1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
|
//$$svd.cpp singular value decomposition
// Copyright (C) 1991,2,3,4,5: R B Davies
// Updated 17 July, 1995
#define WANT_MATH
#include "include.h"
#include "config.h"
#include "newmatap.h"
#include "newmatrm.h"
#include "precisio.h"
#ifdef use_namespace
namespace NEWMAT {
#endif
#ifdef DO_REPORT
#define REPORT { static ExeCounter ExeCount(__LINE__,15); ++ExeCount; }
#else
#define REPORT {}
#endif
static Real pythag(Real f, Real g, Real& c, Real& s)
// return z=sqrt(f*f+g*g), c=f/z, s=g/z
// set c=1,s=0 if z==0
// avoid floating point overflow or divide by zero
{
if (f==0 && g==0) { c=1.0; s=0.0; return 0.0; }
Real af = f>=0 ? f : -f;
Real ag = g>=0 ? g : -g;
if (ag<af)
{
REPORT
Real h = g/f; Real sq = sqrt(1.0+h*h);
if (f<0) sq = -sq; // make return value non-negative
c = 1.0/sq; s = h/sq; return sq*f;
}
else
{
REPORT
Real h = f/g; Real sq = sqrt(1.0+h*h);
if (g<0) sq = -sq;
s = 1.0/sq; c = h/sq; return sq*g;
}
}
void SVD(const Matrix& A, DiagonalMatrix& Q, Matrix& U, Matrix& V,
bool withU, bool withV)
// from Wilkinson and Reinsch: "Handbook of Automatic Computation"
{
REPORT
Tracer trace("SVD");
Real eps = FloatingPointPrecision::Epsilon();
Real tol = FloatingPointPrecision::Minimum()/eps;
int m = A.Nrows(); int n = A.Ncols();
if (m<n)
Throw(ProgramException("Want no. Rows >= no. Cols", A));
if (withV && &U == &V)
Throw(ProgramException("Need different matrices for U and V", U, V));
U = A; Real g = 0.0; Real f,h; Real x = 0.0; int i;
RowVector E(n); RectMatrixRow EI(E,0); Q.ReSize(n);
RectMatrixCol UCI(U,0); RectMatrixRow URI(U,0,1,n-1);
if (n) for (i=0;;)
{
EI.First() = g; Real ei = g; EI.Right(); Real s = UCI.SumSquare();
if (s<tol) { REPORT Q.element(i) = 0.0; }
else
{
REPORT
f = UCI.First(); g = -sign(sqrt(s), f); h = f*g-s; UCI.First() = f-g;
Q.element(i) = g; RectMatrixCol UCJ = UCI; int j=n-i;
while (--j) { UCJ.Right(); UCJ.AddScaled(UCI, (UCI*UCJ)/h); }
}
s = URI.SumSquare();
if (s<tol) { REPORT g = 0.0; }
else
{
REPORT
f = URI.First(); g = -sign(sqrt(s), f); URI.First() = f-g;
EI.Divide(URI,f*g-s); RectMatrixRow URJ = URI; int j=m-i;
while (--j) { URJ.Down(); URJ.AddScaled(EI, URI*URJ); }
}
Real y = fabs(Q.element(i)) + fabs(ei); if (x<y) { REPORT x = y; }
if (++i == n) { REPORT break; }
UCI.DownDiag(); URI.DownDiag();
}
if (withV)
{
REPORT
V.ReSize(n,n); V = 0.0; RectMatrixCol VCI(V,n-1,n-1,1);
if (n) { VCI.First() = 1.0; g=E.element(n-1); if (n!=1) URI.UpDiag(); }
for (i=n-2; i>=0; i--)
{
VCI.Left();
if (g!=0.0)
{
VCI.Divide(URI, URI.First()*g); int j = n-i;
RectMatrixCol VCJ = VCI;
while (--j) { VCJ.Right(); VCJ.AddScaled( VCI, (URI*VCJ) ); }
}
VCI.Zero(); VCI.Up(); VCI.First() = 1.0; g=E.element(i);
if (i==0) break;
URI.UpDiag();
}
}
if (withU)
{
REPORT
for (i=n-1; i>=0; i--)
{
g = Q.element(i); URI.Reset(U,i,i+1,n-i-1); URI.Zero();
if (g!=0.0)
{
h=UCI.First()*g; int j=n-i; RectMatrixCol UCJ = UCI;
while (--j)
{
UCJ.Right(); UCI.Down(); UCJ.Down(); Real s = UCI*UCJ;
UCI.Up(); UCJ.Up(); UCJ.AddScaled(UCI,s/h);
}
UCI.Divide(g);
}
else UCI.Zero();
UCI.First() += 1.0;
if (i==0) break;
UCI.UpDiag();
}
}
eps *= x;
for (int k=n-1; k>=0; k--)
{
Real z = -FloatingPointPrecision::Maximum(); // to keep Gnu happy
Real y; int limit = 50; int l = 0;
while (limit--)
{
Real c, s; int i; int l1=k; bool tfc=false;
for (l=k; l>=0; l--)
{
// if (fabs(E.element(l))<=eps) goto test_f_convergence;
if (fabs(E.element(l))<=eps) { REPORT tfc=true; break; }
if (fabs(Q.element(l-1))<=eps) { REPORT l1=l; break; }
REPORT
}
if (!tfc)
{
REPORT
l=l1; l1=l-1; s = -1.0; c = 0.0;
for (i=l; i<=k; i++)
{
f = - s * E.element(i); E.element(i) *= c;
// if (fabs(f)<=eps) goto test_f_convergence;
if (fabs(f)<=eps) { REPORT break; }
g = Q.element(i); h = pythag(g,f,c,s); Q.element(i) = h;
if (withU)
{
REPORT
RectMatrixCol UCI(U,i); RectMatrixCol UCJ(U,l1);
ComplexScale(UCJ, UCI, c, s);
}
}
}
// test_f_convergence: z = Q.element(k); if (l==k) goto convergence;
z = Q.element(k); if (l==k) { REPORT break; }
x = Q.element(l); y = Q.element(k-1);
g = E.element(k-1); h = E.element(k);
f = ((y-z)*(y+z) + (g-h)*(g+h)) / (2*h*y);
if (f>1) { REPORT g = f * sqrt(1 + square(1/f)); }
else if (f<-1) { REPORT g = -f * sqrt(1 + square(1/f)); }
else { REPORT g = sqrt(f*f + 1); }
{ REPORT f = ((x-z)*(x+z) + h*(y / ((f<0.0) ? f-g : f+g)-h)) / x; }
c = 1.0; s = 1.0;
for (i=l+1; i<=k; i++)
{
g = E.element(i); y = Q.element(i); h = s*g; g *= c;
z = pythag(f,h,c,s); E.element(i-1) = z;
f = x*c + g*s; g = -x*s + g*c; h = y*s; y *= c;
if (withV)
{
REPORT
RectMatrixCol VCI(V,i); RectMatrixCol VCJ(V,i-1);
ComplexScale(VCI, VCJ, c, s);
}
z = pythag(f,h,c,s); Q.element(i-1) = z;
f = c*g + s*y; x = -s*g + c*y;
if (withU)
{
REPORT
RectMatrixCol UCI(U,i); RectMatrixCol UCJ(U,i-1);
ComplexScale(UCI, UCJ, c, s);
}
}
E.element(l) = 0.0; E.element(k) = f; Q.element(k) = x;
}
if (l!=k) { Throw(ConvergenceException(A)); }
// convergence:
if (z < 0.0)
{
REPORT
Q.element(k) = -z;
if (withV) { RectMatrixCol VCI(V,k); VCI.Negate(); }
}
}
if (withU & withV) SortSV(Q, U, V);
else if (withU) SortSV(Q, U);
else if (withV) SortSV(Q, V);
else SortDescending(Q);
}
void SVD(const Matrix& A, DiagonalMatrix& D)
{ REPORT Matrix U; SVD(A, D, U, U, false, false); }
#ifdef use_namespace
}
#endif
|