1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
|
//$$ newmatnl.cpp Non-linear optimisation
// Copyright (C) 1993,4,5,6: R B Davies
#define WANT_MATH
#define WANT_STREAM
#include "newmatap.h"
#include "newmatnl.h"
#ifdef use_namespace
using namespace std; //#~rzr : needed for msvc
namespace NEWMAT {
#endif
void FindMaximum2::Fit(ColumnVector& Theta, int n_it)
{
Tracer tr("FindMaximum2::Fit");
enum State {Start, Restart, Continue, Interpolate, Extrapolate,
Fail, Convergence};
State TheState = Start;
Real z,w,x,x2,g,l1,l2,l3,d1,d2=0,d3;
ColumnVector Theta1, Theta2, Theta3;
int np = Theta.Nrows();
ColumnVector H1(np), H3, HP(np), K, K1(np);
bool oorg, conv;
int counter = 0;
Theta1 = Theta; HP = 0.0; g = 0.0;
// This is really a set of gotos and labels, but they do not work
// correctly in AT&T C++ and Sun 4.01 C++.
for(;;)
{
switch (TheState)
{
case Start:
tr.ReName("FindMaximum2::Fit/Start");
Value(Theta1, true, l1, oorg);
if (oorg) Throw(ProgramException("invalid starting value\n"));
case Restart:
tr.ReName("FindMaximum2::Fit/ReStart");
conv = NextPoint(H1, d1);
if (conv) { TheState = Convergence; break; }
if (counter++ > n_it) { TheState = Fail; break; }
z = 1.0 / sqrt(d1);
H3 = H1 * z; K = (H3 - HP) * g; HP = H3;
g = 0.0; // de-activate to use curved projection
if (g==0.0) K1 = 0.0; else K1 = K * 0.2 + K1 * 0.6;
// (K - K1) * alpha + K1 * (1 - alpha)
// = K * alpha + K1 * (1 - 2 * alpha)
K = K1 * d1; g = z;
case Continue:
tr.ReName("FindMaximum2::Fit/Continue");
Theta2 = Theta1 + H1 + K;
Value(Theta2, false, l2, oorg);
if (counter++ > n_it) { TheState = Fail; break; }
if (oorg)
{
H1 *= 0.5; K *= 0.25; d1 *= 0.5; g *= 2.0;
TheState = Continue; break;
}
d2 = LastDerivative(H1 + K * 2.0);
case Interpolate:
tr.ReName("FindMaximum2::Fit/Interpolate");
z = d1 + d2 - 3.0 * (l2 - l1);
w = z * z - d1 * d2;
if (w < 0.0) { TheState = Extrapolate; break; }
w = z + sqrt(w);
if (1.5 * w + d1 < 0.0)
{ TheState = Extrapolate; break; }
if (d2 > 0.0 && l2 > l1 && w > 0.0)
{ TheState = Extrapolate; break; }
x = d1 / (w + d1); x2 = x * x; g /= x;
Theta3 = Theta1 + H1 * x + K * x2;
Value(Theta3, true, l3, oorg);
if (counter++ > n_it) { TheState = Fail; break; }
if (oorg)
{
if (x <= 1.0)
{ x *= 0.5; x2 = x*x; g *= 2.0; d1 *= x; H1 *= x; K *= x2; }
else
{
x = 0.5 * (x-1.0); x2 = x*x; Theta1 = Theta2;
H1 = (H1 + K * 2.0) * x;
K *= x2; g = 0.0; d1 = x * d2; l1 = l2;
}
TheState = Continue; break;
}
if (l3 >= l1 && l3 >= l2)
{ Theta1 = Theta3; l1 = l3; TheState = Restart; break; }
d3 = LastDerivative(H1 + K * 2.0);
if (l1 > l2)
{ H1 *= x; K *= x2; Theta2 = Theta3; d1 *= x; d2 = d3*x; }
else
{
Theta1 = Theta2; Theta2 = Theta3;
x -= 1.0; x2 = x*x; g = 0.0; H1 = (H1 + K * 2.0) * x;
K *= x2; l1 = l2; l2 = l3; d1 = x*d2; d2 = x*d3;
if (d1 <= 0.0) { TheState = Start; break; }
}
TheState = Interpolate; break;
case Extrapolate:
tr.ReName("FindMaximum2::Fit/Extrapolate");
Theta1 = Theta2; g = 0.0; K *= 4.0; H1 = (H1 * 2.0 + K);
d1 = 2.0 * d2; l1 = l2;
TheState = Continue; break;
case Fail:
Throw(ConvergenceException(Theta));
case Convergence:
Theta = Theta1; return;
}
}
}
void NonLinearLeastSquares::Value
(const ColumnVector& Parameters, bool, Real& v, bool& oorg)
{
Tracer tr("NonLinearLeastSquares::Value");
Y.ReSize(n_obs); X.ReSize(n_obs,n_param);
// put the fitted values in Y, the derivatives in X.
Pred.Set(Parameters);
if (!Pred.IsValid()) { oorg=true; return; }
for (int i=1; i<=n_obs; i++)
{
Y(i) = Pred(i);
X.Row(i) = Pred.Derivatives();
}
if (!Pred.IsValid()) { oorg=true; return; } // check afterwards as well
Y = *DataPointer - Y; Real ssq = Y.SumSquare();
errorvar = ssq / (n_obs - n_param);
cout << "\n" << setw(15) << setprecision(10) << " " << errorvar;
Derivs = Y.t() * X; // get the derivative and stash it
oorg = false; v = -0.5 * ssq;
}
bool NonLinearLeastSquares::NextPoint(ColumnVector& Adj, Real& test)
{
Tracer tr("NonLinearLeastSquares::NextPoint");
QRZ(X, U); QRZ(X, Y, M); // do the QR decomposition
test = M.SumSquare();
cout << " " << setw(15) << setprecision(10)
<< test << " " << Y.SumSquare() / (n_obs - n_param);
Adj = U.i() * M;
if (test < errorvar * criterion) return true;
else return false;
}
Real NonLinearLeastSquares::LastDerivative(const ColumnVector& H)
{ return (Derivs * H).AsScalar(); }
void NonLinearLeastSquares::Fit(const ColumnVector& Data,
ColumnVector& Parameters)
{
Tracer tr("NonLinearLeastSquares::Fit");
n_param = Parameters.Nrows(); n_obs = Data.Nrows();
DataPointer = &Data;
FindMaximum2::Fit(Parameters, Lim);
cout << "\nConverged\n";
}
void NonLinearLeastSquares::MakeCovariance()
{
if (Covariance.Nrows()==0)
{
UpperTriangularMatrix UI = U.i();
Covariance << UI * UI.t() * errorvar;
SE << Covariance; // get diagonals
for (int i = 1; i<=n_param; i++) SE(i) = sqrt(SE(i));
}
}
void NonLinearLeastSquares::GetStandardErrors(ColumnVector& SEX)
{ MakeCovariance(); SEX = SE.AsColumn(); }
void NonLinearLeastSquares::GetCorrelations(SymmetricMatrix& Corr)
{ MakeCovariance(); Corr << SE.i() * Covariance * SE.i(); }
void NonLinearLeastSquares::GetHatDiagonal(DiagonalMatrix& Hat) const
{
Hat.ReSize(n_obs);
for (int i = 1; i<=n_obs; i++) Hat(i) = X.Row(i).SumSquare();
}
// the MLE_D_FI routines
void MLE_D_FI::Value
(const ColumnVector& Parameters, bool wg, Real& v, bool& oorg)
{
Tracer tr("MLE_D_FI::Value");
if (!LL.IsValid(Parameters,wg)) { oorg=true; return; }
v = LL.LogLikelihood();
if (!LL.IsValid()) { oorg=true; return; } // check validity again
cout << "\n" << setw(20) << setprecision(10) << v;
oorg = false;
Derivs = LL.Derivatives(); // Get derivatives
}
bool MLE_D_FI::NextPoint(ColumnVector& Adj, Real& test)
{
Tracer tr("MLE_D_FI::NextPoint");
SymmetricMatrix FI = LL.FI();
LT = Cholesky(FI);
ColumnVector Adj1 = LT.i() * Derivs;
Adj = LT.t().i() * Adj1;
test = SumSquare(Adj1);
cout << " " << setw(20) << setprecision(10) << test;
return (test < Criterion);
}
Real MLE_D_FI::LastDerivative(const ColumnVector& H)
{ return (Derivs.t() * H).AsScalar(); }
void MLE_D_FI::Fit(ColumnVector& Parameters)
{
Tracer tr("MLE_D_FI::Fit");
FindMaximum2::Fit(Parameters,Lim);
cout << "\nConverged\n";
}
void MLE_D_FI::MakeCovariance()
{
if (Covariance.Nrows()==0)
{
LowerTriangularMatrix LTI = LT.i();
Covariance << LTI.t() * LTI;
SE << Covariance; // get diagonal
int n = Covariance.Nrows();
for (int i=1; i <= n; i++) SE(i) = sqrt(SE(i));
}
}
void MLE_D_FI::GetStandardErrors(ColumnVector& SEX)
{ MakeCovariance(); SEX = SE.AsColumn(); }
void MLE_D_FI::GetCorrelations(SymmetricMatrix& Corr)
{ MakeCovariance(); Corr << SE.i() * Covariance * SE.i(); }
#ifdef use_namespace
}
#endif
|