File: timing.cc

package info (click to toggle)
nextpnr 0.7-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 23,908 kB
  • sloc: cpp: 219,642; python: 21,427; ansic: 10,274; sh: 779; makefile: 493; tcl: 116; vhdl: 44; objc: 42
file content (1111 lines) | stat: -rw-r--r-- 43,127 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
/*
 *  nextpnr -- Next Generation Place and Route
 *
 *  Copyright (C) 2018  gatecat <gatecat@ds0.me>
 *  Copyright (C) 2018  Eddie Hung <eddieh@ece.ubc.ca>
 *  Copyright (C) 2023  rowanG077 <goemansrowan@gmail.com>
 *
 *  Permission to use, copy, modify, and/or distribute this software for any
 *  purpose with or without fee is hereby granted, provided that the above
 *  copyright notice and this permission notice appear in all copies.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 */

#include "timing.h"
#include <algorithm>
#include <boost/range/adaptor/reversed.hpp>
#include <deque>
#include <map>
#include <utility>
#include "log.h"
#include "util.h"

NEXTPNR_NAMESPACE_BEGIN

TimingAnalyser::TimingAnalyser(Context *ctx) : ctx(ctx)
{
    ClockDomainKey key{IdString(), ClockEdge::RISING_EDGE};
    domain_to_id.emplace(key, 0);
    domains.emplace_back(key);
    async_clock_id = 0;
};

void TimingAnalyser::setup(bool update_net_timings, bool update_histogram, bool update_crit_paths)
{
    init_ports();
    get_cell_delays();
    topo_sort();
    setup_port_domains();
    identify_related_domains();
    run(true, update_net_timings, update_histogram, update_crit_paths);
}

void TimingAnalyser::run(bool update_route_delays, bool update_net_timings, bool update_histogram,
                         bool update_crit_paths)
{
    reset_times();
    if (update_route_delays)
        get_route_delays();
    walk_forward();
    walk_backward();
    compute_slack();
    compute_criticality();

    // Ensure we clear all timing results if any of them has been marked as
    // as to be updated. This is done so we ensure it's not possible to have
    // timing_result which contains mixed reports
    if (update_net_timings || update_histogram || update_crit_paths) {
        result = TimingResult();
    }

    if (update_net_timings) {
        build_detailed_net_timing_report();
    }

    if (update_histogram) {
        build_slack_histogram_report();
    }

    if (update_crit_paths) {
        build_crit_path_reports();
    }
}

void TimingAnalyser::init_ports()
{
    // Per cell port structures
    for (auto &cell : ctx->cells) {
        CellInfo *ci = cell.second.get();
        for (auto &port : ci->ports) {
            auto &data = ports[CellPortKey(ci->name, port.first)];
            data.type = port.second.type;
            data.cell_port = CellPortKey(ci->name, port.first);
        }
    }
}

void TimingAnalyser::get_cell_delays()
{
    auto async_clk_key = domains.at(async_clock_id);

    for (auto &port : ports) {
        CellInfo *ci = cell_info(port.first);
        auto &pi = port_info(port.first);
        auto &pd = port.second;

        IdString name = port.first.port;
        // Ignore dangling ports altogether for timing purposes
        if (!pi.net)
            continue;
        pd.cell_arcs.clear();
        int clkInfoCount = 0;
        TimingPortClass cls = ctx->getPortTimingClass(ci, name, clkInfoCount);
        if (cls == TMG_CLOCK_INPUT || cls == TMG_GEN_CLOCK || cls == TMG_IGNORE)
            continue;
        if (pi.type == PORT_IN) {
            // Input ports might have setup/hold relationships
            if (cls == TMG_REGISTER_INPUT) {
                for (int i = 0; i < clkInfoCount; i++) {
                    auto info = ctx->getPortClockingInfo(ci, name, i);
                    if (!ci->ports.count(info.clock_port) || ci->ports.at(info.clock_port).net == nullptr)
                        continue;
                    pd.cell_arcs.emplace_back(CellArc::SETUP, info.clock_port, DelayQuad(info.setup, info.setup),
                                              info.edge);
                    pd.cell_arcs.emplace_back(CellArc::HOLD, info.clock_port, DelayQuad(info.hold, info.hold),
                                              info.edge);
                }
            }
            // asynchronous endpoint
            else if (cls == TMG_ENDPOINT) {
                pd.cell_arcs.emplace_back(CellArc::ENDPOINT, async_clk_key.key.clock, DelayQuad{});
            }
            // Combinational delays through cell
            for (auto &other_port : ci->ports) {
                auto &op = other_port.second;
                // ignore dangling ports and non-outputs
                if (op.net == nullptr || op.type != PORT_OUT)
                    continue;
                DelayQuad delay;
                bool is_path = ctx->getCellDelay(ci, name, other_port.first, delay);
                if (is_path)
                    pd.cell_arcs.emplace_back(CellArc::COMBINATIONAL, other_port.first, delay);
            }
        } else if (pi.type == PORT_OUT) {
            // Output ports might have clk-to-q relationships
            if (cls == TMG_REGISTER_OUTPUT) {
                for (int i = 0; i < clkInfoCount; i++) {
                    auto info = ctx->getPortClockingInfo(ci, name, i);
                    if (!ci->ports.count(info.clock_port) || ci->ports.at(info.clock_port).net == nullptr)
                        continue;
                    pd.cell_arcs.emplace_back(CellArc::CLK_TO_Q, info.clock_port, info.clockToQ, info.edge);
                }
            }
            // Asynchronous startpoint
            else if (cls == TMG_STARTPOINT) {
                pd.cell_arcs.emplace_back(CellArc::STARTPOINT, async_clk_key.key.clock, DelayQuad{});
            }
            // Combinational delays through cell
            for (auto &other_port : ci->ports) {
                auto &op = other_port.second;
                // ignore dangling ports and non-inputs
                if (op.net == nullptr || op.type != PORT_IN)
                    continue;
                DelayQuad delay;
                bool is_path = ctx->getCellDelay(ci, other_port.first, name, delay);
                if (is_path)
                    pd.cell_arcs.emplace_back(CellArc::COMBINATIONAL, other_port.first, delay);
            }
        }
    }
}

void TimingAnalyser::get_route_delays()
{
    for (auto &net : ctx->nets) {
        NetInfo *ni = net.second.get();
        if (ni->driver.cell == nullptr || ni->driver.cell->bel == BelId())
            continue;
        for (auto &usr : ni->users) {
            if (usr.cell->bel == BelId())
                continue;
            ports.at(CellPortKey(usr)).route_delay = DelayPair(ctx->getNetinfoRouteDelay(ni, usr));
        }
    }
}

void TimingAnalyser::set_route_delay(CellPortKey port, DelayPair value) { ports.at(port).route_delay = value; }

void TimingAnalyser::topo_sort()
{
    TopoSort<CellPortKey> topo;
    for (auto &port : ports) {
        auto &pd = port.second;
        // All ports are nodes
        topo.node(port.first);
        if (pd.type == PORT_IN) {
            // inputs: combinational arcs through the cell are edges
            for (auto &arc : pd.cell_arcs) {
                if (arc.type != CellArc::COMBINATIONAL)
                    continue;
                topo.edge(port.first, CellPortKey(port.first.cell, arc.other_port));
            }
        } else if (pd.type == PORT_OUT) {
            // output: routing arcs are edges
            const NetInfo *pn = port_info(port.first).net;
            if (pn != nullptr) {
                for (auto &usr : pn->users)
                    topo.edge(port.first, CellPortKey(usr));
            }
        }
    }

    bool ignore_loops = bool_or_default(ctx->settings, ctx->id("timing/ignoreLoops"), false);
    bool no_loops = topo.sort();
    if (!no_loops && !ignore_loops) {
        log_info("Found %d combinational loops:\n", int(topo.loops.size()));
        int i = 0;
        for (auto &loop : topo.loops) {
            log_info("    loop %d:\n", ++i);
            for (auto &port : loop) {
                log_info("        %s.%s (%s)\n", ctx->nameOf(port.cell), ctx->nameOf(port.port),
                         ctx->nameOf(port_info(port).net));
            }
        }

        if (ctx->force)
            log_warning("Timing analysis failed due to combinational loops.\n");
        else
            log_error("Timing analysis failed due to combinational loops.\n");
    }
    have_loops = !no_loops;
    std::swap(topological_order, topo.sorted);
}

void TimingAnalyser::setup_port_domains()
{
    for (auto &d : domains) {
        d.startpoints.clear();
        d.endpoints.clear();
    }
    bool first_iter = true;
    do {
        // Go forward through the topological order (domains from the PoV of arrival time)
        updated_domains = false;
        for (auto port : topological_order) {
            auto &pd = ports.at(port);
            auto &pi = port_info(port);
            if (pi.type == PORT_OUT) {
                if (first_iter) {
                    for (auto &fanin : pd.cell_arcs) {
                        domain_id_t dom;
                        // registered outputs are startpoints
                        if (fanin.type == CellArc::CLK_TO_Q)
                            dom = domain_id(port.cell, fanin.other_port, fanin.edge);
                        else if (fanin.type == CellArc::STARTPOINT)
                            dom = async_clock_id;
                        else
                            continue;
                        // create per-domain data
                        pd.arrival[dom];
                        domains.at(dom).startpoints.emplace_back(port, fanin.other_port);
                    }
                }
                // copy domains across routing
                if (pi.net != nullptr)
                    for (auto &usr : pi.net->users)
                        copy_domains(port, CellPortKey(usr), false);
            } else {
                // copy domains from input to output
                for (auto &fanout : pd.cell_arcs) {
                    if (fanout.type != CellArc::COMBINATIONAL)
                        continue;
                    copy_domains(port, CellPortKey(port.cell, fanout.other_port), false);
                }
            }
        }
        // Go backward through the topological order (domains from the PoV of required time)
        for (auto port : reversed_range(topological_order)) {
            auto &pd = ports.at(port);
            auto &pi = port_info(port);
            if (pi.type == PORT_OUT) {
                // copy domains from output to input
                for (auto &fanin : pd.cell_arcs) {
                    if (fanin.type != CellArc::COMBINATIONAL)
                        continue;
                    copy_domains(port, CellPortKey(port.cell, fanin.other_port), true);
                }
            } else {
                if (first_iter) {
                    for (auto &fanout : pd.cell_arcs) {
                        domain_id_t dom;
                        // registered inputs are endpoints
                        if (fanout.type == CellArc::SETUP)
                            dom = domain_id(port.cell, fanout.other_port, fanout.edge);
                        else if (fanout.type == CellArc::ENDPOINT)
                            dom = async_clock_id;
                        else
                            continue;
                        // create per-domain data
                        pd.required[dom];
                        domains.at(dom).endpoints.emplace_back(port, fanout.other_port);
                    }
                }
                // copy port to driver
                if (pi.net != nullptr && pi.net->driver.cell != nullptr)
                    copy_domains(port, CellPortKey(pi.net->driver), true);
            }
        }
        // Iterate over ports and find domain pairs
        for (auto port : topological_order) {
            auto &pd = ports.at(port);
            for (auto &arr : pd.arrival)
                for (auto &req : pd.required) {
                    pd.domain_pairs[domain_pair_id(arr.first, req.first)];
                }
        }
        first_iter = false;
        // If there are loops, repeat the process until a fixed point is reached, as there might be unusual ways to
        // visit points, which would result in a missing domain key and therefore crash later on
    } while (have_loops && updated_domains);
    for (auto &dp : domain_pairs) {
        auto &launch_data = domains.at(dp.key.launch);
        auto &capture_data = domains.at(dp.key.capture);
        if (launch_data.key.clock != capture_data.key.clock)
            continue;
        IdString clk = launch_data.key.clock;
        delay_t period = ctx->getDelayFromNS(1.0e9 / ctx->setting<float>("target_freq"));
        if (ctx->nets.count(clk)) {
            NetInfo *clk_net = ctx->nets.at(clk).get();
            if (clk_net->clkconstr) {
                period = clk_net->clkconstr->period.minDelay();
            }
        }
        if (launch_data.key.edge != capture_data.key.edge)
            period /= 2;
        dp.period = DelayPair(period);
    }
}

void TimingAnalyser::identify_related_domains()
{

    // Identify clock nets
    pool<IdString> clock_nets;
    for (const auto &domain : domains) {
        clock_nets.insert(domain.key.clock);
    }

    // For each clock net identify all nets that can possibly drive it. Compute
    // cumulative delays to each of them.
    std::function<void(const NetInfo *, pool<IdString> &, dict<IdString, delay_t> &, delay_t)> find_net_drivers =
            [&](const NetInfo *ni, pool<IdString> &net_trace, dict<IdString, delay_t> &drivers, delay_t delay_acc) {
                // Get driving cell and port
                if (ni == nullptr)
                    return;
                const CellInfo *cell = ni->driver.cell;
                if (cell == nullptr)
                    return;

                const IdString port = ni->driver.port;

                bool didGoUpstream = false;

                // Ring oscillator driving the net
                if (net_trace.find(ni->name) != net_trace.end()) {
                    drivers[ni->name] = delay_acc;
                    return;
                }
                net_trace.insert(ni->name);

                // The cell has only one port
                if (cell->ports.size() == 1) {
                    drivers[ni->name] = delay_acc;
                    return;
                }

                // Get the driver timing class
                int info_count = 0;
                auto timing_class = ctx->getPortTimingClass(cell, port, info_count);

                // The driver must be a combinational output
                if (timing_class != TMG_COMB_OUTPUT) {
                    drivers[ni->name] = delay_acc;
                    return;
                }

                // Recurse upstream through all input ports that have combinational
                // paths to this driver
                for (const auto &it : cell->ports) {
                    const auto &pi = it.second;

                    // Only connected inputs
                    if (pi.type != PORT_IN) {
                        continue;
                    }
                    if (pi.net == nullptr) {
                        continue;
                    }

                    // The input must be a combinational input
                    timing_class = ctx->getPortTimingClass(cell, pi.name, info_count);
                    if (timing_class != TMG_COMB_INPUT) {
                        continue;
                    }
                    // There must be a combinational arc
                    DelayQuad delay;
                    if (!ctx->getCellDelay(cell, pi.name, port, delay)) {
                        continue;
                    }

                    // Recurse
                    find_net_drivers(pi.net, net_trace, drivers, delay_acc + delay.maxDelay());
                    didGoUpstream = true;
                }

                // Did not propagate upstream through the cell, mark the net as driver
                if (!didGoUpstream) {
                    drivers[ni->name] = delay_acc;
                }
            };

    // Identify possible drivers for each clock domain
    dict<IdString, dict<IdString, delay_t>> clock_drivers;
    for (const auto &domain : domains) {
        if (domain.key.is_async())
            continue;

        const NetInfo *ni = ctx->nets.at(domain.key.clock).get();
        if (ni == nullptr)
            continue;
        if (ni->driver.cell == nullptr)
            continue;

        dict<IdString, delay_t> drivers;
        pool<IdString> net_trace;
        find_net_drivers(ni, net_trace, drivers, 0);

        clock_drivers[domain.key.clock] = drivers;

        if (ctx->debug) {
            log("Clock '%s' can be driven by:\n", domain.key.clock.str(ctx).c_str());
            for (const auto &it : drivers) {
                const NetInfo *net = ctx->nets.at(it.first).get();
                log(" %s.%s delay %.3fns\n", net->driver.cell->name.str(ctx).c_str(), net->driver.port.str(ctx).c_str(),
                    ctx->getDelayNS(it.second));
            }
        }
    }

    // Identify related clocks. For simplicity do it both for A->B and B->A
    // cases.
    for (const auto &c1 : clock_drivers) {
        for (const auto &c2 : clock_drivers) {

            if (c1 == c2) {
                continue;
            }

            // Make an intersection of the two drivers sets
            pool<IdString> common_drivers;
            for (const auto &it : c1.second) {
                common_drivers.insert(it.first);
            }
            for (const auto &it : c2.second) {
                common_drivers.insert(it.first);
            }

            for (auto it = common_drivers.begin(); it != common_drivers.end();) {
                if (!c1.second.count(*it) || !c2.second.count(*it)) {
                    it = common_drivers.erase(it);
                } else {
                    ++it;
                }
            }

            if (ctx->debug) {

                log("Possible common driver(s) for clocks '%s' and '%s'\n", c1.first.str(ctx).c_str(),
                    c2.first.str(ctx).c_str());

                for (const auto &it : common_drivers) {

                    const NetInfo *ni = ctx->nets.at(it).get();
                    const CellInfo *cell = ni->driver.cell;
                    const IdString port = ni->driver.port;

                    log(" net '%s', cell %s (%s), port %s\n", it.str(ctx).c_str(), cell->name.str(ctx).c_str(),
                        cell->type.str(ctx).c_str(), port.str(ctx).c_str());
                }
            }

            // If there is no single driver then consider the two clocks
            // unrelated.
            if (common_drivers.size() != 1) {
                continue;
            }

            // Compute delay from c1 to c2 and store it
            auto driver = *common_drivers.begin();
            auto delay = c2.second.at(driver) - c1.second.at(driver);
            clock_delays[std::make_pair(c1.first, c2.first)] = delay;
        }
    }
}

void TimingAnalyser::reset_times()
{
    for (auto &port : ports) {
        auto do_reset = [&](dict<domain_id_t, ArrivReqTime> &times) {
            for (auto &t : times) {
                t.second.value = init_delay;
                t.second.path_length = 0;
                t.second.bwd_min = CellPortKey();
                t.second.bwd_max = CellPortKey();
            }
        };
        do_reset(port.second.arrival);
        do_reset(port.second.required);
        for (auto &dp : port.second.domain_pairs) {
            dp.second.setup_slack = std::numeric_limits<delay_t>::max();
            dp.second.hold_slack = std::numeric_limits<delay_t>::max();
            dp.second.max_path_length = 0;
            dp.second.criticality = 0;
        }
        port.second.worst_crit = 0;
        port.second.worst_setup_slack = std::numeric_limits<delay_t>::max();
        port.second.worst_hold_slack = std::numeric_limits<delay_t>::max();
    }
}

void TimingAnalyser::set_arrival_time(CellPortKey target, domain_id_t domain, DelayPair arrival, int path_length,
                                      CellPortKey prev)
{
    auto &arr = ports.at(target).arrival.at(domain);
    if (arrival.max_delay > arr.value.max_delay) {
        arr.value.max_delay = arrival.max_delay;
        arr.bwd_max = prev;
    }
    if (!setup_only && (arrival.min_delay < arr.value.min_delay)) {
        arr.value.min_delay = arrival.min_delay;
        arr.bwd_min = prev;
    }
    arr.path_length = std::max(arr.path_length, path_length);
}

void TimingAnalyser::set_required_time(CellPortKey target, domain_id_t domain, DelayPair required, int path_length,
                                       CellPortKey prev)
{
    auto &req = ports.at(target).required.at(domain);
    if (required.min_delay < req.value.min_delay) {
        req.value.min_delay = required.min_delay;
        req.bwd_min = prev;
    }
    if (!setup_only && (required.max_delay > req.value.max_delay)) {
        req.value.max_delay = required.max_delay;
        req.bwd_max = prev;
    }
    req.path_length = std::max(req.path_length, path_length);
}

void TimingAnalyser::walk_forward()
{
    // Assign initial arrival time to domain startpoints
    for (domain_id_t dom_id = 0; dom_id < domain_id_t(domains.size()); ++dom_id) {
        auto &dom = domains.at(dom_id);
        for (auto &sp : dom.startpoints) {
            auto &pd = ports.at(sp.first);
            DelayPair init_arrival(0);
            CellPortKey clock_key;
            // TODO: clock routing delay, if analysis of that is enabled
            if (sp.second != IdString()) {
                // clocked startpoints have a clock-to-out time
                for (auto &fanin : pd.cell_arcs) {
                    if (fanin.type == CellArc::CLK_TO_Q && fanin.other_port == sp.second) {
                        init_arrival = init_arrival + fanin.value.delayPair();
                        break;
                    }
                }
                clock_key = CellPortKey(sp.first.cell, sp.second);
            }
            set_arrival_time(sp.first, dom_id, init_arrival, 1, clock_key);
        }
    }
    // Walk forward in topological order
    for (auto p : topological_order) {
        auto &pd = ports.at(p);
        for (auto &arr : pd.arrival) {
            if (pd.type == PORT_OUT) {
                // Output port: propagate delay through net, adding route delay
                NetInfo *net = port_info(p).net;
                if (net != nullptr)
                    for (auto &usr : net->users) {
                        CellPortKey usr_key(usr);
                        auto &usr_pd = ports.at(usr_key);
                        set_arrival_time(usr_key, arr.first, arr.second.value + usr_pd.route_delay,
                                         arr.second.path_length, p);
                    }
            } else if (pd.type == PORT_IN) {
                // Input port; propagate delay through cell, adding combinational delay
                for (auto &fanout : pd.cell_arcs) {
                    if (fanout.type != CellArc::COMBINATIONAL)
                        continue;
                    set_arrival_time(CellPortKey(p.cell, fanout.other_port), arr.first,
                                     arr.second.value + fanout.value.delayPair(), arr.second.path_length + 1, p);
                }
            }
        }
    }
}

void TimingAnalyser::walk_backward()
{
    // Assign initial required time to domain endpoints
    // Note that clock frequency will be considered later in the analysis for, for now all required times are normalised
    // to 0ns
    for (domain_id_t dom_id = 0; dom_id < domain_id_t(domains.size()); ++dom_id) {
        auto &dom = domains.at(dom_id);
        for (auto &ep : dom.endpoints) {
            auto &pd = ports.at(ep.first);
            DelayPair init_setuphold(0);
            CellPortKey clock_key;
            // TODO: clock routing delay, if analysis of that is enabled
            if (ep.second != IdString()) {
                // Add setup/hold time, if this endpoint is clocked
                for (auto &fanin : pd.cell_arcs) {
                    if (fanin.type == CellArc::SETUP && fanin.other_port == ep.second)
                        init_setuphold.min_delay -= fanin.value.maxDelay();
                    if (fanin.type == CellArc::HOLD && fanin.other_port == ep.second)
                        init_setuphold.max_delay -= fanin.value.maxDelay();
                }
                clock_key = CellPortKey(ep.first.cell, ep.second);
            }
            set_required_time(ep.first, dom_id, init_setuphold, 1, clock_key);
        }
    }
    // Walk backwards in topological order
    for (auto p : reversed_range(topological_order)) {
        auto &pd = ports.at(p);
        for (auto &req : pd.required) {
            if (pd.type == PORT_IN) {
                // Input port: propagate delay back through net, subtracting route delay
                NetInfo *net = port_info(p).net;
                if (net != nullptr && net->driver.cell != nullptr)
                    set_required_time(CellPortKey(net->driver), req.first,
                                      req.second.value - DelayPair(pd.route_delay.maxDelay()), req.second.path_length,
                                      p);
            } else if (pd.type == PORT_OUT) {
                // Output port : propagate delay back through cell, subtracting combinational delay
                for (auto &fanin : pd.cell_arcs) {
                    if (fanin.type != CellArc::COMBINATIONAL)
                        continue;
                    set_required_time(CellPortKey(p.cell, fanin.other_port), req.first,
                                      req.second.value - DelayPair(fanin.value.maxDelay()), req.second.path_length + 1,
                                      p);
                }
            }
        }
    }
}

dict<domain_id_t, delay_t> TimingAnalyser::max_delay_by_domain_pairs()
{
    dict<domain_id_t, delay_t> domain_delay;

    for (auto p : topological_order) {
        auto &pd = ports.at(p);
        for (auto &req : pd.required) {
            auto &capture = req.first;
            for (auto &arr : pd.arrival) {
                auto &launch = arr.first;

                auto dp = domain_pair_id(launch, capture);

                delay_t delay = arr.second.value.maxDelay() - req.second.value.minDelay();
                if (!domain_delay.count(dp) || domain_delay.at(dp) < delay)
                    domain_delay[dp] = delay;
            }
        }
    }

    return domain_delay;
}

void TimingAnalyser::compute_slack()
{
    for (auto &dp : domain_pairs) {
        dp.worst_setup_slack = std::numeric_limits<delay_t>::max();
        dp.worst_hold_slack = std::numeric_limits<delay_t>::max();
    }
    for (auto p : topological_order) {
        auto &pd = ports.at(p);
        for (auto &pdp : pd.domain_pairs) {
            auto &dp = domain_pairs.at(pdp.first);

            // Get clock names
            const auto &launch_clock = domains.at(dp.key.launch).key.clock;
            const auto &capture_clock = domains.at(dp.key.capture).key.clock;

            // Get clock-to-clock delay if any
            delay_t clock_to_clock = 0;
            auto clocks = std::make_pair(launch_clock, capture_clock);
            if (clock_delays.count(clocks)) {
                clock_to_clock = clock_delays.at(clocks);
            }

            auto &arr = pd.arrival.at(dp.key.launch);
            auto &req = pd.required.at(dp.key.capture);
            pdp.second.setup_slack = 0 - (arr.value.maxDelay() - req.value.minDelay() + clock_to_clock);
            if (!setup_only)
                pdp.second.hold_slack = arr.value.minDelay() - req.value.maxDelay() + clock_to_clock;
            pdp.second.max_path_length = arr.path_length + req.path_length;
            if (dp.key.launch == dp.key.capture)
                pd.worst_setup_slack = std::min(pd.worst_setup_slack, dp.period.minDelay() + pdp.second.setup_slack);
            dp.worst_setup_slack = std::min(dp.worst_setup_slack, pdp.second.setup_slack);
            if (!setup_only) {
                pd.worst_hold_slack = std::min(pd.worst_hold_slack, pdp.second.hold_slack);
                dp.worst_hold_slack = std::min(dp.worst_hold_slack, pdp.second.hold_slack);
            }
        }
    }
}

void TimingAnalyser::compute_criticality()
{
    for (auto p : topological_order) {
        auto &pd = ports.at(p);
        for (auto &pdp : pd.domain_pairs) {
            auto &dp = domain_pairs.at(pdp.first);
            // Do not set criticality for asynchronous paths
            if (domains.at(dp.key.launch).key.is_async() || domains.at(dp.key.capture).key.is_async())
                continue;

            float crit =
                    1.0f - (float(pdp.second.setup_slack) - float(dp.worst_setup_slack)) / float(-dp.worst_setup_slack);
            crit = std::min(crit, 1.0f);
            crit = std::max(crit, 0.0f);
            pdp.second.criticality = crit;
            pd.worst_crit = std::max(pd.worst_crit, crit);
        }
    }
}

void TimingAnalyser::build_detailed_net_timing_report()
{
    auto &net_timings = result.detailed_net_timings;

    for (domain_id_t dom_id = 0; dom_id < domain_id_t(domains.size()); ++dom_id) {
        auto &dom = domains.at(dom_id);
        for (auto &ep : dom.endpoints) {
            auto &pd = ports.at(ep.first);
            const NetInfo *net = port_info(ep.first).net;

            for (auto &arr : pd.arrival) {
                auto &launch = domains.at(arr.first).key;
                for (auto &req : pd.required) {
                    auto &capture = domains.at(req.first).key;

                    NetSinkTiming sink_timing;
                    sink_timing.clock_pair.start.clock = launch.clock;
                    sink_timing.clock_pair.start.edge = launch.edge;
                    sink_timing.clock_pair.end.clock = capture.clock;
                    sink_timing.clock_pair.end.edge = capture.edge;
                    sink_timing.cell_port = std::make_pair(pd.cell_port.cell, pd.cell_port.port);
                    sink_timing.delay = arr.second.value.max_delay;

                    net_timings[net->name].push_back(sink_timing);
                }
            }
        }
    }
}

std::vector<CellPortKey> TimingAnalyser::get_worst_eps(domain_id_t domain_pair, int count)
{
    std::vector<CellPortKey> worst_eps;
    delay_t last_slack = std::numeric_limits<delay_t>::lowest();
    auto &dp = domain_pairs.at(domain_pair);
    auto &cap_d = domains.at(dp.key.capture);
    while (int(worst_eps.size()) < count) {
        CellPortKey next;
        delay_t next_slack = std::numeric_limits<delay_t>::max();
        for (auto ep : cap_d.endpoints) {
            auto &pd = ports.at(ep.first);
            if (!pd.domain_pairs.count(domain_pair))
                continue;
            delay_t ep_slack = pd.domain_pairs.at(domain_pair).setup_slack;
            if (ep_slack < next_slack && ep_slack > last_slack) {
                next = ep.first;
                next_slack = ep_slack;
            }
        }
        if (next == CellPortKey())
            break;
        worst_eps.push_back(next);
        last_slack = next_slack;
    }
    return worst_eps;
}

CriticalPath TimingAnalyser::build_critical_path_report(domain_id_t domain_pair, CellPortKey endpoint)
{
    CriticalPath report;

    auto &dp = domain_pairs.at(domain_pair);
    auto &launch = domains.at(dp.key.launch).key;
    auto &capture = domains.at(dp.key.capture).key;

    report.clock_pair.start.clock = launch.clock;
    report.clock_pair.start.edge = launch.edge;
    report.clock_pair.end.clock = capture.clock;
    report.clock_pair.end.edge = capture.edge;

    report.period = ctx->getDelayFromNS(1.0e9 / ctx->setting<float>("target_freq"));
    if (launch.edge != capture.edge) {
        report.period = report.period / 2;
    }

    if (!launch.is_async() && ctx->nets.at(launch.clock)->clkconstr) {
        if (launch.edge == capture.edge) {
            report.period = ctx->nets.at(launch.clock)->clkconstr->period.minDelay();
        } else if (capture.edge == RISING_EDGE) {
            report.period = ctx->nets.at(launch.clock)->clkconstr->low.minDelay();
        } else if (capture.edge == FALLING_EDGE) {
            report.period = ctx->nets.at(launch.clock)->clkconstr->high.minDelay();
        }
    }

    pool<std::pair<IdString, IdString>> visited;
    std::vector<PortRef> crit_path_rev;
    auto cursor = endpoint;

    while (cursor != CellPortKey()) {
        auto cell = cell_info(cursor);
        auto &port = port_info(cursor);

        int port_clocks;
        auto portClass = ctx->getPortTimingClass(cell, port.name, port_clocks);

        // combinational loop
        if (!visited.insert(std::make_pair(cell->name, port.name)).second)
            break;

        if (portClass != TMG_CLOCK_INPUT && portClass != TMG_IGNORE && port.type == PortType::PORT_IN)
            crit_path_rev.emplace_back(PortRef{cell, port.name});

        if (!ports.at(cursor).arrival.count(dp.key.launch))
            break;

        cursor = ports.at(cursor).arrival.at(dp.key.launch).bwd_max;
    }

    auto crit_path = boost::adaptors::reverse(crit_path_rev);

    auto &front = crit_path.front();
    auto &front_port = front.cell->ports.at(front.port);
    auto &front_driver = front_port.net->driver;

    int port_clocks;
    auto portClass = ctx->getPortTimingClass(front_driver.cell, front_driver.port, port_clocks);

    const CellInfo *last_cell = front.cell;
    IdString last_port = front_driver.port;

    int clock_start = -1;
    if (portClass == TMG_REGISTER_OUTPUT) {
        for (int i = 0; i < port_clocks; i++) {
            TimingClockingInfo clockInfo = ctx->getPortClockingInfo(front_driver.cell, front_driver.port, i);
            const NetInfo *clknet = front_driver.cell->getPort(clockInfo.clock_port);
            if (clknet != nullptr && clknet->name == launch.clock && clockInfo.edge == launch.edge) {
                last_port = clockInfo.clock_port;
                clock_start = i;
                break;
            }
        }
    }

    for (auto sink : crit_path) {
        auto sink_cell = sink.cell;
        auto &port = sink_cell->ports.at(sink.port);
        auto net = port.net;
        auto &driver = net->driver;
        auto driver_cell = driver.cell;

        CriticalPath::Segment seg_logic;

        DelayQuad comb_delay;
        if (clock_start != -1) {
            auto clockInfo = ctx->getPortClockingInfo(driver_cell, driver.port, clock_start);
            comb_delay = clockInfo.clockToQ;
            clock_start = -1;
            seg_logic.type = CriticalPath::Segment::Type::CLK_TO_Q;
        } else if (last_port == driver.port) {
            // Case where we start with a STARTPOINT etc
            comb_delay = DelayQuad(0);
            seg_logic.type = CriticalPath::Segment::Type::SOURCE;
        } else {
            ctx->getCellDelay(driver_cell, last_port, driver.port, comb_delay);
            seg_logic.type = CriticalPath::Segment::Type::LOGIC;
        }

        seg_logic.delay = comb_delay.maxDelay();
        seg_logic.from = std::make_pair(last_cell->name, last_port);
        seg_logic.to = std::make_pair(driver_cell->name, driver.port);
        seg_logic.net = IdString();
        report.segments.push_back(seg_logic);

        auto net_delay = ctx->getNetinfoRouteDelay(net, sink);

        CriticalPath::Segment seg_route;
        seg_route.type = CriticalPath::Segment::Type::ROUTING;
        seg_route.delay = net_delay;
        seg_route.from = std::make_pair(driver_cell->name, driver.port);
        seg_route.to = std::make_pair(sink_cell->name, sink.port);
        seg_route.net = net->name;
        report.segments.push_back(seg_route);

        last_cell = sink_cell;
        last_port = sink.port;
    }

    int clockCount = 0;
    auto sinkClass = ctx->getPortTimingClass(crit_path.back().cell, crit_path.back().port, clockCount);
    if (sinkClass == TMG_REGISTER_INPUT && clockCount > 0) {
        auto sinkClockInfo = ctx->getPortClockingInfo(crit_path.back().cell, crit_path.back().port, 0);
        delay_t setup = sinkClockInfo.setup.maxDelay();

        CriticalPath::Segment seg_logic;
        seg_logic.type = CriticalPath::Segment::Type::SETUP;
        seg_logic.delay = setup;
        seg_logic.from = std::make_pair(last_cell->name, last_port);
        seg_logic.to = seg_logic.from;
        seg_logic.net = IdString();
        report.segments.push_back(seg_logic);
    }

    return report;
}

void TimingAnalyser::build_crit_path_reports()
{
    auto &clock_reports = result.clock_paths;
    auto &xclock_reports = result.xclock_paths;
    auto &clock_fmax = result.clock_fmax;
    auto &empty_clocks = result.empty_paths;
    auto &clock_delays_ctx = result.clock_delays;

    auto delay_by_domain = max_delay_by_domain_pairs();

    for (int i = 0; i < int(domains.size()); i++) {
        empty_clocks.insert(domains.at(i).key.clock);
    }

    for (int i = 0; i < int(domain_pairs.size()); i++) {
        auto &dp = domain_pairs.at(i);
        auto &launch = domains.at(dp.key.launch).key;
        auto &capture = domains.at(dp.key.capture).key;

        if (launch.clock != capture.clock || launch.is_async())
            continue;

        auto path_delay = delay_by_domain.at(i);

        double Fmax;

        if (launch.edge == capture.edge)
            Fmax = 1000 / ctx->getDelayNS(path_delay);
        else
            Fmax = 500 / ctx->getDelayNS(path_delay);

        if (!clock_fmax.count(launch.clock) || Fmax < clock_fmax.at(launch.clock).achieved) {
            float target = ctx->setting<float>("target_freq") / 1e6;
            if (ctx->nets.at(launch.clock)->clkconstr)
                target = 1000 / ctx->getDelayNS(ctx->nets.at(launch.clock)->clkconstr->period.minDelay());

            auto worst_endpoint = get_worst_eps(i, 1);
            if (worst_endpoint.empty())
                continue;

            clock_fmax[launch.clock].achieved = Fmax;
            clock_fmax[launch.clock].constraint = target;

            clock_reports[launch.clock] = build_critical_path_report(i, worst_endpoint.at(0));

            empty_clocks.erase(launch.clock);
        }
    }

    for (int i = 0; i < int(domain_pairs.size()); i++) {
        auto &dp = domain_pairs.at(i);
        auto &launch = domains.at(dp.key.launch).key;
        auto &capture = domains.at(dp.key.capture).key;

        if (launch.clock == capture.clock && !launch.is_async())
            continue;

        auto worst_endpoint = get_worst_eps(i, 1);
        if (worst_endpoint.empty())
            continue;

        xclock_reports.emplace_back(build_critical_path_report(i, worst_endpoint.at(0)));
    }

    auto cmp_crit_path = [&](const CriticalPath &ra, const CriticalPath &rb) {
        const auto &a = ra.clock_pair;
        const auto &b = rb.clock_pair;

        if (a.start.clock.str(ctx) < b.start.clock.str(ctx))
            return true;
        if (a.start.clock.str(ctx) > b.start.clock.str(ctx))
            return false;
        if (a.start.edge < b.start.edge)
            return true;
        if (a.start.edge > b.start.edge)
            return false;
        if (a.end.clock.str(ctx) < b.end.clock.str(ctx))
            return true;
        if (a.end.clock.str(ctx) > b.end.clock.str(ctx))
            return false;
        if (a.end.edge < b.end.edge)
            return true;
        return false;
    };

    std::sort(xclock_reports.begin(), xclock_reports.end(), cmp_crit_path);

    clock_delays_ctx = clock_delays;
}

void TimingAnalyser::build_slack_histogram_report()
{
    auto &slack_histogram = result.slack_histogram;

    for (domain_id_t dom_id = 0; dom_id < domain_id_t(domains.size()); ++dom_id) {
        for (auto &ep : domains.at(dom_id).endpoints) {
            auto &pd = ports.at(ep.first);

            for (auto &req : pd.required) {
                auto &capture = domains.at(req.first).key;
                for (auto &arr : pd.arrival) {
                    auto &launch = domains.at(arr.first).key;

                    if (launch.clock != capture.clock || launch.is_async())
                        continue;

                    float clk_period = ctx->getDelayFromNS(1.0e9 / ctx->setting<float>("target_freq"));
                    if (ctx->nets.at(launch.clock)->clkconstr)
                        clk_period = ctx->nets.at(launch.clock)->clkconstr->period.minDelay();

                    if (launch.edge != capture.edge)
                        clk_period = clk_period / 2;

                    delay_t delay = arr.second.value.maxDelay() - req.second.value.minDelay();
                    delay_t slack = clk_period - delay;

                    int slack_ps = ctx->getDelayNS(slack) * 1000;
                    slack_histogram[slack_ps]++;
                }
            }
        }
    }
}

domain_id_t TimingAnalyser::domain_id(IdString cell, IdString clock_port, ClockEdge edge)
{
    return domain_id(ctx->cells.at(cell)->ports.at(clock_port).net, edge);
}

domain_id_t TimingAnalyser::domain_id(const NetInfo *net, ClockEdge edge)
{
    NPNR_ASSERT(net != nullptr);
    ClockDomainKey key{net->name, edge};
    auto inserted = domain_to_id.emplace(key, domains.size());
    if (inserted.second) {
        domains.emplace_back(key);
    }
    return inserted.first->second;
}

domain_id_t TimingAnalyser::domain_pair_id(domain_id_t launch, domain_id_t capture)
{
    ClockDomainPairKey key{launch, capture};
    auto inserted = pair_to_id.emplace(key, domain_pairs.size());
    if (inserted.second) {
        domain_pairs.emplace_back(key);
    }
    return inserted.first->second;
}

void TimingAnalyser::copy_domains(const CellPortKey &from, const CellPortKey &to, bool backward)
{
    auto &f = ports.at(from), &t = ports.at(to);
    for (auto &dom : (backward ? f.required : f.arrival)) {
        updated_domains |= (backward ? t.required : t.arrival).emplace(dom.first, ArrivReqTime{}).second;
    }
}

CellInfo *TimingAnalyser::cell_info(const CellPortKey &key) { return ctx->cells.at(key.cell).get(); }

PortInfo &TimingAnalyser::port_info(const CellPortKey &key) { return ctx->cells.at(key.cell)->ports.at(key.port); }

void timing_analysis(Context *ctx, bool print_slack_histogram, bool print_fmax, bool print_path, bool warn_on_failure,
                     bool update_results)
{
    TimingAnalyser tmg(ctx);
    tmg.setup(ctx->detailed_timing_report, print_slack_histogram, print_path || print_fmax);

    auto &result = tmg.get_timing_result();
    ctx->log_timing_results(result, print_slack_histogram, print_fmax, print_path, warn_on_failure);

    if (update_results)
        ctx->timing_result = result;
}

NEXTPNR_NAMESPACE_END