1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
|
//#define WANT_STREAM
#include "include.h"
#include "config.h"
#include "newmat.h"
#include "tmt.h"
#ifdef use_namespace
using namespace NEWMAT;
#endif
/**************************** test program ******************************/
void trymat3()
{
Tracer et("Third test of Matrix package");
Tracer::PrintTrace();
{
Tracer et1("Stage 1");
int i,j;
SymmetricMatrix S(7);
for (i=1;i<=7;i++) for (j=1;j<=i;j++) S(i,j)=i*i+j;
S=-S+2.0;
DiagonalMatrix D(7);
for (i=1;i<=7;i++) D(i,i)=S(i,i);
Matrix M4(7,7); { M4=D+(D+4.0); M4=M4-D*2.0; M4=M4-4.0; Print(M4); }
SymmetricMatrix S2=D; Matrix M2=S2; { M2=-D+M2; Print(M2); }
UpperTriangularMatrix U2=D; { M2=U2; M2=D-M2; Print(M2); }
LowerTriangularMatrix L2=D; { M2=L2; M2=D-M2; Print(M2); }
M2=D; M2=M2-D; Print(M2);
for (i=1;i<=7;i++) for (j=1;j<=i;j++) L2(i,j)=2.0-i*i-j;
U2=L2.t(); D=D.t(); S=S.t();
M4=(L2-1.0)+(U2+1.0)-D-S; Print(M4);
M4=(-L2+1.0)+(-U2-1.0)+D+S; Print(M4);
}
{
Tracer et1("Stage 2");
int i,j;
DiagonalMatrix D(6);
for (i=1;i<=6;i++) D(i,i)=i*3.0+i*i+2.0;
UpperTriangularMatrix U2(7); LowerTriangularMatrix L2(7);
for (i=1;i<=7;i++) for (j=1;j<=i;j++) L2(i,j)=2.0-i*i+j;
{ U2=L2.t(); }
DiagonalMatrix D1(7); for (i=1;i<=7;i++) D1(i,i)=(i-2)*(i-4);
Matrix M2(6,7);
for (i=1;i<=6;i++) for (j=1;j<=7;j++) M2(i,j)=2.0+i*j+i*i+2.0*j*j;
Matrix MD=D; SymmetricMatrix MD1(1); MD1=D1;
Matrix MX=MD*M2*MD1 - D*(M2*D1); Print(MX);
MX=MD*M2*MD1 - (D*M2)*D1; Print(MX);
{
D.ReSize(7); for (i=1;i<=7;i++) D(i,i)=i*3.0+i*i+2.0;
LowerTriangularMatrix LD(1); LD=D;
UpperTriangularMatrix UD(1); UD=D;
M2=U2; M2=LD*M2*MD1 - D*(U2*D1); Print(M2);
M2=U2; M2=UD*M2*MD1 - (D*U2)*D1; Print(M2);
M2=L2; M2=LD*M2*MD1 - D*(L2*D1); Print(M2);
M2=L2; M2=UD*M2*MD1 - (D*L2)*D1; Print(M2);
}
}
{
Tracer et1("Stage 3");
// test inverse * scalar
DiagonalMatrix D(6);
for (int i=1;i<=6;i++) D(i)=i*i;
DiagonalMatrix E = D.i() * 4.0;
DiagonalMatrix I(6); I = 1.0;
E=D*E-I*4.0; Print(E);
E = D.i() / 0.25; E=D*E-I*4.0; Print(E);
}
{
Tracer et1("Stage 4");
Matrix sigma(3,3); Matrix sigmaI(3,3);
sigma = 0; sigma(1,1) = 1.0; sigma(2,2) = 1.0; sigma(3,3) = 1.0;
sigmaI = sigma.i();
sigmaI -= sigma; Clean(sigmaI, 0.000000001); Print(sigmaI);
}
{
Tracer et1("Stage 5");
Matrix X(5,5); DiagonalMatrix DM(5);
for (int i=1; i<=5; i++) for (int j=1; j<=5; j++)
X(i,j) = (23*i+59*j) % 43;
DM << 1 << 8 << -7 << 2 << 3;
Matrix Y = X.i() * DM; Y = X * Y - DM;
Clean(Y, 0.000000001); Print(Y);
}
{
Tracer et1("Stage 6"); // test reverse function
ColumnVector CV(10), RCV(10);
CV << 2 << 7 << 1 << 6 << -3 << 1 << 8 << -4 << 0 << 17;
RCV << 17 << 0 << -4 << 8 << 1 << -3 << 6 << 1 << 7 << 2;
ColumnVector X = CV - RCV.Reverse(); Print(X);
RowVector Y = CV.t() - RCV.t().Reverse(); Print(Y);
DiagonalMatrix D = CV.AsDiagonal() - RCV.AsDiagonal().Reverse();
Print(D);
X = CV & CV.Rows(1,9).Reverse();
ColumnVector Z(19);
Z.Rows(1,10) = RCV.Reverse(); Z.Rows(11,19) = RCV.Rows(2,10);
X -= Z; Print(X); Z -= Z.Reverse(); Print(Z);
Matrix A(3,3); A << 1 << 2 << 3 << 4 << 5 << 6 << 7 << 8 << 9;
Matrix B(3,3); B << 9 << 8 << 7 << 6 << 5 << 4 << 3 << 2 << 1;
Matrix Diff = A - B.Reverse(); Print(Diff);
Diff = (-A).Reverse() + B; Print(Diff);
UpperTriangularMatrix U;
U << A.Reverse(); Diff = U; U << B; Diff -= U; Print(Diff);
U << (-A).Reverse(); Diff = U; U << B; Diff += U; Print(Diff);
}
{
Tracer et1("Stage 7"); // test IsSingular function
ColumnVector XX(4);
Matrix A(3,3);
A = 0;
CroutMatrix B1 = A;
XX(1) = B1.IsSingular() ? 0 : 1;
A << 1 << 3 << 6
<< 7 << 11 << 13
<< 2 << 4 << 1;
CroutMatrix B2(A);
XX(2) = B2.IsSingular() ? 1 : 0;
BandMatrix C(3,1,1); C.Inject(A);
BandLUMatrix B3(C);
XX(3) = B3.IsSingular() ? 1 : 0;
C = 0;
BandLUMatrix B4(C);
XX(4) = B4.IsSingular() ? 0 : 1;
Print(XX);
}
{
Tracer et1("Stage 8"); // inverse with vector of 0s
Matrix A(3,3); Matrix Z(3,3); ColumnVector X(6);
A << 1 << 3 << 6
<< 7 << 11 << 13
<< 2 << 4 << 1;
Z = 0;
Matrix B = (A | Z) & (Z | A); // 6 * 6 matrix
X = 0.0;
X = B.i() * X;
Print(X);
// also check inverse with non-zero Y
Matrix Y(3,3);
Y << 0.0 << 1.0 << 1.0
<< 5.0 << 0.0 << 5.0
<< 3.0 << 3.0 << 0.0;
Matrix YY = Y & Y; // stack Y matrices
YY = B.i() * YY;
Matrix Y1 = A.i() * Y;
YY -= Y1 & Y1; Clean(YY, 0.000000001); Print(YY);
Y1 = A * Y1 - Y; Clean(Y1, 0.000000001); Print(Y1);
}
}
|