| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 
 | /*
    tests/test_smart_ptr.cpp -- binding classes with custom reference counting,
    implicit conversions between types
    Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
    All rights reserved. Use of this source code is governed by a
    BSD-style license that can be found in the LICENSE file.
*/
#if defined(_MSC_VER) && _MSC_VER < 1910
#  pragma warning(disable: 4702) // unreachable code in system header
#endif
#include "pybind11_tests.h"
#include "object.h"
// Make pybind aware of the ref-counted wrapper type (s):
// ref<T> is a wrapper for 'Object' which uses intrusive reference counting
// It is always possible to construct a ref<T> from an Object* pointer without
// possible inconsistencies, hence the 'true' argument at the end.
PYBIND11_DECLARE_HOLDER_TYPE(T, ref<T>, true);
// Make pybind11 aware of the non-standard getter member function
namespace pybind11 { namespace detail {
    template <typename T>
    struct holder_helper<ref<T>> {
        static const T *get(const ref<T> &p) { return p.get_ptr(); }
    };
} // namespace detail
} // namespace pybind11
// The following is not required anymore for std::shared_ptr, but it should compile without error:
PYBIND11_DECLARE_HOLDER_TYPE(T, std::shared_ptr<T>);
// This is just a wrapper around unique_ptr, but with extra fields to deliberately bloat up the
// holder size to trigger the non-simple-layout internal instance layout for single inheritance with
// large holder type:
template <typename T> class huge_unique_ptr {
    std::unique_ptr<T> ptr;
    uint64_t padding[10];
public:
    huge_unique_ptr(T *p) : ptr(p) {};
    T *get() { return ptr.get(); }
};
PYBIND11_DECLARE_HOLDER_TYPE(T, huge_unique_ptr<T>);
// Simple custom holder that works like unique_ptr
template <typename T>
class custom_unique_ptr {
    std::unique_ptr<T> impl;
public:
    custom_unique_ptr(T* p) : impl(p) { }
    T* get() const { return impl.get(); }
    T* release_ptr() { return impl.release(); }
};
PYBIND11_DECLARE_HOLDER_TYPE(T, custom_unique_ptr<T>);
// Simple custom holder that works like shared_ptr and has operator& overload
// To obtain address of an instance of this holder pybind should use std::addressof
// Attempt to get address via operator& may leads to segmentation fault
template <typename T>
class shared_ptr_with_addressof_operator {
    std::shared_ptr<T> impl;
public:
    shared_ptr_with_addressof_operator( ) = default;
    shared_ptr_with_addressof_operator(T* p) : impl(p) { }
    T* get() const { return impl.get(); }
    T** operator&() { throw std::logic_error("Call of overloaded operator& is not expected"); }
};
PYBIND11_DECLARE_HOLDER_TYPE(T, shared_ptr_with_addressof_operator<T>);
// Simple custom holder that works like unique_ptr and has operator& overload
// To obtain address of an instance of this holder pybind should use std::addressof
// Attempt to get address via operator& may leads to segmentation fault
template <typename T>
class unique_ptr_with_addressof_operator {
    std::unique_ptr<T> impl;
public:
    unique_ptr_with_addressof_operator() = default;
    unique_ptr_with_addressof_operator(T* p) : impl(p) { }
    T* get() const { return impl.get(); }
    T* release_ptr() { return impl.release(); }
    T** operator&() { throw std::logic_error("Call of overloaded operator& is not expected"); }
};
PYBIND11_DECLARE_HOLDER_TYPE(T, unique_ptr_with_addressof_operator<T>);
TEST_SUBMODULE(smart_ptr, m) {
    // test_smart_ptr
    // Object implementation in `object.h`
    py::class_<Object, ref<Object>> obj(m, "Object");
    obj.def("getRefCount", &Object::getRefCount);
    // Custom object with builtin reference counting (see 'object.h' for the implementation)
    class MyObject1 : public Object {
    public:
        MyObject1(int value) : value(value) { print_created(this, toString()); }
        std::string toString() const override { return "MyObject1[" + std::to_string(value) + "]"; }
    protected:
        ~MyObject1() override { print_destroyed(this); }
    private:
        int value;
    };
    py::class_<MyObject1, ref<MyObject1>>(m, "MyObject1", obj)
        .def(py::init<int>());
    py::implicitly_convertible<py::int_, MyObject1>();
    m.def("make_object_1", []() -> Object * { return new MyObject1(1); });
    m.def("make_object_2", []() -> ref<Object> { return new MyObject1(2); });
    m.def("make_myobject1_1", []() -> MyObject1 * { return new MyObject1(4); });
    m.def("make_myobject1_2", []() -> ref<MyObject1> { return new MyObject1(5); });
    m.def("print_object_1", [](const Object *obj) { py::print(obj->toString()); });
    m.def("print_object_2", [](ref<Object> obj) { py::print(obj->toString()); });
    m.def("print_object_3", [](const ref<Object> &obj) { py::print(obj->toString()); });
    m.def("print_object_4", [](const ref<Object> *obj) { py::print((*obj)->toString()); });
    m.def("print_myobject1_1", [](const MyObject1 *obj) { py::print(obj->toString()); });
    m.def("print_myobject1_2", [](ref<MyObject1> obj) { py::print(obj->toString()); });
    m.def("print_myobject1_3", [](const ref<MyObject1> &obj) { py::print(obj->toString()); });
    m.def("print_myobject1_4", [](const ref<MyObject1> *obj) { py::print((*obj)->toString()); });
    // Expose constructor stats for the ref type
    m.def("cstats_ref", &ConstructorStats::get<ref_tag>);
    // Object managed by a std::shared_ptr<>
    class MyObject2 {
    public:
        MyObject2(const MyObject2 &) = default;
        MyObject2(int value) : value(value) { print_created(this, toString()); }
        std::string toString() const { return "MyObject2[" + std::to_string(value) + "]"; }
        virtual ~MyObject2() { print_destroyed(this); }
    private:
        int value;
    };
    py::class_<MyObject2, std::shared_ptr<MyObject2>>(m, "MyObject2")
        .def(py::init<int>());
    m.def("make_myobject2_1", []() { return new MyObject2(6); });
    m.def("make_myobject2_2", []() { return std::make_shared<MyObject2>(7); });
    m.def("print_myobject2_1", [](const MyObject2 *obj) { py::print(obj->toString()); });
    m.def("print_myobject2_2", [](std::shared_ptr<MyObject2> obj) { py::print(obj->toString()); });
    m.def("print_myobject2_3", [](const std::shared_ptr<MyObject2> &obj) { py::print(obj->toString()); });
    m.def("print_myobject2_4", [](const std::shared_ptr<MyObject2> *obj) { py::print((*obj)->toString()); });
    // Object managed by a std::shared_ptr<>, additionally derives from std::enable_shared_from_this<>
    class MyObject3 : public std::enable_shared_from_this<MyObject3> {
    public:
        MyObject3(const MyObject3 &) = default;
        MyObject3(int value) : value(value) { print_created(this, toString()); }
        std::string toString() const { return "MyObject3[" + std::to_string(value) + "]"; }
        virtual ~MyObject3() { print_destroyed(this); }
    private:
        int value;
    };
    py::class_<MyObject3, std::shared_ptr<MyObject3>>(m, "MyObject3")
        .def(py::init<int>());
    m.def("make_myobject3_1", []() { return new MyObject3(8); });
    m.def("make_myobject3_2", []() { return std::make_shared<MyObject3>(9); });
    m.def("print_myobject3_1", [](const MyObject3 *obj) { py::print(obj->toString()); });
    m.def("print_myobject3_2", [](std::shared_ptr<MyObject3> obj) { py::print(obj->toString()); });
    m.def("print_myobject3_3", [](const std::shared_ptr<MyObject3> &obj) { py::print(obj->toString()); });
    m.def("print_myobject3_4", [](const std::shared_ptr<MyObject3> *obj) { py::print((*obj)->toString()); });
    // test_smart_ptr_refcounting
    m.def("test_object1_refcounting", []() {
        ref<MyObject1> o = new MyObject1(0);
        bool good = o->getRefCount() == 1;
        py::object o2 = py::cast(o, py::return_value_policy::reference);
        // always request (partial) ownership for objects with intrusive
        // reference counting even when using the 'reference' RVP
        good &= o->getRefCount() == 2;
        return good;
    });
    // test_unique_nodelete
    // Object with a private destructor
    class MyObject4 {
    public:
        MyObject4(int value) : value{value} { print_created(this); }
        int value;
    private:
        ~MyObject4() { print_destroyed(this); }
    };
    py::class_<MyObject4, std::unique_ptr<MyObject4, py::nodelete>>(m, "MyObject4")
        .def(py::init<int>())
        .def_readwrite("value", &MyObject4::value);
    // test_unique_deleter
    // Object with std::unique_ptr<T, D> where D is not matching the base class
    // Object with a protected destructor
    class MyObject4a {
    public:
        MyObject4a(int i) {
            value = i;
            print_created(this);
        };
        int value;
    protected:
        virtual ~MyObject4a() { print_destroyed(this); }
    };
    py::class_<MyObject4a, std::unique_ptr<MyObject4a, py::nodelete>>(m, "MyObject4a")
        .def(py::init<int>())
        .def_readwrite("value", &MyObject4a::value);
    // Object derived but with public destructor and no Deleter in default holder
    class MyObject4b : public MyObject4a {
    public:
        MyObject4b(int i) : MyObject4a(i) { print_created(this); }
        ~MyObject4b() override { print_destroyed(this); }
    };
    py::class_<MyObject4b, MyObject4a>(m, "MyObject4b")
        .def(py::init<int>());
    // test_large_holder
    class MyObject5 { // managed by huge_unique_ptr
    public:
        MyObject5(int value) : value{value} { print_created(this); }
        ~MyObject5() { print_destroyed(this); }
        int value;
    };
    py::class_<MyObject5, huge_unique_ptr<MyObject5>>(m, "MyObject5")
        .def(py::init<int>())
        .def_readwrite("value", &MyObject5::value);
    // test_shared_ptr_and_references
    struct SharedPtrRef {
        struct A {
            A() { print_created(this); }
            A(const A &) { print_copy_created(this); }
            A(A &&) { print_move_created(this); }
            ~A() { print_destroyed(this); }
        };
        A value = {};
        std::shared_ptr<A> shared = std::make_shared<A>();
    };
    using A = SharedPtrRef::A;
    py::class_<A, std::shared_ptr<A>>(m, "A");
    py::class_<SharedPtrRef>(m, "SharedPtrRef")
        .def(py::init<>())
        .def_readonly("ref", &SharedPtrRef::value)
        .def_property_readonly("copy", [](const SharedPtrRef &s) { return s.value; },
                               py::return_value_policy::copy)
        .def_readonly("holder_ref", &SharedPtrRef::shared)
        .def_property_readonly("holder_copy", [](const SharedPtrRef &s) { return s.shared; },
                               py::return_value_policy::copy)
        .def("set_ref", [](SharedPtrRef &, const A &) { return true; })
        .def("set_holder", [](SharedPtrRef &, std::shared_ptr<A>) { return true; });
    // test_shared_ptr_from_this_and_references
    struct SharedFromThisRef {
        struct B : std::enable_shared_from_this<B> {
            B() { print_created(this); }
            B(const B &) : std::enable_shared_from_this<B>() { print_copy_created(this); }
            B(B &&) : std::enable_shared_from_this<B>() { print_move_created(this); }
            ~B() { print_destroyed(this); }
        };
        B value = {};
        std::shared_ptr<B> shared = std::make_shared<B>();
    };
    using B = SharedFromThisRef::B;
    py::class_<B, std::shared_ptr<B>>(m, "B");
    py::class_<SharedFromThisRef>(m, "SharedFromThisRef")
        .def(py::init<>())
        .def_readonly("bad_wp", &SharedFromThisRef::value)
        .def_property_readonly("ref", [](const SharedFromThisRef &s) -> const B & { return *s.shared; })
        .def_property_readonly("copy", [](const SharedFromThisRef &s) { return s.value; },
                               py::return_value_policy::copy)
        .def_readonly("holder_ref", &SharedFromThisRef::shared)
        .def_property_readonly("holder_copy", [](const SharedFromThisRef &s) { return s.shared; },
                               py::return_value_policy::copy)
        .def("set_ref", [](SharedFromThisRef &, const B &) { return true; })
        .def("set_holder", [](SharedFromThisRef &, std::shared_ptr<B>) { return true; });
    // Issue #865: shared_from_this doesn't work with virtual inheritance
    struct SharedFromThisVBase : std::enable_shared_from_this<SharedFromThisVBase> {
        SharedFromThisVBase() = default;
        SharedFromThisVBase(const SharedFromThisVBase &) = default;
        virtual ~SharedFromThisVBase() = default;
    };
    struct SharedFromThisVirt : virtual SharedFromThisVBase {};
    static std::shared_ptr<SharedFromThisVirt> sft(new SharedFromThisVirt());
    py::class_<SharedFromThisVirt, std::shared_ptr<SharedFromThisVirt>>(m, "SharedFromThisVirt")
        .def_static("get", []() { return sft.get(); });
    // test_move_only_holder
    struct C {
        C() { print_created(this); }
        ~C() { print_destroyed(this); }
    };
    py::class_<C, custom_unique_ptr<C>>(m, "TypeWithMoveOnlyHolder")
        .def_static("make", []() { return custom_unique_ptr<C>(new C); })
        .def_static("make_as_object", []() { return py::cast(custom_unique_ptr<C>(new C)); });
    // test_holder_with_addressof_operator
    struct TypeForHolderWithAddressOf {
        TypeForHolderWithAddressOf() { print_created(this); }
        TypeForHolderWithAddressOf(const TypeForHolderWithAddressOf &) { print_copy_created(this); }
        TypeForHolderWithAddressOf(TypeForHolderWithAddressOf &&) { print_move_created(this); }
        ~TypeForHolderWithAddressOf() { print_destroyed(this); }
        std::string toString() const {
            return "TypeForHolderWithAddressOf[" + std::to_string(value) + "]";
        }
        int value = 42;
    };
    using HolderWithAddressOf = shared_ptr_with_addressof_operator<TypeForHolderWithAddressOf>;
    py::class_<TypeForHolderWithAddressOf, HolderWithAddressOf>(m, "TypeForHolderWithAddressOf")
        .def_static("make", []() { return HolderWithAddressOf(new TypeForHolderWithAddressOf); })
        .def("get", [](const HolderWithAddressOf &self) { return self.get(); })
        .def("print_object_1", [](const TypeForHolderWithAddressOf *obj) { py::print(obj->toString()); })
        .def("print_object_2", [](HolderWithAddressOf obj) { py::print(obj.get()->toString()); })
        .def("print_object_3", [](const HolderWithAddressOf &obj) { py::print(obj.get()->toString()); })
        .def("print_object_4", [](const HolderWithAddressOf *obj) { py::print((*obj).get()->toString()); });
    // test_move_only_holder_with_addressof_operator
    struct TypeForMoveOnlyHolderWithAddressOf {
        TypeForMoveOnlyHolderWithAddressOf(int value) : value{value} { print_created(this); }
        ~TypeForMoveOnlyHolderWithAddressOf() { print_destroyed(this); }
        std::string toString() const {
            return "MoveOnlyHolderWithAddressOf[" + std::to_string(value) + "]";
        }
        int value;
    };
    using MoveOnlyHolderWithAddressOf = unique_ptr_with_addressof_operator<TypeForMoveOnlyHolderWithAddressOf>;
    py::class_<TypeForMoveOnlyHolderWithAddressOf, MoveOnlyHolderWithAddressOf>(m, "TypeForMoveOnlyHolderWithAddressOf")
        .def_static("make", []() { return MoveOnlyHolderWithAddressOf(new TypeForMoveOnlyHolderWithAddressOf(0)); })
        .def_readwrite("value", &TypeForMoveOnlyHolderWithAddressOf::value)
        .def("print_object", [](const TypeForMoveOnlyHolderWithAddressOf *obj) { py::print(obj->toString()); });
    // test_smart_ptr_from_default
    struct HeldByDefaultHolder { };
    py::class_<HeldByDefaultHolder>(m, "HeldByDefaultHolder")
        .def(py::init<>())
        .def_static("load_shared_ptr", [](std::shared_ptr<HeldByDefaultHolder>) {});
    // test_shared_ptr_gc
    // #187: issue involving std::shared_ptr<> return value policy & garbage collection
    struct ElementBase {
        virtual ~ElementBase() = default; /* Force creation of virtual table */
        ElementBase() = default;
        ElementBase(const ElementBase&) = delete;
    };
    py::class_<ElementBase, std::shared_ptr<ElementBase>>(m, "ElementBase");
    struct ElementA : ElementBase {
        ElementA(int v) : v(v) { }
        int value() { return v; }
        int v;
    };
    py::class_<ElementA, ElementBase, std::shared_ptr<ElementA>>(m, "ElementA")
        .def(py::init<int>())
        .def("value", &ElementA::value);
    struct ElementList {
        void add(std::shared_ptr<ElementBase> e) { l.push_back(e); }
        std::vector<std::shared_ptr<ElementBase>> l;
    };
    py::class_<ElementList, std::shared_ptr<ElementList>>(m, "ElementList")
        .def(py::init<>())
        .def("add", &ElementList::add)
        .def("get", [](ElementList &el) {
            py::list list;
            for (auto &e : el.l)
                list.append(py::cast(e));
            return list;
        });
}
 |