::MaximumAbsoluteValue1(int& i) const
{
REPORT
if (storage == 0) NullMatrixError(this);
Real maxval = 0.0; int l = storage; Real* s = store; int li = storage;
while (l--)
{ Real a = fabs(*s++); if (maxval <= a) { maxval = a; li = l; } }
i = storage - li;
((GeneralMatrix&)*this).tDelete(); return maxval;
}
Real GeneralMatrix::MinimumAbsoluteValue() const
{
REPORT
if (storage == 0) NullMatrixError(this);
int l = storage - 1; Real* s = store; Real minval = fabs(*s++);
while (l--) { Real a = fabs(*s++); if (minval > a) minval = a; }
((GeneralMatrix&)*this).tDelete(); return minval;
}
Real GeneralMatrix::MinimumAbsoluteValue1(int& i) const
{
REPORT
if (storage == 0) NullMatrixError(this);
int l = storage - 1; Real* s = store; Real minval = fabs(*s++); int li = l;
while (l--)
{ Real a = fabs(*s++); if (minval >= a) { minval = a; li = l; } }
i = storage - li;
((GeneralMatrix&)*this).tDelete(); return minval;
}
Real GeneralMatrix::Maximum() const
{
REPORT
if (storage == 0) NullMatrixError(this);
int l = storage - 1; Real* s = store; Real maxval = *s++;
while (l--) { Real a = *s++; if (maxval < a) maxval = a; }
((GeneralMatrix&)*this).tDelete(); return maxval;
}
Real GeneralMatrix::Maximum1(int& i) const
{
REPORT
if (storage == 0) NullMatrixError(this);
int l = storage - 1; Real* s = store; Real maxval = *s++; int li = l;
while (l--) { Real a = *s++; if (maxval <= a) { maxval = a; li = l; } }
i = storage - li;
((GeneralMatrix&)*this).tDelete(); return maxval;
}
Real GeneralMatrix::Minimum() const
{
REPORT
if (storage == 0) NullMatrixError(this);
int l = storage - 1; Real* s = store; Real minval = *s++;
while (l--) { Real a = *s++; if (minval > a) minval = a; }
((GeneralMatrix&)*this).tDelete(); return minval;
}
Real GeneralMatrix::Minimum1(int& i) const
{
REPORT
if (storage == 0) NullMatrixError(this);
int l = storage - 1; Real* s = store; Real minval = *s++; int li = l;
while (l--) { Real a = *s++; if (minval >= a) { minval = a; li = l; } }
i = storage - li;
((GeneralMatrix&)*this).tDelete(); return minval;
}
Real GeneralMatrix::MaximumAbsoluteValue2(int& i, int& j) const
{
REPORT
if (storage == 0) NullMatrixError(this);
Real maxval = 0.0; int nr = Nrows();
MatrixRow mr((GeneralMatrix*)this, LoadOnEntry+DirectPart);
for (int r = 1; r <= nr; r++)
{
int c; maxval = mr.MaximumAbsoluteValue1(maxval, c);
if (c > 0) { i = r; j = c; }
mr.Next();
}
((GeneralMatrix&)*this).tDelete(); return maxval;
}
Real GeneralMatrix::MinimumAbsoluteValue2(int& i, int& j) const
{
REPORT
if (storage == 0) NullMatrixError(this);
Real minval = FloatingPointPrecision::Maximum(); int nr = Nrows();
MatrixRow mr((GeneralMatrix*)this, LoadOnEntry+DirectPart);
for (int r = 1; r <= nr; r++)
{
int c; minval = mr.MinimumAbsoluteValue1(minval, c);
if (c > 0) { i = r; j = c; }
mr.Next();
}
((GeneralMatrix&)*this).tDelete(); return minval;
}
Real GeneralMatrix::Maximum2(int& i, int& j) const
{
REPORT
if (storage == 0) NullMatrixError(this);
Real maxval = -FloatingPointPrecision::Maximum(); int nr = Nrows();
MatrixRow mr((GeneralMatrix*)this, LoadOnEntry+DirectPart);
for (int r = 1; r <= nr; r++)
{
int c; maxval = mr.Maximum1(maxval, c);
if (c > 0) { i = r; j = c; }
mr.Next();
}
((GeneralMatrix&)*this).tDelete(); return maxval;
}
Real GeneralMatrix::Minimum2(int& i, int& j) const
{
REPORT
if (storage == 0) NullMatrixError(this);
Real minval = FloatingPointPrecision::Maximum(); int nr = Nrows();
MatrixRow mr((GeneralMatrix*)this, LoadOnEntry+DirectPart);
for (int r = 1; r <= nr; r++)
{
int c; minval = mr.Minimum1(minval, c);
if (c > 0) { i = r; j = c; }
mr.Next();
}
((GeneralMatrix&)*this).tDelete(); return minval;
}
Real Matrix::MaximumAbsoluteValue2(int& i, int& j) const
{
REPORT
int k; Real m = GeneralMatrix::MaximumAbsoluteValue1(k); k--;
i = k / Ncols(); j = k - i * Ncols(); i++; j++;
return m;
}
Real Matrix::MinimumAbsoluteValue2(int& i, int& j) const
{
REPORT
int k; Real m = GeneralMatrix::MinimumAbsoluteValue1(k); k--;
i = k / Ncols(); j = k - i * Ncols(); i++; j++;
return m;
}
Real Matrix::Maximum2(int& i, int& j) const
{
REPORT
int k; Real m = GeneralMatrix::Maximum1(k); k--;
i = k / Ncols(); j = k - i * Ncols(); i++; j++;
return m;
}
Real Matrix::Minimum2(int& i, int& j) const
{
REPORT
int k; Real m = GeneralMatrix::Minimum1(k); k--;
i = k / Ncols(); j = k - i * Ncols(); i++; j++;
return m;
}
Real SymmetricMatrix::SumSquare() const
{
REPORT
Real sum1 = 0.0; Real sum2 = 0.0; Real* s = store; int nr = nrows;
for (int i = 0; i<nr; i++)
{
int j = i;
while (j--) sum2 += square(*s++);
sum1 += square(*s++);
}
((GeneralMatrix&)*this).tDelete(); return sum1 + 2.0 * sum2;
}
Real SymmetricMatrix::SumAbsoluteValue() const
{
REPORT
Real sum1 = 0.0; Real sum2 = 0.0; Real* s = store; int nr = nrows;
for (int i = 0; i<nr; i++)
{
int j = i;
while (j--) sum2 += fabs(*s++);
sum1 += fabs(*s++);
}
((GeneralMatrix&)*this).tDelete(); return sum1 + 2.0 * sum2;
}
Real IdentityMatrix::SumAbsoluteValue() const
{ REPORT return fabs(Trace()); } // no need to do tDelete?
Real SymmetricMatrix::Sum() const
{
REPORT
Real sum1 = 0.0; Real sum2 = 0.0; Real* s = store; int nr = nrows;
for (int i = 0; i<nr; i++)
{
int j = i;
while (j--) sum2 += *s++;
sum1 += *s++;
}
((GeneralMatrix&)*this).tDelete(); return sum1 + 2.0 * sum2;
}
Real IdentityMatrix::SumSquare() const
{
Real sum = *store * *store * nrows;
((GeneralMatrix&)*this).tDelete(); return sum;
}
Real BaseMatrix::SumSquare() const
{
REPORT GeneralMatrix* gm = ((BaseMatrix&)*this).Evaluate();
Real s = gm->SumSquare(); return s;
}
Real BaseMatrix::NormFrobenius() const
{ REPORT return sqrt(SumSquare()); }
Real BaseMatrix::SumAbsoluteValue() const
{
REPORT GeneralMatrix* gm = ((BaseMatrix&)*this).Evaluate();
Real s = gm->SumAbsoluteValue(); return s;
}
Real BaseMatrix::Sum() const
{
REPORT GeneralMatrix* gm = ((BaseMatrix&)*this).Evaluate();
Real s = gm->Sum(); return s;
}
Real BaseMatrix::MaximumAbsoluteValue() const
{
REPORT GeneralMatrix* gm = ((BaseMatrix&)*this).Evaluate();
Real s = gm->MaximumAbsoluteValue(); return s;
}
Real BaseMatrix::MaximumAbsoluteValue1(int& i) const
{
REPORT GeneralMatrix* gm = ((BaseMatrix&)*this).Evaluate();
Real s = gm->MaximumAbsoluteValue1(i); return s;
}
Real BaseMatrix::MaximumAbsoluteValue2(int& i, int& j) const
{
REPORT GeneralMatrix* gm = ((BaseMatrix&)*this).Evaluate();
Real s = gm->MaximumAbsoluteValue2(i, j); return s;
}
Real BaseMatrix::MinimumAbsoluteValue() const
{
REPORT GeneralMatrix* gm = ((BaseMatrix&)*this).Evaluate();
Real s = gm->MinimumAbsoluteValue(); return s;
}
Real BaseMatrix::MinimumAbsoluteValue1(int& i) const
{
REPORT GeneralMatrix* gm = ((BaseMatrix&)*this).Evaluate();
Real s = gm->MinimumAbsoluteValue1(i); return s;
}
Real BaseMatrix::MinimumAbsoluteValue2(int& i, int& j) const
{
REPORT GeneralMatrix* gm = ((BaseMatrix&)*this).Evaluate();
Real s = gm->MinimumAbsoluteValue2(i, j); return s;
}
Real BaseMatrix::Maximum() const
{
REPORT GeneralMatrix* gm = ((BaseMatrix&)*this).Evaluate();
Real s = gm->Maximum(); return s;
}
Real BaseMatrix::Maximum1(int& i) const
{
REPORT GeneralMatrix* gm = ((BaseMatrix&)*this).Evaluate();
Real s = gm->Maximum1(i); return s;
}
Real BaseMatrix::Maximum2(int& i, int& j) const
{
REPORT GeneralMatrix* gm = ((BaseMatrix&)*this).Evaluate();
Real s = gm->Maximum2(i, j); return s;
}
Real BaseMatrix::Minimum() const
{
REPORT GeneralMatrix* gm = ((BaseMatrix&)*this).Evaluate();
Real s = gm->Minimum(); return s;
}
Real BaseMatrix::Minimum1(int& i) const
{
REPORT GeneralMatrix* gm = ((BaseMatrix&)*this).Evaluate();
Real s = gm->Minimum1(i); return s;
}
Real BaseMatrix::Minimum2(int& i, int& j) const
{
REPORT GeneralMatrix* gm = ((BaseMatrix&)*this).Evaluate();
Real s = gm->Minimum2(i, j); return s;
}
Real DotProduct(const Matrix& A, const Matrix& B)
{
REPORT
int n = A.storage;
if (n != B.storage) Throw(IncompatibleDimensionsException(A,B));
Real sum = 0.0; Real* a = A.store; Real* b = B.store;
while (n--) sum += *a++ * *b++;
return sum;
}
Real Matrix::Trace() const
{
REPORT
Tracer trace("Trace");
int i = nrows; int d = i+1;
if (i != ncols) Throw(NotSquareException(*this));
Real sum = 0.0; Real* s = store;
// while (i--) { sum += *s; s += d; }
if (i) for (;;) { sum += *s; if (!(--i)) break; s += d; }
((GeneralMatrix&)*this).tDelete(); return sum;
}
Real DiagonalMatrix::Trace() const
{
REPORT
int i = nrows; Real sum = 0.0; Real* s = store;
while (i--) sum += *s++;
((GeneralMatrix&)*this).tDelete(); return sum;
}
Real SymmetricMatrix::Trace() const
{
REPORT
int i = nrows; Real sum = 0.0; Real* s = store; int j = 2;
// while (i--) { sum += *s; s += j++; }
if (i) for (;;) { sum += *s; if (!(--i)) break; s += j++; }
((GeneralMatrix&)*this).tDelete(); return sum;
}
Real LowerTriangularMatrix::Trace() const
{
REPORT
int i = nrows; Real sum = 0.0; Real* s = store; int j = 2;
// while (i--) { sum += *s; s += j++; }
if (i) for (;;) { sum += *s; if (!(--i)) break; s += j++; }
((GeneralMatrix&)*this).tDelete(); return sum;
}
Real UpperTriangularMatrix::Trace() const
{
REPORT
int i = nrows; Real sum = 0.0; Real* s = store;
while (i) { sum += *s; s += i--; } // won t cause a problem
((GeneralMatrix&)*this).tDelete(); return sum;
}
Real BandMatrix::Trace() const
{
REPORT
int i = nrows; int w = lower+upper+1;
Real sum = 0.0; Real* s = store+lower;
// while (i--) { sum += *s; s += w; }
if (i) for (;;) { sum += *s; if (!(--i)) break; s += w; }
((GeneralMatrix&)*this).tDelete(); return sum;
}
Real SymmetricBandMatrix::Trace() const
{
REPORT
int i = nrows; int w = lower+1;
Real sum = 0.0; Real* s = store+lower;
// while (i--) { sum += *s; s += w; }
if (i) for (;;) { sum += *s; if (!(--i)) break; s += w; }
((GeneralMatrix&)*this).tDelete(); return sum;
}
Real IdentityMatrix::Trace() const
{
Real sum = *store * nrows;
((GeneralMatrix&)*this).tDelete(); return sum;
}
Real BaseMatrix::Trace() const
{
REPORT
MatrixType Diag = MatrixType::Dg; Diag.SetDataLossOK();
GeneralMatrix* gm = ((BaseMatrix&)*this).Evaluate(Diag);
Real sum = gm->Trace(); return sum;
}
void LogAndSign::operator*=(Real x)
{
if (x > 0.0) { log_value += log(x); }
else if (x < 0.0) { log_value += log(-x); sign = -sign; }
else sign = 0;
}
void LogAndSign::PowEq(int k)
{
if (sign)
{
log_value *= k;
if ( (k & 1) == 0 ) sign = 1;
}
}
Real LogAndSign::Value() const
{
Tracer et("LogAndSign::Value");
if (log_value >= FloatingPointPrecision::LnMaximum())
Throw(OverflowException("Overflow in exponential"));
return sign * exp(log_value);
}
LogAndSign::LogAndSign(Real f)
{
if (f == 0.0) { log_value = 0.0; sign = 0; return; }
else if (f < 0.0) { sign = -1; f = -f; }
else sign = 1;
log_value = log(f);
}
LogAndSign DiagonalMatrix::LogDeterminant() const
{
REPORT
int i = nrows; LogAndSign sum; Real* s = store;
while (i--) sum *= *s++;
((GeneralMatrix&)*this).tDelete(); return sum;
}
LogAndSign LowerTriangularMatrix::LogDeterminant() const
{
REPORT
int i = nrows; LogAndSign sum; Real* s = store; int j = 2;
// while (i--) { sum *= *s; s += j++; }
if (i) for(;;) { sum *= *s; if (!(--i)) break; s += j++; }
((GeneralMatrix&)*this).tDelete(); return sum;
}
LogAndSign UpperTriangularMatrix::LogDeterminant() const
{
REPORT
int i = nrows; LogAndSign sum; Real* s = store;
while (i) { sum *= *s; s += i--; }
((GeneralMatrix&)*this).tDelete(); return sum;
}
LogAndSign IdentityMatrix::LogDeterminant() const
{
REPORT
int i = nrows; LogAndSign sum;
if (i > 0) { sum = *store; sum.PowEq(i); }
((GeneralMatrix&)*this).tDelete(); return sum;
}
LogAndSign BaseMatrix::LogDeterminant() const
{
REPORT GeneralMatrix* gm = ((BaseMatrix&)*this).Evaluate();
LogAndSign sum = gm->LogDeterminant(); return sum;
}
LogAndSign GeneralMatrix::LogDeterminant() const
{
REPORT
Tracer tr("LogDeterminant");
if (nrows != ncols) Throw(NotSquareException(*this));
CroutMatrix C(*this); return C.LogDeterminant();
}
LogAndSign CroutMatrix::LogDeterminant() const
{
REPORT
if (sing) return 0.0;
int i = nrows; int dd = i+1; LogAndSign sum; Real* s = store;
if (i) for(;;)
{
sum *= *s;
if (!(--i)) break;
s += dd;
}
if (!d) sum.ChangeSign(); return sum;
}
Real BaseMatrix::Determinant() const
{
REPORT
Tracer tr("Determinant");
REPORT GeneralMatrix* gm = ((BaseMatrix&)*this).Evaluate();
LogAndSign ld = gm->LogDeterminant();
return ld.Value();
}
LinearEquationSolver::LinearEquationSolver(const BaseMatrix& bm)
{
gm = ( ((BaseMatrix&)bm).Evaluate() )->MakeSolver();
if (gm==&bm) { REPORT gm = gm->Image(); }
// want a copy if *gm is actually bm
else { REPORT gm->Protect(); }
}
#ifdef use_namespace
}
#endif
|