1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
|
# Friendly SQL Functions
In [Getting Started](/doc/getting-started.md), we used `execute!` and `execute-one!` for all our SQL operations, except when we were reducing a result set. These functions (and `plan`) all expect a "connectable" and a vector containing a SQL string followed by any parameter values required.
A "connectable" can be a `javax.sql.DataSource`, a `java.sql.Connection`, or something that can produce a datasource (when `get-datasource` is called on it). It can also be a `java.sql.PreparedStatement` but we'll cover that a bit later...
Because string-building isn't always much fun, `next.jdbc.sql` also provides some "friendly" functions for basic CRUD operations:
* `insert!` and `insert-multi!` -- for inserting one or more rows into a table -- "Create",
* `query` -- an alias for `execute!` when using a vector of SQL and parameters -- "Read",
* `update!` -- for updating one or more rows in a table -- "Update",
* `delete!` -- for deleting one or more rows in a table -- "Delete".
as well as these more specific "read" operations:
* `find-by-keys` -- a query on one or more column values, specified as a hash map or `WHERE` clause,
* `get-by-id` -- a query to return a single row, based on a single column value, usually the primary key.
These functions are described in more detail below. They are deliberately simple and intended to cover only the most common, basic SQL operations. The primary API (`plan`, `execute!`, `execute-one!`) is the recommended approach for everything beyond that. If you need more expressiveness, consider one of the following libraries to build SQL/parameter vectors, or run queries:
* [HoneySQL](https://github.com/seancorfield/honeysql) -- a composable DSL for creating SQL/parameter vectors from Clojure data structures
* [seql](https://github.com/exoscale/seql) -- a simplified EQL-inspired query language, built on `next.jdbc` (as of release 0.1.6)
* [SQLingvo](https://github.com/r0man/sqlingvo) -- a composable DSL for creating SQL/parameter vectors
* [Walkable](https://github.com/walkable-server/walkable) -- full EQL query language support for creating SQL/parameter vectors
If you prefer to write your SQL separately from your code, take a look at [HugSQL](https://github.com/layerware/hugsql) -- [HugSQL documentation](https://www.hugsql.org/) -- which has a `next.jdbc` adapter, as of version 0.5.1. See below for a "[quick start](#hugsql-quick-start)" for using HugSQL with `next.jdbc`.
As of 1.3.925, `aggregate-by-keys` exists as a wrapper around `find-by-keys`
that accepts the same options as `find-by-keys` and an aggregate SQL expression
and it returns a single value (the aggregate). `aggregate-by-keys` accepts the
same options as `find-by-keys` except that `:columns` may not be specified
(since it is used to add the aggregate to the query).
## `insert!`
Given a table name (as a keyword) and a hash map of column names and values, this performs a single row insertion into the database:
```clojure
(sql/insert! ds :address {:name "A. Person" :email "albert@person.org"})
;; equivalent to
(jdbc/execute-one! ds ["INSERT INTO address (name,email) VALUES (?,?)"
"A.Person" "albert@person.org"] {:return-keys true})
;; some databases may require this instead
(jdbc/execute-one! ds ["INSERT INTO address (name,email) VALUES (?,?) RETURNING *"
"A.Person" "albert@person.org"])
;; which you can achieve with the :suffix option
(sql/insert! ds :address {:name "A. Person" :email "albert@person.org"}
{:suffix "RETURNING *"})
```
If you have multiple rows (hash maps) to insert and they all have the same
set of keys, you can use `insert-multi!` instead (see below), which will
perform a single multi-row insertion, which will generally be faster.
## `insert-multi!`
Given a table name (as a keyword), a vector of column names, and a vector of
row value vectors, this performs a single multi-row insertion into the database:
```clojure
(sql/insert-multi! ds :address
[:name :email]
[["Stella" "stella@artois.beer"]
["Waldo" "waldo@lagunitas.beer"]
["Aunt Sally" "sour@lagunitas.beer"]])
;; equivalent to
(jdbc/execute! ds ["INSERT INTO address (name,email) VALUES (?,?), (?,?), (?,?)"
"Stella" "stella@artois.beer"
"Waldo" "waldo@lagunitas.beer"
"Aunt Sally" "sour@lagunitas.beer"] {:return-keys true})
```
All the row vectors must be the same length, and must match the number of
columns specified.
Given a table name (as a keyword) and a vector of hash maps, this performs a
single multi-row insertion into the database:
```clojure
(sql/insert-multi! ds :address
[{:name "Stella", :email "stella@artois.beer"}
{:name "Waldo", :email "waldo@lagunitas.beer"}
{:name "Aunt Sally", :email "sour@lagunitas.beer"}])
;; equivalent to
(jdbc/execute! ds ["INSERT INTO address (name,email) VALUES (?,?), (?,?), (?,?)"
"Stella" "stella@artois.beer"
"Waldo" "waldo@lagunitas.beer"
"Aunt Sally" "sour@lagunitas.beer"] {:return-keys true})
```
All the hash maps must have the same set of keys, so that the vector of hash
maps can be converted to a vector of columns names and a vector of row value
vectors, as above, so a single multi-row insertion can be performed.
If you wish to insert multiple hash maps that do not have identical keys, you
need to iterate over `insert!` and insert one row at a time, which will
generally be much slower.
> Note: both of these expand to a single SQL statement with placeholders for every
value being inserted -- for large sets of rows, this may exceed the limits
on SQL string size and/or number of parameters for your JDBC driver or your
database. Several databases have a limit of 1,000 parameter placeholders.
Oracle does not support this form of multi-row insert, requiring a different
syntax altogether.
### Batch Insertion
As of release 1.2.790, you can specify `:batch true` in the options, which
will use `execute-batch!` under the hood, instead of `execute!`, as follows:
```clojure
(sql/insert-multi! ds :address
[:name :email]
[["Stella" "stella@artois.beer"]
["Waldo" "waldo@lagunitas.beer"]
["Aunt Sally" "sour@lagunitas.beer"]]
{:batch true})
;; equivalent to
(jdbc/execute-batch! ds
["INSERT INTO address (name,email) VALUES (?,?)"
["Stella" "stella@artois.beer"]
["Waldo" "waldo@lagunitas.beer"]
["Aunt Sally" "sour@lagunitas.beer"]]
{:return-keys true :return-generated-keys true})
;; and
(sql/insert-multi! ds :address
[:name :email]
[{:name "Stella", :email "stella@artois.beer"}
{:name "Waldo", :email "waldo@lagunitas.beer"}
{:name "Aunt Sally", :email "sour@lagunitas.beer"}]
{:batch true})
;; equivalent to
(jdbc/execute-batch! ds
["INSERT INTO address (name,email) VALUES (?,?)"
["Stella" "stella@artois.beer"]
["Waldo" "waldo@lagunitas.beer"]
["Aunt Sally" "sour@lagunitas.beer"]]
{:return-keys true :return-generated-keys true})
```
> Note: not all databases or drivers support returning generated keys like this -- see [**Batched Parameters**](https://cljdoc.org/d/com.github.seancorfield/next.jdbc/CURRENT/doc/getting-started/prepared-statements#caveats) for caveats and possible database-specific behaviors. You may need `RETURNING *` in your SQL instead.
## `query`
Given a vector of SQL and parameters, execute it:
```clojure
(sql/query ds ["select * from address where name = ?" "Stella"])
;; equivalent to
(jdbc/execute! ds ["SELECT * FROM address WHERE name = ?" "Stella"])
```
Note that the single argument form of `execute!`, taking just a `PreparedStatement`, is not supported by `query`.
## `update!`
Given a table name (as a keyword), a hash map of columns names and values to set, and either a hash map of column names and values to match on or a vector containing a partial `WHERE` clause and parameters, perform an update operation on the database:
```clojure
(sql/update! ds :address {:name "Somebody New"} {:id 2})
;; equivalent to
(sql/update! ds :address {:name "Somebody New"} ["id = ?" 2])
;; equivalent to
(jdbc/execute-one! ds ["UPDATE address SET name = ? WHERE id = ?"
"Somebody New" 2])
```
## `delete!`
Given a table name (as a keyword) and either a hash map of column names and values to match on or a vector containing a partial `WHERE` clause and parameters, perform a delete operation on the database:
```clojure
(sql/delete! ds :address {:id 8})
;; equivalent to
(sql/delete! ds :address ["id = ?" 8])
;; equivalent to
(jdbc/execute-one! ds ["DELETE FROM address WHERE id = ?" 8])
```
## `find-by-keys`
Given a table name (as a keyword) and either a hash map of column names and values to match on or a vector containing a partial `WHERE` clause and parameters, execute a query on the database:
```clojure
(sql/find-by-keys ds :address {:name "Stella" :email "stella@artois.beer"})
;; equivalent to
(sql/find-by-keys ds :address ["name = ? AND email = ?"
"Stella" "stella@artois.beer"])
;; equivalent to
(jdbc/execute! ds ["SELECT * FROM address WHERE name = ? AND email = ?"
"Stella" "stella@artois.beer"])
```
While the hash map approach -- "query by example" -- is great for equality
comparisons, sometimes you need other types of comparisons. For example, you
might want to find all the rows where the email address ends in `.beer`:
```clojure
(sql/find-by-keys ds :address ["email LIKE ?" "%.beer"])
;; equivalent to
(jdbc/execute! ds ["SELECT * FROM address WHERE email LIKE ?" "%.beer"])
```
Or you may want to find all the rows where the name is one of a specific
set of values:
```clojure
(sql/find-by-keys ds :address ["name IN (?,?)" "Stella" "Waldo"])
;; equivalent to
(jdbc/execute! ds ["SELECT * FROM address WHERE name IN (?,?)" "Stella" "Waldo"])
```
The default behavior is to return all the columns in each row. You can specify a subset of columns to return using the `:columns` option. It takes a vector and each element of the vector can be:
* a simple keyword representing the column name (`:column-fn` will be applied, if provided),
* a pair of keywords representing the column name and an alias (`:column-fn` will be applied to both, if provided),
* a pair consisting of a string and a keyword, representing a SQL expression and an alias (`:column-fn` will be applied to the alias, if provided).
```clojure
(sql/find-by-keys ds :address {:name "Stella"} {:columns [[:email :address]]})
;; equivalent to
(jdbc/execute! ds ["SELECT email AS address FROM address WHERE name = ?"
"Stella"])
(sql/find-by-keys ds :address {:name "Stella"} {:columns [["count(*)" :n]]})
;; equivalent to
(jdbc/execute! ds ["SELECT count(*) AS n FROM address WHERE name = ?"
"Stella"])
```
> Note: the SQL string provided for a column is copied exactly as-is into the generated SQL -- you are responsible for ensuring it is legal SQL!
`find-by-keys` supports an `:order-by` option which can specify a vector of column names to sort the results by. Elements may be column names or pairs of a column name and the direction to sort: `:asc` or `:desc`:
```clojure
(sql/find-by-keys ds :address
{:name "Stella" :email "stella@artois.beer"}
{:order-by [[:id :desc]]})
;; equivalent to
(jdbc/execute! ds ["SELECT * FROM address WHERE name = ? AND email = ? ORDER BY id DESC"
"Stella" "stella@artois.beer"])
```
`find-by-keys` also supports basic pagination with `:offset` and `:fetch` options which both accept numeric values and adds `OFFSET ? ROWS FETCH NEXT ? ROWS ONLY` to the generated query. To support MySQL and SQLite, you can specify `:limit` instead `:fetch` which adds `LIMIT ? OFFSET ?` to the generated query instead.
If you want to match all rows in a table -- perhaps with the pagination options in effect -- you can pass the keyword `:all` instead of either a hash map of column names and values or a vector containing a partial `WHERE` clause and parameters.
```clojure
(sql/find-by-keys ds :address :all {:order-by [:id] :offset 5 :fetch 10})
;; equivalent to
(jdbc/execute! ds ["SELECT * FROM address ORDER BY id OFFSET ? ROWS FETCH NEXT ? ROWS ONLY" 5 10])
```
If no rows match, `find-by-keys` returns `[]`, just like `execute!`.
## `aggregate-by-keys`
Added in 1.3.925, this is a wrapper around `find-by-keys` that makes it easier
to perform aggregate queries::
```clojure
(sql/aggregate-by-keys ds :address "count(*)" {:name "Stella"
:email "stella@artois.beer"})
;; is roughly equivalent to
(-> (sql/find-by-keys ds :address {:name "Stella" :email "stella@artois.beer"}
{:columns [["count(*)" :next_jdbc_aggregate_123]]})
(first)
(get :next_jdbc_aggregate_123))
```
(where `:next_jdbc_aggregate_123` is a unique alias generated by `next.jdbc`,
derived from the aggregate expression string).
> Note: the SQL string provided for the aggregate is copied exactly as-is into the generated SQL -- you are responsible for ensuring it is legal SQL!
## `get-by-id`
Given a table name (as a keyword) and a primary key value, with an optional primary key column name, execute a query on the database:
```clojure
(sql/get-by-id ds :address 2)
;; equivalent to
(sql/get-by-id ds :address 2 {}) ; empty options map
;; equivalent to
(sql/get-by-id ds :address 2 :id {}) ; empty options map
;; equivalent to
(jdbc/execute-one! ds ["SELECT * FROM address WHERE id = ?" 2])
```
Note that in order to override the default primary key column name (of `:id`), you need to specify both the column name and an options hash map.
If no rows match, `get-by-id` returns `nil`, just like `execute-one!`.
## Table & Column Entity Names
By default, `next.jdbc.sql` functions construct SQL strings with the entity names exactly matching the (unqualified) keywords provided. If you are trying to use a table name or column name that is a reserved name in SQL for your database, you will need to tell those functions to quote those names.
The namespace `next.jdbc.quoted` provides five functions that cover the most common types of entity quoting, and a modifier function for quoting dot-separated names (e.g., that include schemas):
* `ansi` -- wraps entity names in double quotes,
* `mysql` -- wraps entity names in back ticks,
* `sql-server` -- wraps entity names in square brackets,
* `oracle` -- an alias for `ansi`,
* `postgres` -- an alias for `ansi`.
* `schema` -- wraps a quoting function to support `dbo.table` style entity names.
These quoting functions can be provided to any of the friendly SQL functions above using the `:table-fn` and `:column-fn` options, in a hash map provided as the (optional) last argument in any call. If you want to provide your own entity naming function, you can do that:
```clojure
(defn snake-case [s] (str/replace s #"-" "_"))
(sql/insert! ds :my-table {:some "data"} {:table-fn snake-case})
```
`next.jdbc` provides `snake-kebab-opts` and `unqualified-snake-kebab-opts` which are hash maps containing `:column-fn` and `:table-fn` that use the `->snake_case` function from the [camel-snake-kebab library](https://github.com/clj-commons/camel-snake-kebab/) which performs a more sophisticated transformation:
```clojure
;; transforms :my-table to my_table as above but will also transform
;; column names; in addition, it will perform the reverse transformation
;; on any results, e.g., turning MySQL's :GENERATED_KEY into :generated-key
(sql/insert! ds :my-table {:some "data"} jdbc/snake-kebab-opts)
```
> Note: The entity naming function is passed a string, the result of calling `name` on the keyword passed in. Also note that the default quoting functions do not handle schema-qualified names, such as `dbo.table_name` -- `sql-server` would produce `[dbo.table_name]` from that. Use the `schema` function to wrap the quoting function if you need that behavior, e.g,. `{:table-fn (schema sql-server)}` which would produce `[dbo].[table_name]`.
## HugSQL Quick Start
Here's how to get up and running quickly with `next.jdbc` and HugSQL. For more detail, consult the [HugSQL documentation](https://www.hugsql.org/). Add the following dependencies to your project (in addition to `com.github.seancorfield/next.jdbc` and whichever JDBC drivers you need):
```clojure
com.layerware/hugsql-core {:mvn/version "0.5.3"}
com.layerware/hugsql-adapter-next-jdbc {:mvn/version "0.5.3"}
```
_Check the HugSQL documentation for the latest versions to use!_
Write your SQL in `.sql` files that are on the classpath (somewhere under `src` or `resources`). For our purposes, assume a SQL file `db/example.sql` containing your first set of definitions. In your namespace, add these `require`s:
```clojure
[hugsql.core :as hugsql]
[hugsql.adapter.next-jdbc :as adapter]
[next.jdbc :as jdbc]
```
At program startup you'll need to call these functions (either at the top-level of your namespace on inside your initialization function):
```clojure
;; regular SQL functions
(hugsql/def-db-fns "db/example.sql"
{:adapter (adapter/hugsql-adapter-next-jdbc)})
;; development/advanced usage functions that produce a vector containing
;; SQL and parameters that could be passed to jdbc/execute! etc
(hugsql/def-sqlvec-fns "db/example.sql"
{:adapter (adapter/hugsql-adapter-next-jdbc)})
```
Those calls will add function definitions to that namespace based on what is in the `.sql` files. Now set up your db-spec and datasource as usual with `next.jdbc`:
```clojure
(def db-spec {:dbtype "h2:mem" :dbname "example"}) ; assumes H2 driver in deps.edn
(def ds (jdbc/get-datasource db-spec))
```
Borrowing from Princess Bride examples from the HugSQL documentation, you can now do things like this:
```clojure
(create-characters-table ds)
;;=> [#:next.jdbc{:update-count 0}]
(insert-character ds {:name "Westley", :specialty "love"})
;;=> 1
```
By default, for compatibility with their default adapter (`clojure.java.jdbc`), the `next.jdbc` adapter uses the `next.jdbc.result-set/as-unqualified-lower-maps` builder function. You can specify a different builder function when you pass in the adapter:
```clojure
;; add require next.jdbc.result-set :as rs to your ns
(hugsql/def-db-fns "db/example.sql"
{:adapter (adapter/hugsql-adapter-next-jdbc
{:builder-fn rs/as-maps})})
;; now you'll get qualified as-is hash maps back:
(character-by-id ds {:id 1})
;;=> #:CHARACTERS{:ID 1, :NAME "Westley", :SPECIALTY "love", :CREATED_AT #inst "2019-09-27T18:52:54.413000000-00:00"}
```
|