File: tmtd.cpp

package info (click to toggle)
newmat 1.10.4-9
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,908 kB
  • sloc: cpp: 31,314; makefile: 56
file content (198 lines) | stat: -rw-r--r-- 5,886 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

//#define WANT_STREAM

#include "include.h"
#include "config.h"

#include "newmatap.h"

#include "tmt.h"

#ifdef use_namespace
using namespace NEWMAT;
#endif

ReturnMatrix Inverter(const CroutMatrix& X)
{
   Matrix Y = X.i();
   Y.Release();
   return Y.ForReturn();
}


void trymatd()
{
   Tracer et("Thirteenth test of Matrix package");
   Tracer::PrintTrace();
   Matrix X(5,20);
   int i,j;
   for (j=1;j<=20;j++) X(1,j) = j+1;
   for (i=2;i<=5;i++) for (j=1;j<=20; j++) X(i,j) = (long)X(i-1,j) * j % 1001;
   SymmetricMatrix S; S << X * X.t();
   Matrix SM = X * X.t() - S;
   Print(SM);
   LowerTriangularMatrix L = Cholesky(S);
   Matrix Diff = L*L.t()-S; Clean(Diff, 0.000000001);
   Print(Diff);
   {
      Tracer et1("Stage 1");
      LowerTriangularMatrix L1(5);
      Matrix Xt = X.t(); Matrix Xt2 = Xt;
      QRZT(X,L1);
      Diff = L - L1; Clean(Diff,0.000000001); Print(Diff);
      UpperTriangularMatrix Ut(5);
      QRZ(Xt,Ut);
      Diff = L - Ut.t(); Clean(Diff,0.000000001); Print(Diff);
      Matrix Y(3,20);
      for (j=1;j<=20;j++) Y(1,j) = 22-j;
      for (i=2;i<=3;i++) for (j=1;j<=20; j++)
         Y(i,j) = (long)Y(i-1,j) * j % 101;
      Matrix Yt = Y.t(); Matrix M,Mt; Matrix Y2=Y;
      QRZT(X,Y,M); QRZ(Xt,Yt,Mt);
      Diff = Xt - X.t(); Clean(Diff,0.000000001); Print(Diff);
      Diff = Yt - Y.t(); Clean(Diff,0.000000001); Print(Diff);
      Diff = Mt - M.t(); Clean(Diff,0.000000001); Print(Diff);
      Diff = Y2 * Xt2 * S.i() - M * L.i();
      Clean(Diff,0.000000001); Print(Diff);
   }

   ColumnVector C1(5);
   {
      Tracer et1("Stage 2");
      X.ReSize(5,5);
      for (j=1;j<=5;j++) X(1,j) = j+1;
      for (i=2;i<=5;i++) for (j=1;j<=5; j++)
         X(i,j) = (long)X(i-1,j) * j % 1001;
      for (i=1;i<=5;i++) C1(i) = i*i;
      CroutMatrix A = X;
      ColumnVector C2 = A.i() * C1; C1 = X.i()  * C1;
      X = C1 - C2; Clean(X,0.000000001); Print(X);
   }

   {
      Tracer et1("Stage 3");
      X.ReSize(7,7);
      for (j=1;j<=7;j++) X(1,j) = j+1;
      for (i=2;i<=7;i++) for (j=1;j<=7; j++)
         X(i,j) = (long)X(i-1,j) * j % 1001;
      C1.ReSize(7);
      for (i=1;i<=7;i++) C1(i) = i*i;
      RowVector R1 = C1.t();
      Diff = R1 * X.i() - ( X.t().i() * R1.t() ).t(); Clean(Diff,0.000000001);
      Print(Diff);
   }

   {
      Tracer et1("Stage 4");
      X.ReSize(5,5);
      for (j=1;j<=5;j++) X(1,j) = j+1;
      for (i=2;i<=5;i++) for (j=1;j<=5; j++)
         X(i,j) = (long)X(i-1,j) * j % 1001;
      C1.ReSize(5);
      for (i=1;i<=5;i++) C1(i) = i*i;
      CroutMatrix A1 = X*X;
      ColumnVector C2 = A1.i() * C1; C1 = X.i()  * C1; C1 = X.i()  * C1;
      X = C1 - C2; Clean(X,0.000000001); Print(X);
   }


   {
      Tracer et1("Stage 5");
      int n = 40;
      SymmetricBandMatrix B(n,2); B = 0.0;
      for (i=1; i<=n; i++)
      {
         B(i,i) = 6;
         if (i<=n-1) B(i,i+1) = -4;
         if (i<=n-2) B(i,i+2) = 1;
      }
      B(1,1) = 5; B(n,n) = 5;
      SymmetricMatrix A = B;
      ColumnVector X(n);
      X(1) = 429;
      for (i=2;i<=n;i++) X(i) = (long)X(i-1) * 31 % 1001;
      X = X / 100000L;
      // the matrix B is rather ill-conditioned so the difficulty is getting
      // good agreement (we have chosen X very small) may not be surprising;
      // maximum element size in B.i() is around 1400
      ColumnVector Y1 = A.i() * X;
      LowerTriangularMatrix C1 = Cholesky(A);
      ColumnVector Y2 = C1.t().i() * (C1.i() * X) - Y1;
      Clean(Y2, 0.000000001); Print(Y2);
      UpperTriangularMatrix CU = C1.t().i();
      LowerTriangularMatrix CL = C1.i();
      Y2 = CU * (CL * X) - Y1;
      Clean(Y2, 0.000000001); Print(Y2);
      Y2 = B.i() * X - Y1; Clean(Y2, 0.000000001); Print(Y2);

      LowerBandMatrix C2 = Cholesky(B);
      Matrix M = C2 - C1; Clean(M, 0.000000001); Print(M);
      ColumnVector Y3 = C2.t().i() * (C2.i() * X) - Y1;
      Clean(Y3, 0.000000001); Print(Y3);
      CU = C1.t().i();
      CL = C1.i();
      Y3 = CU * (CL * X) - Y1;
      Clean(Y3, 0.000000001); Print(Y3);

      Y3 = B.i() * X - Y1; Clean(Y3, 0.000000001); Print(Y3);

      SymmetricMatrix AI = A.i();
      Y2 = AI*X - Y1; Clean(Y2, 0.000000001); Print(Y2);
      SymmetricMatrix BI = B.i();
      BandMatrix C = B; Matrix CI = C.i();
      M = A.i() - CI; Clean(M, 0.000000001); Print(M);
      M = B.i() - CI; Clean(M, 0.000000001); Print(M);
      M = AI-BI; Clean(M, 0.000000001); Print(M);
      M = AI-CI; Clean(M, 0.000000001); Print(M);

      M = A; AI << M; M = AI-A; Clean(M, 0.000000001); Print(M);
      C = B; BI << C; M = BI-B; Clean(M, 0.000000001); Print(M);


   }

   {
      Tracer et1("Stage 5");
      SymmetricMatrix A(4), B(4);
      A << 5
        << 1 << 4
        << 2 << 1 << 6
        << 1 << 0 << 1 << 7;
      B << 8
        << 1 << 5
        << 1 << 0 << 9
        << 2 << 1 << 0 << 6;
      LowerTriangularMatrix AB = Cholesky(A) * Cholesky(B);
      Matrix M = Cholesky(A) * B * Cholesky(A).t() - AB*AB.t();
      Clean(M, 0.000000001); Print(M);
      M = A * Cholesky(B); M = M * M.t() - A * B * A;
      Clean(M, 0.000000001); Print(M);
   }
   {
      Tracer et1("Stage 6");
      int N=49;
      int i;
      SymmetricBandMatrix S(N,1);
      Matrix B(N,N+1); B=0;
      for (i=1;i<=N;i++) { S(i,i)=1; B(i,i)=1; B(i,i+1)=-1; }
      for (i=1;i<N; i++) S(i,i+1)=-.5;
      DiagonalMatrix D(N+1); D = 1;
      B = B.t()*S.i()*B - (D-1.0/(N+1))*2.0;
      Clean(B, 0.000000001); Print(B);
   }
   {
      Tracer et1("Stage 7");
      // See if you can pass a CroutMatrix to a function
      Matrix A(4,4);
      A.Row(1) <<  3 <<  2 << -1 <<  4;
      A.Row(2) << -8 <<  7 <<  2 <<  0;
      A.Row(3) <<  2 << -2 <<  3 <<  1;
      A.Row(4) << -1 <<  5 <<  2 <<  2;
      CroutMatrix B = A;
      Matrix C = A * Inverter(B) - IdentityMatrix(4);
      Clean(C, 0.000000001); Print(C);
   }


//   cout << "\nEnd of Thirteenth test\n";
}