1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
|
/*
* nextpnr -- Next Generation Place and Route
*
* Copyright (C) 2018 gatecat <gatecat@ds0.me>
* Copyright (C) 2018 Eddie Hung <eddieh@ece.ubc.ca>
* Copyright (C) 2023 rowanG077 <goemansrowan@gmail.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "log.h"
#include "nextpnr.h"
#include "util.h"
NEXTPNR_NAMESPACE_BEGIN
static std::string clock_event_name(const Context *ctx, const ClockEvent &e, int field_width = 0)
{
std::string value;
if (e.clock == IdString() || e.clock == ctx->id("$async$"))
value = std::string("<async>");
else
value = (e.edge == FALLING_EDGE ? std::string("negedge ") : std::string("posedge ")) + e.clock.str(ctx);
if (int(value.length()) < field_width)
value.insert(value.length(), field_width - int(value.length()), ' ');
return value;
};
static void log_crit_paths(const Context *ctx, TimingResult &result)
{
static auto print_net_source = [ctx](const NetInfo *net) {
// Check if this net is annotated with a source list
auto sources = net->attrs.find(ctx->id("src"));
if (sources == net->attrs.end()) {
// No sources for this net, can't print anything
return;
}
// Sources are separated by pipe characters.
// There is no guaranteed ordering on sources, so we just print all
auto sourcelist = sources->second.as_string();
std::vector<std::string> source_entries;
size_t current = 0, prev = 0;
while ((current = sourcelist.find("|", prev)) != std::string::npos) {
source_entries.emplace_back(sourcelist.substr(prev, current - prev));
prev = current + 1;
}
// Ensure we emplace the final entry
source_entries.emplace_back(sourcelist.substr(prev, current - prev));
// Iterate and print our source list at the correct indentation level
log_info(" Defined in:\n");
for (auto entry : source_entries) {
log_info(" %s\n", entry.c_str());
}
};
// A helper function for reporting one critical path
auto print_path_report = [ctx](const CriticalPath &path) {
delay_t total = 0, logic_total = 0, route_total = 0;
log_info("curr total\n");
for (const auto &segment : path.segments) {
total += segment.delay;
if (segment.type == CriticalPath::Segment::Type::CLK_TO_Q ||
segment.type == CriticalPath::Segment::Type::SOURCE ||
segment.type == CriticalPath::Segment::Type::LOGIC ||
segment.type == CriticalPath::Segment::Type::SETUP) {
logic_total += segment.delay;
const std::string type_name = (segment.type == CriticalPath::Segment::Type::SETUP) ? "Setup" : "Source";
log_info("%4.1f %4.1f %s %s.%s\n", ctx->getDelayNS(segment.delay), ctx->getDelayNS(total),
type_name.c_str(), segment.to.first.c_str(ctx), segment.to.second.c_str(ctx));
} else if (segment.type == CriticalPath::Segment::Type::ROUTING) {
route_total += segment.delay;
const auto &driver = ctx->cells.at(segment.from.first);
const auto &sink = ctx->cells.at(segment.to.first);
auto driver_loc = ctx->getBelLocation(driver->bel);
auto sink_loc = ctx->getBelLocation(sink->bel);
log_info("%4.1f %4.1f Net %s (%d,%d) -> (%d,%d)\n", ctx->getDelayNS(segment.delay),
ctx->getDelayNS(total), segment.net.c_str(ctx), driver_loc.x, driver_loc.y, sink_loc.x,
sink_loc.y);
log_info(" Sink %s.%s\n", segment.to.first.c_str(ctx), segment.to.second.c_str(ctx));
const NetInfo *net = ctx->nets.at(segment.net).get();
if (ctx->verbose) {
PortRef sink_ref;
sink_ref.cell = sink.get();
sink_ref.port = segment.to.second;
auto driver_wire = ctx->getNetinfoSourceWire(net);
auto sink_wire = ctx->getNetinfoSinkWire(net, sink_ref, 0);
log_info(" prediction: %f ns estimate: %f ns\n",
ctx->getDelayNS(ctx->predictArcDelay(net, sink_ref)),
ctx->getDelayNS(ctx->estimateDelay(driver_wire, sink_wire)));
auto cursor = sink_wire;
delay_t delay;
while (driver_wire != cursor) {
#ifdef ARCH_ECP5
if (net->is_global)
break;
#endif
auto it = net->wires.find(cursor);
assert(it != net->wires.end());
auto pip = it->second.pip;
NPNR_ASSERT(pip != PipId());
delay = ctx->getPipDelay(pip).maxDelay();
log_info(" %1.3f %s\n", ctx->getDelayNS(delay), ctx->nameOfPip(pip));
cursor = ctx->getPipSrcWire(pip);
}
}
if (!ctx->disable_critical_path_source_print) {
print_net_source(net);
}
}
}
log_info("%.1f ns logic, %.1f ns routing\n", ctx->getDelayNS(logic_total), ctx->getDelayNS(route_total));
};
// Single domain paths
for (auto &clock : result.clock_paths) {
log_break();
std::string start =
clock.second.clock_pair.start.edge == FALLING_EDGE ? std::string("negedge") : std::string("posedge");
std::string end =
clock.second.clock_pair.end.edge == FALLING_EDGE ? std::string("negedge") : std::string("posedge");
log_info("Critical path report for clock '%s' (%s -> %s):\n", clock.first.c_str(ctx), start.c_str(),
end.c_str());
auto &report = clock.second;
print_path_report(report);
}
// Cross-domain paths
for (auto &report : result.xclock_paths) {
log_break();
std::string start = clock_event_name(ctx, report.clock_pair.start);
std::string end = clock_event_name(ctx, report.clock_pair.end);
log_info("Critical path report for cross-domain path '%s' -> '%s':\n", start.c_str(), end.c_str());
print_path_report(report);
}
};
static void log_fmax(Context *ctx, TimingResult &result, bool warn_on_failure)
{
log_break();
if (result.clock_paths.empty() && result.clock_paths.empty()) {
log_info("No Fmax available; no interior timing paths found in design.\n");
return;
}
unsigned max_width = 0;
for (auto &clock : result.clock_paths)
max_width = std::max<unsigned>(max_width, clock.first.str(ctx).size());
for (auto &clock : result.clock_paths) {
const auto &clock_name = clock.first.str(ctx);
const int width = max_width - clock_name.size();
float fmax = result.clock_fmax[clock.first].achieved;
float target = result.clock_fmax[clock.first].constraint;
bool passed = target < fmax;
if (!warn_on_failure || passed)
log_info("Max frequency for clock %*s'%s': %.02f MHz (%s at %.02f MHz)\n", width, "", clock_name.c_str(),
fmax, passed ? "PASS" : "FAIL", target);
else if (bool_or_default(ctx->settings, ctx->id("timing/allowFail"), false))
log_warning("Max frequency for clock %*s'%s': %.02f MHz (%s at %.02f MHz)\n", width, "", clock_name.c_str(),
fmax, passed ? "PASS" : "FAIL", target);
else
log_nonfatal_error("Max frequency for clock %*s'%s': %.02f MHz (%s at %.02f MHz)\n", width, "",
clock_name.c_str(), fmax, passed ? "PASS" : "FAIL", target);
}
log_break();
// Clock to clock delays for xpaths
dict<ClockPair, delay_t> xclock_delays;
for (auto &report : result.xclock_paths) {
const auto &clock1_name = report.clock_pair.start.clock;
const auto &clock2_name = report.clock_pair.end.clock;
const auto key = std::make_pair(clock1_name, clock2_name);
if (result.clock_delays.count(key)) {
xclock_delays[report.clock_pair] = result.clock_delays.at(key);
}
}
unsigned max_width_xca = 0;
unsigned max_width_xcb = 0;
for (auto &report : result.xclock_paths) {
max_width_xca = std::max((unsigned)clock_event_name(ctx, report.clock_pair.start).length(), max_width_xca);
max_width_xcb = std::max((unsigned)clock_event_name(ctx, report.clock_pair.end).length(), max_width_xcb);
}
// Check and report xpath delays for related clocks
if (!result.xclock_paths.empty()) {
for (auto &report : result.xclock_paths) {
const auto &clock_a = report.clock_pair.start.clock;
const auto &clock_b = report.clock_pair.end.clock;
const auto key = std::make_pair(clock_a, clock_b);
if (!result.clock_delays.count(key)) {
continue;
}
delay_t path_delay = 0;
for (const auto &segment : report.segments) {
path_delay += segment.delay;
}
// Compensate path delay for clock-to-clock delay. If the
// result is negative then only the latter matters. Otherwise
// the compensated path delay is taken.
auto clock_delay = result.clock_delays.at(key);
path_delay -= clock_delay;
float fmax = std::numeric_limits<float>::infinity();
if (path_delay < 0) {
fmax = 1e3f / ctx->getDelayNS(clock_delay);
} else if (path_delay > 0) {
fmax = 1e3f / ctx->getDelayNS(path_delay);
}
// Both clocks are related so they should have the same
// frequency. However, they may get different constraints from
// user input. In case of only one constraint preset take it,
// otherwise get the worst case (min.)
float target;
auto &clock_fmax = result.clock_fmax;
if (clock_fmax.count(clock_a) && !clock_fmax.count(clock_b)) {
target = clock_fmax.at(clock_a).constraint;
} else if (!clock_fmax.count(clock_a) && clock_fmax.count(clock_b)) {
target = clock_fmax.at(clock_b).constraint;
} else {
target = std::min(clock_fmax.at(clock_a).constraint, clock_fmax.at(clock_b).constraint);
}
bool passed = target < fmax;
auto ev_a = clock_event_name(ctx, report.clock_pair.start, max_width_xca);
auto ev_b = clock_event_name(ctx, report.clock_pair.end, max_width_xcb);
if (!warn_on_failure || passed)
log_info("Max frequency for %s -> %s: %.02f MHz (%s at %.02f MHz)\n", ev_a.c_str(), ev_b.c_str(), fmax,
passed ? "PASS" : "FAIL", target);
else if (bool_or_default(ctx->settings, ctx->id("timing/allowFail"), false) ||
bool_or_default(ctx->settings, ctx->id("timing/ignoreRelClk"), false))
log_warning("Max frequency for %s -> %s: %.02f MHz (%s at %.02f MHz)\n", ev_a.c_str(), ev_b.c_str(),
fmax, passed ? "PASS" : "FAIL", target);
else
log_nonfatal_error("Max frequency for %s -> %s: %.02f MHz (%s at %.02f MHz)\n", ev_a.c_str(),
ev_b.c_str(), fmax, passed ? "PASS" : "FAIL", target);
}
log_break();
}
// Report clock delays for xpaths
if (!result.clock_delays.empty()) {
for (auto &pair : xclock_delays) {
auto ev_a = clock_event_name(ctx, pair.first.start, max_width_xca);
auto ev_b = clock_event_name(ctx, pair.first.end, max_width_xcb);
delay_t delay = pair.second;
if (pair.first.start.edge != pair.first.end.edge) {
delay /= 2;
}
log_info("Clock to clock delay %s -> %s: %0.02f ns\n", ev_a.c_str(), ev_b.c_str(), ctx->getDelayNS(delay));
}
log_break();
}
for (auto &eclock : result.empty_paths) {
if (eclock != IdString())
log_info("Clock '%s' has no interior paths\n", eclock.c_str(ctx));
}
log_break();
int start_field_width = 0, end_field_width = 0;
for (auto &report : result.xclock_paths) {
start_field_width = std::max((int)clock_event_name(ctx, report.clock_pair.start).length(), start_field_width);
end_field_width = std::max((int)clock_event_name(ctx, report.clock_pair.end).length(), end_field_width);
}
for (auto &report : result.xclock_paths) {
const ClockEvent &a = report.clock_pair.start;
const ClockEvent &b = report.clock_pair.end;
delay_t path_delay = 0;
for (const auto &segment : report.segments) {
path_delay += segment.delay;
}
auto ev_a = clock_event_name(ctx, a, start_field_width), ev_b = clock_event_name(ctx, b, end_field_width);
log_info("Max delay %s -> %s: %0.02f ns\n", ev_a.c_str(), ev_b.c_str(), ctx->getDelayNS(path_delay));
}
log_break();
}
static void log_histogram(Context *ctx, TimingResult &result)
{
unsigned num_bins = 20;
unsigned bar_width = 60;
int min_slack = std::numeric_limits<int>::max();
int max_slack = std::numeric_limits<int>::min();
for (const auto &i : result.slack_histogram) {
if (i.first < min_slack)
min_slack = i.first;
if (i.first > max_slack)
max_slack = i.first;
}
auto bin_size = std::max<unsigned>(1, ceil((max_slack - min_slack + 1) / float(num_bins)));
std::vector<unsigned> bins(num_bins);
unsigned max_freq = 0;
for (const auto &i : result.slack_histogram) {
int bin_idx = int((i.first - min_slack) / bin_size);
if (bin_idx < 0)
bin_idx = 0;
else if (bin_idx >= int(num_bins))
bin_idx = num_bins - 1;
auto &bin = bins.at(bin_idx);
bin += i.second;
max_freq = std::max(max_freq, bin);
}
bar_width = std::min(bar_width, max_freq);
log_break();
log_info("Slack histogram:\n");
log_info(" legend: * represents %d endpoint(s)\n", max_freq / bar_width);
log_info(" + represents [1,%d) endpoint(s)\n", max_freq / bar_width);
for (unsigned i = 0; i < num_bins; ++i)
log_info("[%6d, %6d) |%s%c\n", min_slack + bin_size * i, min_slack + bin_size * (i + 1),
std::string(bins[i] * bar_width / max_freq, '*').c_str(),
(bins[i] * bar_width) % max_freq > 0 ? '+' : ' ');
}
void Context::log_timing_results(TimingResult &result, bool print_histogram, bool print_fmax, bool print_path,
bool warn_on_failure)
{
if (print_path)
log_crit_paths(this, result);
if (print_fmax)
log_fmax(this, result, warn_on_failure);
if (print_histogram && !result.slack_histogram.empty())
log_histogram(this, result);
}
NEXTPNR_NAMESPACE_END
|