1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
|
// Copyright 2007, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Author: wan@google.com (Zhanyong Wan)
// Google Mock - a framework for writing C++ mock classes.
//
// This file tests the built-in actions generated by a script.
#include "gmock/gmock-generated-actions.h"
#include <functional>
#include <sstream>
#include <string>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
namespace testing {
namespace gmock_generated_actions_test {
using ::std::plus;
using ::std::string;
using testing::get;
using testing::make_tuple;
using testing::tuple;
using testing::tuple_element;
using testing::_;
using testing::Action;
using testing::ActionInterface;
using testing::ByRef;
using testing::DoAll;
using testing::Invoke;
using testing::Return;
using testing::ReturnNew;
using testing::SetArgPointee;
using testing::StaticAssertTypeEq;
using testing::Unused;
using testing::WithArgs;
// For suppressing compiler warnings on conversion possibly losing precision.
inline short Short(short n) { return n; } // NOLINT
inline char Char(char ch) { return ch; }
// Sample functions and functors for testing various actions.
int Nullary() { return 1; }
class NullaryFunctor {
public:
int operator()() { return 2; }
};
bool g_done = false;
bool Unary(int x) { return x < 0; }
const char* Plus1(const char* s) { return s + 1; }
bool ByConstRef(const string& s) { return s == "Hi"; }
const double g_double = 0;
bool ReferencesGlobalDouble(const double& x) { return &x == &g_double; }
string ByNonConstRef(string& s) { return s += "+"; } // NOLINT
struct UnaryFunctor {
int operator()(bool x) { return x ? 1 : -1; }
};
const char* Binary(const char* input, short n) { return input + n; } // NOLINT
void VoidBinary(int, char) { g_done = true; }
int Ternary(int x, char y, short z) { return x + y + z; } // NOLINT
void VoidTernary(int, char, bool) { g_done = true; }
int SumOf4(int a, int b, int c, int d) { return a + b + c + d; }
string Concat4(const char* s1, const char* s2, const char* s3,
const char* s4) {
return string(s1) + s2 + s3 + s4;
}
int SumOf5(int a, int b, int c, int d, int e) { return a + b + c + d + e; }
struct SumOf5Functor {
int operator()(int a, int b, int c, int d, int e) {
return a + b + c + d + e;
}
};
string Concat5(const char* s1, const char* s2, const char* s3,
const char* s4, const char* s5) {
return string(s1) + s2 + s3 + s4 + s5;
}
int SumOf6(int a, int b, int c, int d, int e, int f) {
return a + b + c + d + e + f;
}
struct SumOf6Functor {
int operator()(int a, int b, int c, int d, int e, int f) {
return a + b + c + d + e + f;
}
};
string Concat6(const char* s1, const char* s2, const char* s3,
const char* s4, const char* s5, const char* s6) {
return string(s1) + s2 + s3 + s4 + s5 + s6;
}
string Concat7(const char* s1, const char* s2, const char* s3,
const char* s4, const char* s5, const char* s6,
const char* s7) {
return string(s1) + s2 + s3 + s4 + s5 + s6 + s7;
}
string Concat8(const char* s1, const char* s2, const char* s3,
const char* s4, const char* s5, const char* s6,
const char* s7, const char* s8) {
return string(s1) + s2 + s3 + s4 + s5 + s6 + s7 + s8;
}
string Concat9(const char* s1, const char* s2, const char* s3,
const char* s4, const char* s5, const char* s6,
const char* s7, const char* s8, const char* s9) {
return string(s1) + s2 + s3 + s4 + s5 + s6 + s7 + s8 + s9;
}
string Concat10(const char* s1, const char* s2, const char* s3,
const char* s4, const char* s5, const char* s6,
const char* s7, const char* s8, const char* s9,
const char* s10) {
return string(s1) + s2 + s3 + s4 + s5 + s6 + s7 + s8 + s9 + s10;
}
// A helper that turns the type of a C-string literal from const
// char[N] to const char*.
inline const char* CharPtr(const char* s) { return s; }
// Tests InvokeArgument<N>(...).
// Tests using InvokeArgument with a nullary function.
TEST(InvokeArgumentTest, Function0) {
Action<int(int, int(*)())> a = InvokeArgument<1>(); // NOLINT
EXPECT_EQ(1, a.Perform(make_tuple(2, &Nullary)));
}
// Tests using InvokeArgument with a unary function.
TEST(InvokeArgumentTest, Functor1) {
Action<int(UnaryFunctor)> a = InvokeArgument<0>(true); // NOLINT
EXPECT_EQ(1, a.Perform(make_tuple(UnaryFunctor())));
}
// Tests using InvokeArgument with a 5-ary function.
TEST(InvokeArgumentTest, Function5) {
Action<int(int(*)(int, int, int, int, int))> a = // NOLINT
InvokeArgument<0>(10000, 2000, 300, 40, 5);
EXPECT_EQ(12345, a.Perform(make_tuple(&SumOf5)));
}
// Tests using InvokeArgument with a 5-ary functor.
TEST(InvokeArgumentTest, Functor5) {
Action<int(SumOf5Functor)> a = // NOLINT
InvokeArgument<0>(10000, 2000, 300, 40, 5);
EXPECT_EQ(12345, a.Perform(make_tuple(SumOf5Functor())));
}
// Tests using InvokeArgument with a 6-ary function.
TEST(InvokeArgumentTest, Function6) {
Action<int(int(*)(int, int, int, int, int, int))> a = // NOLINT
InvokeArgument<0>(100000, 20000, 3000, 400, 50, 6);
EXPECT_EQ(123456, a.Perform(make_tuple(&SumOf6)));
}
// Tests using InvokeArgument with a 6-ary functor.
TEST(InvokeArgumentTest, Functor6) {
Action<int(SumOf6Functor)> a = // NOLINT
InvokeArgument<0>(100000, 20000, 3000, 400, 50, 6);
EXPECT_EQ(123456, a.Perform(make_tuple(SumOf6Functor())));
}
// Tests using InvokeArgument with a 7-ary function.
TEST(InvokeArgumentTest, Function7) {
Action<string(string(*)(const char*, const char*, const char*,
const char*, const char*, const char*,
const char*))> a =
InvokeArgument<0>("1", "2", "3", "4", "5", "6", "7");
EXPECT_EQ("1234567", a.Perform(make_tuple(&Concat7)));
}
// Tests using InvokeArgument with a 8-ary function.
TEST(InvokeArgumentTest, Function8) {
Action<string(string(*)(const char*, const char*, const char*,
const char*, const char*, const char*,
const char*, const char*))> a =
InvokeArgument<0>("1", "2", "3", "4", "5", "6", "7", "8");
EXPECT_EQ("12345678", a.Perform(make_tuple(&Concat8)));
}
// Tests using InvokeArgument with a 9-ary function.
TEST(InvokeArgumentTest, Function9) {
Action<string(string(*)(const char*, const char*, const char*,
const char*, const char*, const char*,
const char*, const char*, const char*))> a =
InvokeArgument<0>("1", "2", "3", "4", "5", "6", "7", "8", "9");
EXPECT_EQ("123456789", a.Perform(make_tuple(&Concat9)));
}
// Tests using InvokeArgument with a 10-ary function.
TEST(InvokeArgumentTest, Function10) {
Action<string(string(*)(const char*, const char*, const char*,
const char*, const char*, const char*,
const char*, const char*, const char*,
const char*))> a =
InvokeArgument<0>("1", "2", "3", "4", "5", "6", "7", "8", "9", "0");
EXPECT_EQ("1234567890", a.Perform(make_tuple(&Concat10)));
}
// Tests using InvokeArgument with a function that takes a pointer argument.
TEST(InvokeArgumentTest, ByPointerFunction) {
Action<const char*(const char*(*)(const char* input, short n))> a = // NOLINT
InvokeArgument<0>(static_cast<const char*>("Hi"), Short(1));
EXPECT_STREQ("i", a.Perform(make_tuple(&Binary)));
}
// Tests using InvokeArgument with a function that takes a const char*
// by passing it a C-string literal.
TEST(InvokeArgumentTest, FunctionWithCStringLiteral) {
Action<const char*(const char*(*)(const char* input, short n))> a = // NOLINT
InvokeArgument<0>("Hi", Short(1));
EXPECT_STREQ("i", a.Perform(make_tuple(&Binary)));
}
// Tests using InvokeArgument with a function that takes a const reference.
TEST(InvokeArgumentTest, ByConstReferenceFunction) {
Action<bool(bool(*function)(const string& s))> a = // NOLINT
InvokeArgument<0>(string("Hi"));
// When action 'a' is constructed, it makes a copy of the temporary
// string object passed to it, so it's OK to use 'a' later, when the
// temporary object has already died.
EXPECT_TRUE(a.Perform(make_tuple(&ByConstRef)));
}
// Tests using InvokeArgument with ByRef() and a function that takes a
// const reference.
TEST(InvokeArgumentTest, ByExplicitConstReferenceFunction) {
Action<bool(bool(*)(const double& x))> a = // NOLINT
InvokeArgument<0>(ByRef(g_double));
// The above line calls ByRef() on a const value.
EXPECT_TRUE(a.Perform(make_tuple(&ReferencesGlobalDouble)));
double x = 0;
a = InvokeArgument<0>(ByRef(x)); // This calls ByRef() on a non-const.
EXPECT_FALSE(a.Perform(make_tuple(&ReferencesGlobalDouble)));
}
// Tests using WithArgs and with an action that takes 1 argument.
TEST(WithArgsTest, OneArg) {
Action<bool(double x, int n)> a = WithArgs<1>(Invoke(Unary)); // NOLINT
EXPECT_TRUE(a.Perform(make_tuple(1.5, -1)));
EXPECT_FALSE(a.Perform(make_tuple(1.5, 1)));
}
// Tests using WithArgs with an action that takes 2 arguments.
TEST(WithArgsTest, TwoArgs) {
Action<const char*(const char* s, double x, short n)> a =
WithArgs<0, 2>(Invoke(Binary));
const char s[] = "Hello";
EXPECT_EQ(s + 2, a.Perform(make_tuple(CharPtr(s), 0.5, Short(2))));
}
// Tests using WithArgs with an action that takes 3 arguments.
TEST(WithArgsTest, ThreeArgs) {
Action<int(int, double, char, short)> a = // NOLINT
WithArgs<0, 2, 3>(Invoke(Ternary));
EXPECT_EQ(123, a.Perform(make_tuple(100, 6.5, Char(20), Short(3))));
}
// Tests using WithArgs with an action that takes 4 arguments.
TEST(WithArgsTest, FourArgs) {
Action<string(const char*, const char*, double, const char*, const char*)> a =
WithArgs<4, 3, 1, 0>(Invoke(Concat4));
EXPECT_EQ("4310", a.Perform(make_tuple(CharPtr("0"), CharPtr("1"), 2.5,
CharPtr("3"), CharPtr("4"))));
}
// Tests using WithArgs with an action that takes 5 arguments.
TEST(WithArgsTest, FiveArgs) {
Action<string(const char*, const char*, const char*,
const char*, const char*)> a =
WithArgs<4, 3, 2, 1, 0>(Invoke(Concat5));
EXPECT_EQ("43210",
a.Perform(make_tuple(CharPtr("0"), CharPtr("1"), CharPtr("2"),
CharPtr("3"), CharPtr("4"))));
}
// Tests using WithArgs with an action that takes 6 arguments.
TEST(WithArgsTest, SixArgs) {
Action<string(const char*, const char*, const char*)> a =
WithArgs<0, 1, 2, 2, 1, 0>(Invoke(Concat6));
EXPECT_EQ("012210",
a.Perform(make_tuple(CharPtr("0"), CharPtr("1"), CharPtr("2"))));
}
// Tests using WithArgs with an action that takes 7 arguments.
TEST(WithArgsTest, SevenArgs) {
Action<string(const char*, const char*, const char*, const char*)> a =
WithArgs<0, 1, 2, 3, 2, 1, 0>(Invoke(Concat7));
EXPECT_EQ("0123210",
a.Perform(make_tuple(CharPtr("0"), CharPtr("1"), CharPtr("2"),
CharPtr("3"))));
}
// Tests using WithArgs with an action that takes 8 arguments.
TEST(WithArgsTest, EightArgs) {
Action<string(const char*, const char*, const char*, const char*)> a =
WithArgs<0, 1, 2, 3, 0, 1, 2, 3>(Invoke(Concat8));
EXPECT_EQ("01230123",
a.Perform(make_tuple(CharPtr("0"), CharPtr("1"), CharPtr("2"),
CharPtr("3"))));
}
// Tests using WithArgs with an action that takes 9 arguments.
TEST(WithArgsTest, NineArgs) {
Action<string(const char*, const char*, const char*, const char*)> a =
WithArgs<0, 1, 2, 3, 1, 2, 3, 2, 3>(Invoke(Concat9));
EXPECT_EQ("012312323",
a.Perform(make_tuple(CharPtr("0"), CharPtr("1"), CharPtr("2"),
CharPtr("3"))));
}
// Tests using WithArgs with an action that takes 10 arguments.
TEST(WithArgsTest, TenArgs) {
Action<string(const char*, const char*, const char*, const char*)> a =
WithArgs<0, 1, 2, 3, 2, 1, 0, 1, 2, 3>(Invoke(Concat10));
EXPECT_EQ("0123210123",
a.Perform(make_tuple(CharPtr("0"), CharPtr("1"), CharPtr("2"),
CharPtr("3"))));
}
// Tests using WithArgs with an action that is not Invoke().
class SubstractAction : public ActionInterface<int(int, int)> { // NOLINT
public:
virtual int Perform(const tuple<int, int>& args) {
return get<0>(args) - get<1>(args);
}
};
TEST(WithArgsTest, NonInvokeAction) {
Action<int(const string&, int, int)> a = // NOLINT
WithArgs<2, 1>(MakeAction(new SubstractAction));
string s("hello");
EXPECT_EQ(8, a.Perform(tuple<const string&, int, int>(s, 2, 10)));
}
// Tests using WithArgs to pass all original arguments in the original order.
TEST(WithArgsTest, Identity) {
Action<int(int x, char y, short z)> a = // NOLINT
WithArgs<0, 1, 2>(Invoke(Ternary));
EXPECT_EQ(123, a.Perform(make_tuple(100, Char(20), Short(3))));
}
// Tests using WithArgs with repeated arguments.
TEST(WithArgsTest, RepeatedArguments) {
Action<int(bool, int m, int n)> a = // NOLINT
WithArgs<1, 1, 1, 1>(Invoke(SumOf4));
EXPECT_EQ(4, a.Perform(make_tuple(false, 1, 10)));
}
// Tests using WithArgs with reversed argument order.
TEST(WithArgsTest, ReversedArgumentOrder) {
Action<const char*(short n, const char* input)> a = // NOLINT
WithArgs<1, 0>(Invoke(Binary));
const char s[] = "Hello";
EXPECT_EQ(s + 2, a.Perform(make_tuple(Short(2), CharPtr(s))));
}
// Tests using WithArgs with compatible, but not identical, argument types.
TEST(WithArgsTest, ArgsOfCompatibleTypes) {
Action<long(short x, char y, double z, char c)> a = // NOLINT
WithArgs<0, 1, 3>(Invoke(Ternary));
EXPECT_EQ(123, a.Perform(make_tuple(Short(100), Char(20), 5.6, Char(3))));
}
// Tests using WithArgs with an action that returns void.
TEST(WithArgsTest, VoidAction) {
Action<void(double x, char c, int n)> a = WithArgs<2, 1>(Invoke(VoidBinary));
g_done = false;
a.Perform(make_tuple(1.5, 'a', 3));
EXPECT_TRUE(g_done);
}
// Tests DoAll(a1, a2).
TEST(DoAllTest, TwoActions) {
int n = 0;
Action<int(int*)> a = DoAll(SetArgPointee<0>(1), // NOLINT
Return(2));
EXPECT_EQ(2, a.Perform(make_tuple(&n)));
EXPECT_EQ(1, n);
}
// Tests DoAll(a1, a2, a3).
TEST(DoAllTest, ThreeActions) {
int m = 0, n = 0;
Action<int(int*, int*)> a = DoAll(SetArgPointee<0>(1), // NOLINT
SetArgPointee<1>(2),
Return(3));
EXPECT_EQ(3, a.Perform(make_tuple(&m, &n)));
EXPECT_EQ(1, m);
EXPECT_EQ(2, n);
}
// Tests DoAll(a1, a2, a3, a4).
TEST(DoAllTest, FourActions) {
int m = 0, n = 0;
char ch = '\0';
Action<int(int*, int*, char*)> a = // NOLINT
DoAll(SetArgPointee<0>(1),
SetArgPointee<1>(2),
SetArgPointee<2>('a'),
Return(3));
EXPECT_EQ(3, a.Perform(make_tuple(&m, &n, &ch)));
EXPECT_EQ(1, m);
EXPECT_EQ(2, n);
EXPECT_EQ('a', ch);
}
// Tests DoAll(a1, a2, a3, a4, a5).
TEST(DoAllTest, FiveActions) {
int m = 0, n = 0;
char a = '\0', b = '\0';
Action<int(int*, int*, char*, char*)> action = // NOLINT
DoAll(SetArgPointee<0>(1),
SetArgPointee<1>(2),
SetArgPointee<2>('a'),
SetArgPointee<3>('b'),
Return(3));
EXPECT_EQ(3, action.Perform(make_tuple(&m, &n, &a, &b)));
EXPECT_EQ(1, m);
EXPECT_EQ(2, n);
EXPECT_EQ('a', a);
EXPECT_EQ('b', b);
}
// Tests DoAll(a1, a2, ..., a6).
TEST(DoAllTest, SixActions) {
int m = 0, n = 0;
char a = '\0', b = '\0', c = '\0';
Action<int(int*, int*, char*, char*, char*)> action = // NOLINT
DoAll(SetArgPointee<0>(1),
SetArgPointee<1>(2),
SetArgPointee<2>('a'),
SetArgPointee<3>('b'),
SetArgPointee<4>('c'),
Return(3));
EXPECT_EQ(3, action.Perform(make_tuple(&m, &n, &a, &b, &c)));
EXPECT_EQ(1, m);
EXPECT_EQ(2, n);
EXPECT_EQ('a', a);
EXPECT_EQ('b', b);
EXPECT_EQ('c', c);
}
// Tests DoAll(a1, a2, ..., a7).
TEST(DoAllTest, SevenActions) {
int m = 0, n = 0;
char a = '\0', b = '\0', c = '\0', d = '\0';
Action<int(int*, int*, char*, char*, char*, char*)> action = // NOLINT
DoAll(SetArgPointee<0>(1),
SetArgPointee<1>(2),
SetArgPointee<2>('a'),
SetArgPointee<3>('b'),
SetArgPointee<4>('c'),
SetArgPointee<5>('d'),
Return(3));
EXPECT_EQ(3, action.Perform(make_tuple(&m, &n, &a, &b, &c, &d)));
EXPECT_EQ(1, m);
EXPECT_EQ(2, n);
EXPECT_EQ('a', a);
EXPECT_EQ('b', b);
EXPECT_EQ('c', c);
EXPECT_EQ('d', d);
}
// Tests DoAll(a1, a2, ..., a8).
TEST(DoAllTest, EightActions) {
int m = 0, n = 0;
char a = '\0', b = '\0', c = '\0', d = '\0', e = '\0';
Action<int(int*, int*, char*, char*, char*, char*, // NOLINT
char*)> action =
DoAll(SetArgPointee<0>(1),
SetArgPointee<1>(2),
SetArgPointee<2>('a'),
SetArgPointee<3>('b'),
SetArgPointee<4>('c'),
SetArgPointee<5>('d'),
SetArgPointee<6>('e'),
Return(3));
EXPECT_EQ(3, action.Perform(make_tuple(&m, &n, &a, &b, &c, &d, &e)));
EXPECT_EQ(1, m);
EXPECT_EQ(2, n);
EXPECT_EQ('a', a);
EXPECT_EQ('b', b);
EXPECT_EQ('c', c);
EXPECT_EQ('d', d);
EXPECT_EQ('e', e);
}
// Tests DoAll(a1, a2, ..., a9).
TEST(DoAllTest, NineActions) {
int m = 0, n = 0;
char a = '\0', b = '\0', c = '\0', d = '\0', e = '\0', f = '\0';
Action<int(int*, int*, char*, char*, char*, char*, // NOLINT
char*, char*)> action =
DoAll(SetArgPointee<0>(1),
SetArgPointee<1>(2),
SetArgPointee<2>('a'),
SetArgPointee<3>('b'),
SetArgPointee<4>('c'),
SetArgPointee<5>('d'),
SetArgPointee<6>('e'),
SetArgPointee<7>('f'),
Return(3));
EXPECT_EQ(3, action.Perform(make_tuple(&m, &n, &a, &b, &c, &d, &e, &f)));
EXPECT_EQ(1, m);
EXPECT_EQ(2, n);
EXPECT_EQ('a', a);
EXPECT_EQ('b', b);
EXPECT_EQ('c', c);
EXPECT_EQ('d', d);
EXPECT_EQ('e', e);
EXPECT_EQ('f', f);
}
// Tests DoAll(a1, a2, ..., a10).
TEST(DoAllTest, TenActions) {
int m = 0, n = 0;
char a = '\0', b = '\0', c = '\0', d = '\0';
char e = '\0', f = '\0', g = '\0';
Action<int(int*, int*, char*, char*, char*, char*, // NOLINT
char*, char*, char*)> action =
DoAll(SetArgPointee<0>(1),
SetArgPointee<1>(2),
SetArgPointee<2>('a'),
SetArgPointee<3>('b'),
SetArgPointee<4>('c'),
SetArgPointee<5>('d'),
SetArgPointee<6>('e'),
SetArgPointee<7>('f'),
SetArgPointee<8>('g'),
Return(3));
EXPECT_EQ(3, action.Perform(make_tuple(&m, &n, &a, &b, &c, &d, &e, &f, &g)));
EXPECT_EQ(1, m);
EXPECT_EQ(2, n);
EXPECT_EQ('a', a);
EXPECT_EQ('b', b);
EXPECT_EQ('c', c);
EXPECT_EQ('d', d);
EXPECT_EQ('e', e);
EXPECT_EQ('f', f);
EXPECT_EQ('g', g);
}
// The ACTION*() macros trigger warning C4100 (unreferenced formal
// parameter) in MSVC with -W4. Unfortunately they cannot be fixed in
// the macro definition, as the warnings are generated when the macro
// is expanded and macro expansion cannot contain #pragma. Therefore
// we suppress them here.
#ifdef _MSC_VER
# pragma warning(push)
# pragma warning(disable:4100)
#endif
// Tests the ACTION*() macro family.
// Tests that ACTION() can define an action that doesn't reference the
// mock function arguments.
ACTION(Return5) { return 5; }
TEST(ActionMacroTest, WorksWhenNotReferencingArguments) {
Action<double()> a1 = Return5();
EXPECT_DOUBLE_EQ(5, a1.Perform(make_tuple()));
Action<int(double, bool)> a2 = Return5();
EXPECT_EQ(5, a2.Perform(make_tuple(1, true)));
}
// Tests that ACTION() can define an action that returns void.
ACTION(IncrementArg1) { (*arg1)++; }
TEST(ActionMacroTest, WorksWhenReturningVoid) {
Action<void(int, int*)> a1 = IncrementArg1();
int n = 0;
a1.Perform(make_tuple(5, &n));
EXPECT_EQ(1, n);
}
// Tests that the body of ACTION() can reference the type of the
// argument.
ACTION(IncrementArg2) {
StaticAssertTypeEq<int*, arg2_type>();
arg2_type temp = arg2;
(*temp)++;
}
TEST(ActionMacroTest, CanReferenceArgumentType) {
Action<void(int, bool, int*)> a1 = IncrementArg2();
int n = 0;
a1.Perform(make_tuple(5, false, &n));
EXPECT_EQ(1, n);
}
// Tests that the body of ACTION() can reference the argument tuple
// via args_type and args.
ACTION(Sum2) {
StaticAssertTypeEq<tuple<int, char, int*>, args_type>();
args_type args_copy = args;
return get<0>(args_copy) + get<1>(args_copy);
}
TEST(ActionMacroTest, CanReferenceArgumentTuple) {
Action<int(int, char, int*)> a1 = Sum2();
int dummy = 0;
EXPECT_EQ(11, a1.Perform(make_tuple(5, Char(6), &dummy)));
}
// Tests that the body of ACTION() can reference the mock function
// type.
int Dummy(bool flag) { return flag? 1 : 0; }
ACTION(InvokeDummy) {
StaticAssertTypeEq<int(bool), function_type>();
function_type* fp = &Dummy;
return (*fp)(true);
}
TEST(ActionMacroTest, CanReferenceMockFunctionType) {
Action<int(bool)> a1 = InvokeDummy();
EXPECT_EQ(1, a1.Perform(make_tuple(true)));
EXPECT_EQ(1, a1.Perform(make_tuple(false)));
}
// Tests that the body of ACTION() can reference the mock function's
// return type.
ACTION(InvokeDummy2) {
StaticAssertTypeEq<int, return_type>();
return_type result = Dummy(true);
return result;
}
TEST(ActionMacroTest, CanReferenceMockFunctionReturnType) {
Action<int(bool)> a1 = InvokeDummy2();
EXPECT_EQ(1, a1.Perform(make_tuple(true)));
EXPECT_EQ(1, a1.Perform(make_tuple(false)));
}
// Tests that ACTION() works for arguments passed by const reference.
ACTION(ReturnAddrOfConstBoolReferenceArg) {
StaticAssertTypeEq<const bool&, arg1_type>();
return &arg1;
}
TEST(ActionMacroTest, WorksForConstReferenceArg) {
Action<const bool*(int, const bool&)> a = ReturnAddrOfConstBoolReferenceArg();
const bool b = false;
EXPECT_EQ(&b, a.Perform(tuple<int, const bool&>(0, b)));
}
// Tests that ACTION() works for arguments passed by non-const reference.
ACTION(ReturnAddrOfIntReferenceArg) {
StaticAssertTypeEq<int&, arg0_type>();
return &arg0;
}
TEST(ActionMacroTest, WorksForNonConstReferenceArg) {
Action<int*(int&, bool, int)> a = ReturnAddrOfIntReferenceArg();
int n = 0;
EXPECT_EQ(&n, a.Perform(tuple<int&, bool, int>(n, true, 1)));
}
// Tests that ACTION() can be used in a namespace.
namespace action_test {
ACTION(Sum) { return arg0 + arg1; }
} // namespace action_test
TEST(ActionMacroTest, WorksInNamespace) {
Action<int(int, int)> a1 = action_test::Sum();
EXPECT_EQ(3, a1.Perform(make_tuple(1, 2)));
}
// Tests that the same ACTION definition works for mock functions with
// different argument numbers.
ACTION(PlusTwo) { return arg0 + 2; }
TEST(ActionMacroTest, WorksForDifferentArgumentNumbers) {
Action<int(int)> a1 = PlusTwo();
EXPECT_EQ(4, a1.Perform(make_tuple(2)));
Action<double(float, void*)> a2 = PlusTwo();
int dummy;
EXPECT_DOUBLE_EQ(6, a2.Perform(make_tuple(4.0f, &dummy)));
}
// Tests that ACTION_P can define a parameterized action.
ACTION_P(Plus, n) { return arg0 + n; }
TEST(ActionPMacroTest, DefinesParameterizedAction) {
Action<int(int m, bool t)> a1 = Plus(9);
EXPECT_EQ(10, a1.Perform(make_tuple(1, true)));
}
// Tests that the body of ACTION_P can reference the argument types
// and the parameter type.
ACTION_P(TypedPlus, n) {
arg0_type t1 = arg0;
n_type t2 = n;
return t1 + t2;
}
TEST(ActionPMacroTest, CanReferenceArgumentAndParameterTypes) {
Action<int(char m, bool t)> a1 = TypedPlus(9);
EXPECT_EQ(10, a1.Perform(make_tuple(Char(1), true)));
}
// Tests that a parameterized action can be used in any mock function
// whose type is compatible.
TEST(ActionPMacroTest, WorksInCompatibleMockFunction) {
Action<std::string(const std::string& s)> a1 = Plus("tail");
const std::string re = "re";
EXPECT_EQ("retail", a1.Perform(tuple<const std::string&>(re)));
}
// Tests that we can use ACTION*() to define actions overloaded on the
// number of parameters.
ACTION(OverloadedAction) { return arg0 ? arg1 : "hello"; }
ACTION_P(OverloadedAction, default_value) {
return arg0 ? arg1 : default_value;
}
ACTION_P2(OverloadedAction, true_value, false_value) {
return arg0 ? true_value : false_value;
}
TEST(ActionMacroTest, CanDefineOverloadedActions) {
typedef Action<const char*(bool, const char*)> MyAction;
const MyAction a1 = OverloadedAction();
EXPECT_STREQ("hello", a1.Perform(make_tuple(false, CharPtr("world"))));
EXPECT_STREQ("world", a1.Perform(make_tuple(true, CharPtr("world"))));
const MyAction a2 = OverloadedAction("hi");
EXPECT_STREQ("hi", a2.Perform(make_tuple(false, CharPtr("world"))));
EXPECT_STREQ("world", a2.Perform(make_tuple(true, CharPtr("world"))));
const MyAction a3 = OverloadedAction("hi", "you");
EXPECT_STREQ("hi", a3.Perform(make_tuple(true, CharPtr("world"))));
EXPECT_STREQ("you", a3.Perform(make_tuple(false, CharPtr("world"))));
}
// Tests ACTION_Pn where n >= 3.
ACTION_P3(Plus, m, n, k) { return arg0 + m + n + k; }
TEST(ActionPnMacroTest, WorksFor3Parameters) {
Action<double(int m, bool t)> a1 = Plus(100, 20, 3.4);
EXPECT_DOUBLE_EQ(3123.4, a1.Perform(make_tuple(3000, true)));
Action<std::string(const std::string& s)> a2 = Plus("tail", "-", ">");
const std::string re = "re";
EXPECT_EQ("retail->", a2.Perform(tuple<const std::string&>(re)));
}
ACTION_P4(Plus, p0, p1, p2, p3) { return arg0 + p0 + p1 + p2 + p3; }
TEST(ActionPnMacroTest, WorksFor4Parameters) {
Action<int(int)> a1 = Plus(1, 2, 3, 4);
EXPECT_EQ(10 + 1 + 2 + 3 + 4, a1.Perform(make_tuple(10)));
}
ACTION_P5(Plus, p0, p1, p2, p3, p4) { return arg0 + p0 + p1 + p2 + p3 + p4; }
TEST(ActionPnMacroTest, WorksFor5Parameters) {
Action<int(int)> a1 = Plus(1, 2, 3, 4, 5);
EXPECT_EQ(10 + 1 + 2 + 3 + 4 + 5, a1.Perform(make_tuple(10)));
}
ACTION_P6(Plus, p0, p1, p2, p3, p4, p5) {
return arg0 + p0 + p1 + p2 + p3 + p4 + p5;
}
TEST(ActionPnMacroTest, WorksFor6Parameters) {
Action<int(int)> a1 = Plus(1, 2, 3, 4, 5, 6);
EXPECT_EQ(10 + 1 + 2 + 3 + 4 + 5 + 6, a1.Perform(make_tuple(10)));
}
ACTION_P7(Plus, p0, p1, p2, p3, p4, p5, p6) {
return arg0 + p0 + p1 + p2 + p3 + p4 + p5 + p6;
}
TEST(ActionPnMacroTest, WorksFor7Parameters) {
Action<int(int)> a1 = Plus(1, 2, 3, 4, 5, 6, 7);
EXPECT_EQ(10 + 1 + 2 + 3 + 4 + 5 + 6 + 7, a1.Perform(make_tuple(10)));
}
ACTION_P8(Plus, p0, p1, p2, p3, p4, p5, p6, p7) {
return arg0 + p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7;
}
TEST(ActionPnMacroTest, WorksFor8Parameters) {
Action<int(int)> a1 = Plus(1, 2, 3, 4, 5, 6, 7, 8);
EXPECT_EQ(10 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8, a1.Perform(make_tuple(10)));
}
ACTION_P9(Plus, p0, p1, p2, p3, p4, p5, p6, p7, p8) {
return arg0 + p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8;
}
TEST(ActionPnMacroTest, WorksFor9Parameters) {
Action<int(int)> a1 = Plus(1, 2, 3, 4, 5, 6, 7, 8, 9);
EXPECT_EQ(10 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9, a1.Perform(make_tuple(10)));
}
ACTION_P10(Plus, p0, p1, p2, p3, p4, p5, p6, p7, p8, last_param) {
arg0_type t0 = arg0;
last_param_type t9 = last_param;
return t0 + p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + t9;
}
TEST(ActionPnMacroTest, WorksFor10Parameters) {
Action<int(int)> a1 = Plus(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
EXPECT_EQ(10 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10,
a1.Perform(make_tuple(10)));
}
// Tests that the action body can promote the parameter types.
ACTION_P2(PadArgument, prefix, suffix) {
// The following lines promote the two parameters to desired types.
std::string prefix_str(prefix);
char suffix_char = static_cast<char>(suffix);
return prefix_str + arg0 + suffix_char;
}
TEST(ActionPnMacroTest, SimpleTypePromotion) {
Action<std::string(const char*)> no_promo =
PadArgument(std::string("foo"), 'r');
Action<std::string(const char*)> promo =
PadArgument("foo", static_cast<int>('r'));
EXPECT_EQ("foobar", no_promo.Perform(make_tuple(CharPtr("ba"))));
EXPECT_EQ("foobar", promo.Perform(make_tuple(CharPtr("ba"))));
}
// Tests that we can partially restrict parameter types using a
// straight-forward pattern.
// Defines a generic action that doesn't restrict the types of its
// parameters.
ACTION_P3(ConcatImpl, a, b, c) {
std::stringstream ss;
ss << a << b << c;
return ss.str();
}
// Next, we try to restrict that either the first parameter is a
// string, or the second parameter is an int.
// Defines a partially specialized wrapper that restricts the first
// parameter to std::string.
template <typename T1, typename T2>
// ConcatImplActionP3 is the class template ACTION_P3 uses to
// implement ConcatImpl. We shouldn't change the name as this
// pattern requires the user to use it directly.
ConcatImplActionP3<std::string, T1, T2>
Concat(const std::string& a, T1 b, T2 c) {
GTEST_INTENTIONAL_CONST_COND_PUSH_()
if (true) {
GTEST_INTENTIONAL_CONST_COND_POP_()
// This branch verifies that ConcatImpl() can be invoked without
// explicit template arguments.
return ConcatImpl(a, b, c);
} else {
// This branch verifies that ConcatImpl() can also be invoked with
// explicit template arguments. It doesn't really need to be
// executed as this is a compile-time verification.
return ConcatImpl<std::string, T1, T2>(a, b, c);
}
}
// Defines another partially specialized wrapper that restricts the
// second parameter to int.
template <typename T1, typename T2>
ConcatImplActionP3<T1, int, T2>
Concat(T1 a, int b, T2 c) {
return ConcatImpl(a, b, c);
}
TEST(ActionPnMacroTest, CanPartiallyRestrictParameterTypes) {
Action<const std::string()> a1 = Concat("Hello", "1", 2);
EXPECT_EQ("Hello12", a1.Perform(make_tuple()));
a1 = Concat(1, 2, 3);
EXPECT_EQ("123", a1.Perform(make_tuple()));
}
// Verifies the type of an ACTION*.
ACTION(DoFoo) {}
ACTION_P(DoFoo, p) {}
ACTION_P2(DoFoo, p0, p1) {}
TEST(ActionPnMacroTest, TypesAreCorrect) {
// DoFoo() must be assignable to a DoFooAction variable.
DoFooAction a0 = DoFoo();
// DoFoo(1) must be assignable to a DoFooActionP variable.
DoFooActionP<int> a1 = DoFoo(1);
// DoFoo(p1, ..., pk) must be assignable to a DoFooActionPk
// variable, and so on.
DoFooActionP2<int, char> a2 = DoFoo(1, '2');
PlusActionP3<int, int, char> a3 = Plus(1, 2, '3');
PlusActionP4<int, int, int, char> a4 = Plus(1, 2, 3, '4');
PlusActionP5<int, int, int, int, char> a5 = Plus(1, 2, 3, 4, '5');
PlusActionP6<int, int, int, int, int, char> a6 = Plus(1, 2, 3, 4, 5, '6');
PlusActionP7<int, int, int, int, int, int, char> a7 =
Plus(1, 2, 3, 4, 5, 6, '7');
PlusActionP8<int, int, int, int, int, int, int, char> a8 =
Plus(1, 2, 3, 4, 5, 6, 7, '8');
PlusActionP9<int, int, int, int, int, int, int, int, char> a9 =
Plus(1, 2, 3, 4, 5, 6, 7, 8, '9');
PlusActionP10<int, int, int, int, int, int, int, int, int, char> a10 =
Plus(1, 2, 3, 4, 5, 6, 7, 8, 9, '0');
// Avoid "unused variable" warnings.
(void)a0;
(void)a1;
(void)a2;
(void)a3;
(void)a4;
(void)a5;
(void)a6;
(void)a7;
(void)a8;
(void)a9;
(void)a10;
}
// Tests that an ACTION_P*() action can be explicitly instantiated
// with reference-typed parameters.
ACTION_P(Plus1, x) { return x; }
ACTION_P2(Plus2, x, y) { return x + y; }
ACTION_P3(Plus3, x, y, z) { return x + y + z; }
ACTION_P10(Plus10, a0, a1, a2, a3, a4, a5, a6, a7, a8, a9) {
return a0 + a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9;
}
TEST(ActionPnMacroTest, CanExplicitlyInstantiateWithReferenceTypes) {
int x = 1, y = 2, z = 3;
const tuple<> empty = make_tuple();
Action<int()> a = Plus1<int&>(x);
EXPECT_EQ(1, a.Perform(empty));
a = Plus2<const int&, int&>(x, y);
EXPECT_EQ(3, a.Perform(empty));
a = Plus3<int&, const int&, int&>(x, y, z);
EXPECT_EQ(6, a.Perform(empty));
int n[10] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
a = Plus10<const int&, int&, const int&, int&, const int&, int&, const int&,
int&, const int&, int&>(n[0], n[1], n[2], n[3], n[4], n[5], n[6], n[7],
n[8], n[9]);
EXPECT_EQ(55, a.Perform(empty));
}
class NullaryConstructorClass {
public:
NullaryConstructorClass() : value_(123) {}
int value_;
};
// Tests using ReturnNew() with a nullary constructor.
TEST(ReturnNewTest, NoArgs) {
Action<NullaryConstructorClass*()> a = ReturnNew<NullaryConstructorClass>();
NullaryConstructorClass* c = a.Perform(make_tuple());
EXPECT_EQ(123, c->value_);
delete c;
}
class UnaryConstructorClass {
public:
explicit UnaryConstructorClass(int value) : value_(value) {}
int value_;
};
// Tests using ReturnNew() with a unary constructor.
TEST(ReturnNewTest, Unary) {
Action<UnaryConstructorClass*()> a = ReturnNew<UnaryConstructorClass>(4000);
UnaryConstructorClass* c = a.Perform(make_tuple());
EXPECT_EQ(4000, c->value_);
delete c;
}
TEST(ReturnNewTest, UnaryWorksWhenMockMethodHasArgs) {
Action<UnaryConstructorClass*(bool, int)> a =
ReturnNew<UnaryConstructorClass>(4000);
UnaryConstructorClass* c = a.Perform(make_tuple(false, 5));
EXPECT_EQ(4000, c->value_);
delete c;
}
TEST(ReturnNewTest, UnaryWorksWhenMockMethodReturnsPointerToConst) {
Action<const UnaryConstructorClass*()> a =
ReturnNew<UnaryConstructorClass>(4000);
const UnaryConstructorClass* c = a.Perform(make_tuple());
EXPECT_EQ(4000, c->value_);
delete c;
}
class TenArgConstructorClass {
public:
TenArgConstructorClass(int a1, int a2, int a3, int a4, int a5,
int a6, int a7, int a8, int a9, int a10)
: value_(a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9 + a10) {
}
int value_;
};
// Tests using ReturnNew() with a 10-argument constructor.
TEST(ReturnNewTest, ConstructorThatTakes10Arguments) {
Action<TenArgConstructorClass*()> a =
ReturnNew<TenArgConstructorClass>(1000000000, 200000000, 30000000,
4000000, 500000, 60000,
7000, 800, 90, 0);
TenArgConstructorClass* c = a.Perform(make_tuple());
EXPECT_EQ(1234567890, c->value_);
delete c;
}
// Tests that ACTION_TEMPLATE works when there is no value parameter.
ACTION_TEMPLATE(CreateNew,
HAS_1_TEMPLATE_PARAMS(typename, T),
AND_0_VALUE_PARAMS()) {
return new T;
}
TEST(ActionTemplateTest, WorksWithoutValueParam) {
const Action<int*()> a = CreateNew<int>();
int* p = a.Perform(make_tuple());
delete p;
}
// Tests that ACTION_TEMPLATE works when there are value parameters.
ACTION_TEMPLATE(CreateNew,
HAS_1_TEMPLATE_PARAMS(typename, T),
AND_1_VALUE_PARAMS(a0)) {
return new T(a0);
}
TEST(ActionTemplateTest, WorksWithValueParams) {
const Action<int*()> a = CreateNew<int>(42);
int* p = a.Perform(make_tuple());
EXPECT_EQ(42, *p);
delete p;
}
// Tests that ACTION_TEMPLATE works for integral template parameters.
ACTION_TEMPLATE(MyDeleteArg,
HAS_1_TEMPLATE_PARAMS(int, k),
AND_0_VALUE_PARAMS()) {
delete get<k>(args);
}
// Resets a bool variable in the destructor.
class BoolResetter {
public:
explicit BoolResetter(bool* value) : value_(value) {}
~BoolResetter() { *value_ = false; }
private:
bool* value_;
};
TEST(ActionTemplateTest, WorksForIntegralTemplateParams) {
const Action<void(int*, BoolResetter*)> a = MyDeleteArg<1>();
int n = 0;
bool b = true;
BoolResetter* resetter = new BoolResetter(&b);
a.Perform(make_tuple(&n, resetter));
EXPECT_FALSE(b); // Verifies that resetter is deleted.
}
// Tests that ACTION_TEMPLATES works for template template parameters.
ACTION_TEMPLATE(ReturnSmartPointer,
HAS_1_TEMPLATE_PARAMS(template <typename Pointee> class,
Pointer),
AND_1_VALUE_PARAMS(pointee)) {
return Pointer<pointee_type>(new pointee_type(pointee));
}
TEST(ActionTemplateTest, WorksForTemplateTemplateParameters) {
using ::testing::internal::linked_ptr;
const Action<linked_ptr<int>()> a = ReturnSmartPointer<linked_ptr>(42);
linked_ptr<int> p = a.Perform(make_tuple());
EXPECT_EQ(42, *p);
}
// Tests that ACTION_TEMPLATE works for 10 template parameters.
template <typename T1, typename T2, typename T3, int k4, bool k5,
unsigned int k6, typename T7, typename T8, typename T9>
struct GiantTemplate {
public:
explicit GiantTemplate(int a_value) : value(a_value) {}
int value;
};
ACTION_TEMPLATE(ReturnGiant,
HAS_10_TEMPLATE_PARAMS(
typename, T1,
typename, T2,
typename, T3,
int, k4,
bool, k5,
unsigned int, k6,
class, T7,
class, T8,
class, T9,
template <typename T> class, T10),
AND_1_VALUE_PARAMS(value)) {
return GiantTemplate<T10<T1>, T2, T3, k4, k5, k6, T7, T8, T9>(value);
}
TEST(ActionTemplateTest, WorksFor10TemplateParameters) {
using ::testing::internal::linked_ptr;
typedef GiantTemplate<linked_ptr<int>, bool, double, 5,
true, 6, char, unsigned, int> Giant;
const Action<Giant()> a = ReturnGiant<
int, bool, double, 5, true, 6, char, unsigned, int, linked_ptr>(42);
Giant giant = a.Perform(make_tuple());
EXPECT_EQ(42, giant.value);
}
// Tests that ACTION_TEMPLATE works for 10 value parameters.
ACTION_TEMPLATE(ReturnSum,
HAS_1_TEMPLATE_PARAMS(typename, Number),
AND_10_VALUE_PARAMS(v1, v2, v3, v4, v5, v6, v7, v8, v9, v10)) {
return static_cast<Number>(v1) + v2 + v3 + v4 + v5 + v6 + v7 + v8 + v9 + v10;
}
TEST(ActionTemplateTest, WorksFor10ValueParameters) {
const Action<int()> a = ReturnSum<int>(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
EXPECT_EQ(55, a.Perform(make_tuple()));
}
// Tests that ACTION_TEMPLATE and ACTION/ACTION_P* can be overloaded
// on the number of value parameters.
ACTION(ReturnSum) { return 0; }
ACTION_P(ReturnSum, x) { return x; }
ACTION_TEMPLATE(ReturnSum,
HAS_1_TEMPLATE_PARAMS(typename, Number),
AND_2_VALUE_PARAMS(v1, v2)) {
return static_cast<Number>(v1) + v2;
}
ACTION_TEMPLATE(ReturnSum,
HAS_1_TEMPLATE_PARAMS(typename, Number),
AND_3_VALUE_PARAMS(v1, v2, v3)) {
return static_cast<Number>(v1) + v2 + v3;
}
ACTION_TEMPLATE(ReturnSum,
HAS_2_TEMPLATE_PARAMS(typename, Number, int, k),
AND_4_VALUE_PARAMS(v1, v2, v3, v4)) {
return static_cast<Number>(v1) + v2 + v3 + v4 + k;
}
TEST(ActionTemplateTest, CanBeOverloadedOnNumberOfValueParameters) {
const Action<int()> a0 = ReturnSum();
const Action<int()> a1 = ReturnSum(1);
const Action<int()> a2 = ReturnSum<int>(1, 2);
const Action<int()> a3 = ReturnSum<int>(1, 2, 3);
const Action<int()> a4 = ReturnSum<int, 10000>(2000, 300, 40, 5);
EXPECT_EQ(0, a0.Perform(make_tuple()));
EXPECT_EQ(1, a1.Perform(make_tuple()));
EXPECT_EQ(3, a2.Perform(make_tuple()));
EXPECT_EQ(6, a3.Perform(make_tuple()));
EXPECT_EQ(12345, a4.Perform(make_tuple()));
}
#ifdef _MSC_VER
# pragma warning(pop)
#endif
} // namespace gmock_generated_actions_test
} // namespace testing
|