1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
|
//#define WANT_STREAM
#define WANT_MATH // for sqrt
#include "include.h"
#include "config.h"
#include "newmatap.h"
#include "tmt.h"
#ifdef use_namespace
using namespace NEWMAT;
#endif
void trymatg()
{
// cout << "\nSixteenth test of Matrix package\n";
// cout << "\n";
Tracer et("Sixteenth test of Matrix package");
Tracer::PrintTrace();
int i,j;
Matrix M(4,7);
for (i=1; i<=4; i++) for (j=1; j<=7; j++) M(i,j) = 100 * i + j;
ColumnVector CV = M.AsColumn();
{
Tracer et1("Stage 1");
RowVector test(7);
test(1) = SumSquare(M);
test(2) = SumSquare(CV);
test(3) = SumSquare(CV.t());
test(4) = SumSquare(CV.AsDiagonal());
test(5) = SumSquare(M.AsColumn());
test(6) = Matrix(CV.t()*CV)(1,1);
test(7) = (CV.t()*CV).AsScalar();
test = test - 2156560.0; Print(test);
}
UpperTriangularMatrix U(6);
for (i=1; i<=6; i++) for (j=i; j<=6; j++) U(i,j) = i + (i-j) * (i-j);
M = U; DiagonalMatrix D; D << U;
LowerTriangularMatrix L = U.t(); SymmetricMatrix S; S << (L+U)/2.0;
{
Tracer et1("Stage 2");
RowVector test(6);
test(1) = U.Trace();
test(2) = L.Trace();
test(3) = D.Trace();
test(4) = S.Trace();
test(5) = M.Trace();
test(6) = ((L+U)/2.0).Trace();
test = test - 21; Print(test);
test(1) = LogDeterminant(U).Value();
test(2) = LogDeterminant(L).Value();
test(3) = LogDeterminant(D).Value();
test(4) = LogDeterminant(D).Value();
test(5) = LogDeterminant((L+D)/2.0).Value();
test(6) = Determinant((L+D)/2.0);
test = test - 720; Clean(test,0.000000001); Print(test);
}
{
Tracer et1("Stage 3");
S << L*U; M = S;
RowVector test(8);
test(1) = LogDeterminant(S).Value();
test(2) = LogDeterminant(M).Value();
test(3) = LogDeterminant(L*U).Value();
test(4) = LogDeterminant(Matrix(L*L)).Value();
test(5) = Determinant(S);
test(6) = Determinant(M);
test(7) = Determinant(L*U);
test(8) = Determinant(Matrix(L*L));
test = test - 720.0 * 720.0; Clean(test,0.00000001); Print(test);
}
{
Tracer et1("Stage 4");
M = S * S;
Matrix SX = S;
RowVector test(3);
test(1) = SumSquare(S);
test(2) = SumSquare(SX);
test(3) = Trace(M);
test = test - 3925961.0; Print(test);
}
{
Tracer et1("Stage 5");
SymmetricMatrix SM(10), SN(10);
Real S = 0.0;
for (i=1; i<=10; i++) for (j=i; j<=10; j++)
{
SM(i,j) = 1.5 * i - j; SN(i,j) = SM(i,j) * SM(i,j);
if (SM(i,j) < 0.0) SN(i,j) = - SN(i,j);
S += SN(i,j) * ((i==j) ? 1.0 : 2.0);
}
Matrix M = SM, N = SN; RowVector test(4);
test(1) = SumAbsoluteValue(SN);
test(2) = SumAbsoluteValue(-SN);
test(3) = SumAbsoluteValue(N);
test(4) = SumAbsoluteValue(-N);
test = test - 1168.75; Print(test);
test(1) = Sum(SN);
test(2) = -Sum(-SN);
test(3) = Sum(N);
test(4) = -Sum(-N);
test = test - S; Print(test);
test(1) = MaximumAbsoluteValue(SM);
test(2) = MaximumAbsoluteValue(-SM);
test(3) = MaximumAbsoluteValue(M);
test(4) = MaximumAbsoluteValue(-M);
test = test - 8.5; Print(test);
}
{
Tracer et1("Stage 6");
Matrix M(15,20); Real value = 0.0;
for (i=1; i<=15; i++) { for (j=1; j<=20; j++) M(i,j) = 1.5 * i - j; }
for (i=1; i<=20; i++)
{ Real v = SumAbsoluteValue(M.Column(i)); if (value<v) value = v; }
RowVector test(3);
test(1) = value;
test(2) = Norm1(M);
test(3) = NormInfinity(M.t());
test = test - 165; Print(test);
test.ReSize(5);
ColumnVector CV = M.AsColumn(); M = CV.t();
test(1) = Norm1(CV.t());
test(2) = MaximumAbsoluteValue(M);
test(3) = NormInfinity(CV);
test(4) = Norm1(M);
test(5) = NormInfinity(M.t());
test = test - 21.5; Print(test);
}
{
Tracer et1("Stage 7");
Matrix M(15,20);
for (i=1; i<=15; i++) { for (j=1; j<=20; j++) M(i,j) = 2.5 * i - j; }
SymmetricMatrix SM; SM << M * M.t();
ColumnVector test(6);
test(1) = sqrt(SumSquare(M)) - NormFrobenius(M);
Real a = sqrt(SumSquare(SM));
test(2) = NormFrobenius(M * M.t()) - a;
test(3) = SM.NormFrobenius() - a;
test(4) = (M * M.t()).NormFrobenius() - a;
test(5) = NormFrobenius(SM) - a;
test(6) = Trace(SM) - M.SumSquare();
Clean(test, 0.00000001); Print(test);
}
// cout << "\nEnd of Sixteenth test\n";
}
|