1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
|
/*
* nextpnr -- Next Generation Place and Route
*
* Copyright (C) 2021 Lofty <dan.ravensloft@gmail.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include "nextpnr.h"
NEXTPNR_NAMESPACE_BEGIN
TimingPortClass Arch::getPortTimingClass(const CellInfo *cell, IdString port, int &clockInfoCount) const
{
clockInfoCount = 0;
if (cell->type.in(id_MISTRAL_NOT, id_MISTRAL_BUF, id_MISTRAL_ALUT2, id_MISTRAL_ALUT3, id_MISTRAL_ALUT4,
id_MISTRAL_ALUT5, id_MISTRAL_ALUT6)) {
if (port.in(id_A, id_B, id_C, id_D, id_E, id_F))
return TMG_COMB_INPUT;
if (port == id_Q)
return TMG_COMB_OUTPUT;
} else if (cell->type == id_MISTRAL_ALUT_ARITH) {
if (port.in(id_A, id_B, id_C, id_D0, id_D1, id_CI))
return TMG_COMB_INPUT;
if (port.in(id_SO, id_CO))
return TMG_COMB_OUTPUT;
} else if (cell->type == id_MISTRAL_FF) {
if (port == id_CLK) {
return TMG_CLOCK_INPUT;
}
// ACLR is considered synchronous for timing purposes.
else if (port.in(id_DATAIN, id_ACLR, id_ENA, id_SCLR, id_SLOAD, id_SDATA)) {
clockInfoCount = 1;
return TMG_REGISTER_INPUT;
} else if (port == id_Q) {
clockInfoCount = 1;
return TMG_REGISTER_OUTPUT;
}
} else if (cell->type == id_MISTRAL_MLAB) {
if (port == id_CLK1) {
return TMG_CLOCK_INPUT;
} else if (port.in(id_A1DATA, id_A1EN) || port.str(this).find("A1ADDR") == 0) {
clockInfoCount = 1;
return TMG_REGISTER_INPUT;
} else if (port.str(this).find("B1ADDR") == 0) {
return TMG_COMB_INPUT;
} else if (port.in(id_B1DATA)) {
return TMG_COMB_OUTPUT;
}
} else if (cell->type == id_MISTRAL_M10K) {
if (port == id_CLK1) {
return TMG_CLOCK_INPUT;
} else if (port.in(id_A1DATA, id_A1EN, id_B1EN) || port.str(this).find("A1ADDR") == 0) {
clockInfoCount = 1;
return TMG_REGISTER_INPUT;
} else if (port.str(this).find("B1ADDR") == 0) {
return TMG_REGISTER_INPUT;
} else if (port.in(id_B1DATA)) {
return TMG_REGISTER_OUTPUT;
}
}
return TMG_IGNORE;
}
TimingClockingInfo Arch::getPortClockingInfo(const CellInfo *cell, IdString port, int index) const
{
TimingClockingInfo timing{};
if (cell->type == id_MISTRAL_FF) {
timing.clock_port = id_CLK;
timing.edge = RISING_EDGE;
// ACLR is considered synchronous for timing purposes.
if (port.in(id_DATAIN, id_ACLR, id_ENA, id_SCLR, id_SLOAD, id_SDATA)) {
timing.setup = DelayPair{-196, -196};
timing.hold = DelayPair{270, 270};
timing.clockToQ = DelayQuad{};
} else if (port == id_Q) {
timing.setup = DelayPair{};
timing.hold = DelayPair{};
timing.clockToQ = DelayQuad{731};
}
return timing;
} else if (cell->type == id_MISTRAL_MLAB) {
timing.clock_port = id_CLK1;
timing.edge = RISING_EDGE;
if (port.in(id_A1DATA, id_A1EN) || port.str(this).find("A1ADDR") == 0) {
timing.setup = DelayPair{86, 86};
timing.hold = DelayPair{42, 42};
timing.clockToQ = DelayQuad{};
}
return timing;
} else if (cell->type == id_MISTRAL_M10K) {
timing.clock_port = id_CLK1;
timing.edge = RISING_EDGE;
if (port.str(this).find("A1ADDR") == 0 || port.str(this).find("B1ADDR") == 0) {
timing.setup = DelayPair{125, 125};
timing.hold = DelayPair{42, 42};
timing.clockToQ = DelayQuad{};
} else if (port == id_A1DATA) {
timing.setup = DelayPair{97, 97};
timing.hold = DelayPair{42, 42};
timing.clockToQ = DelayQuad{};
} else if (port == id_A1EN) {
timing.setup = DelayPair{140, 140};
timing.hold = DelayPair{42, 42};
timing.clockToQ = DelayQuad{};
} else if (port == id_B1EN) {
timing.setup = DelayPair{161, 161};
timing.hold = DelayPair{42, 42};
timing.clockToQ = DelayQuad{};
} else if (port == id_B1DATA) {
timing.setup = DelayPair{};
timing.hold = DelayPair{};
timing.clockToQ = DelayQuad{1004};
}
return timing;
}
NPNR_ASSERT_FALSE("unreachable");
}
bool Arch::getCellDelay(const CellInfo *cell, IdString fromPort, IdString toPort, DelayQuad &delay) const
{
// Based on 1.1V 100C timing corner of sx120f, using delays from LUT input to DFF input.
// I have many regrets about naming my cell ports how I did...
// TODO list:
// - MLABs-as-LABs have different timings to LABs
// - speed grades
if (cell->type.in(id_MISTRAL_NOT, id_MISTRAL_BUF, id_MISTRAL_ALUT2, id_MISTRAL_ALUT3, id_MISTRAL_ALUT4,
id_MISTRAL_ALUT5, id_MISTRAL_ALUT6)) {
if (toPort == id_Q) {
if (cell->type == id_MISTRAL_ALUT6 && fromPort == id_A) {
delay = DelayQuad{/* RF */ 592, /* RR */ 605, /* FF */ 567, /* FR */ 573};
return true;
} else if ((cell->type == id_MISTRAL_ALUT5 && fromPort == id_A) ||
(cell->type == id_MISTRAL_ALUT6 && fromPort == id_B)) {
delay = DelayQuad{/* RF */ 580, /* RR */ 583, /* FF */ 560, /* FR */ 574};
return true;
} else if ((cell->type == id_MISTRAL_ALUT4 && fromPort == id_A) ||
(cell->type == id_MISTRAL_ALUT5 && fromPort == id_B) ||
(cell->type == id_MISTRAL_ALUT6 && fromPort == id_C)) {
delay = DelayQuad{/* RR */ 429, /* RF */ 496, /* FR */ 440, /* FF */ 510};
return true;
} else if ((cell->type == id_MISTRAL_ALUT3 && fromPort == id_A) ||
(cell->type == id_MISTRAL_ALUT4 && fromPort == id_B) ||
(cell->type == id_MISTRAL_ALUT5 && fromPort == id_C) ||
(cell->type == id_MISTRAL_ALUT6 && fromPort == id_D)) {
delay = DelayQuad{/* RR */ 432, /* RF */ 499, /* FR */ 444, /* FF */ 512};
return true;
} else if ((cell->type == id_MISTRAL_ALUT2 && fromPort == id_A) ||
(cell->type == id_MISTRAL_ALUT3 && fromPort == id_B) ||
(cell->type == id_MISTRAL_ALUT4 && fromPort == id_C) ||
(cell->type == id_MISTRAL_ALUT5 && fromPort == id_D) ||
(cell->type == id_MISTRAL_ALUT6 && fromPort == id_E)) {
delay = DelayQuad{/* RR */ 263, /* RF */ 354, /* FF */ 362, /* FR */ 400};
return true;
} else if ((cell->type.in(id_MISTRAL_NOT, id_MISTRAL_BUF) && fromPort == id_A) ||
(cell->type == id_MISTRAL_ALUT2 && fromPort == id_B) ||
(cell->type == id_MISTRAL_ALUT3 && fromPort == id_C) ||
(cell->type == id_MISTRAL_ALUT4 && fromPort == id_D) ||
(cell->type == id_MISTRAL_ALUT5 && fromPort == id_E) ||
(cell->type == id_MISTRAL_ALUT6 && fromPort == id_F)) {
delay = DelayQuad{/* RR */ 90, /* RF */ 96, /* FF */ 83, /* FR */ 97};
return true;
}
}
} else if (cell->type == id_MISTRAL_ALUT_ARITH) {
if (toPort == id_CO) {
if (fromPort == id_A) {
delay = DelayQuad{/* RF */ 1005, /* RR */ 1082, /* FF */ 971, /* FR */ 1048};
return true;
} else if (fromPort == id_B) {
delay = DelayQuad{/* RF */ 986, /* RR */ 1062, /* FF */ 976, /* FR */ 1052};
return true;
} else if (fromPort == id_C) {
delay = DelayQuad{/* RF */ 736, /* RR */ 813, /* FF */ 775, /* FR */ 800};
return true;
} else if (fromPort == id_D0) {
delay = DelayQuad{/* RF */ 822, /* RR */ 866, /* FF */ 837, /* FR */ 849};
return true;
} else if (fromPort == id_D1) {
delay = DelayQuad{/* RF */ 1122, /* RR */ 1198, /* FF */ 1128, /* FR */ 1197};
return true;
} else if (fromPort == id_CI) {
// Divided by 2 to account for delay being across ALM rather than across ALUT.
// Maybe this should be a routing delay.
delay = DelayQuad{/* RR */ 63 / 2, /* RR */ 71 / 2, /* FF */ 63 / 2, /* FR */ 71 / 2};
return true;
}
} else if (toPort == id_SO) {
if (fromPort == id_A) {
delay = DelayQuad{/* RF */ 1300, /* RR */ 1342, /* FF */ 1266, /* FR */ 1308};
return true;
} else if (fromPort == id_B) {
delay = DelayQuad{/* RF */ 1280, /* RR */ 1323, /* FF */ 1270, /* FR */ 1313};
return true;
} else if (fromPort == id_C) {
delay = DelayQuad{/* RF */ 866, /* RR */ 892, /* FF */ 908, /* FR */ 927};
return true;
} else if (fromPort == id_D0) {
delay = DelayQuad{/* RR */ 779, /* RF */ 887, /* FR */ 761, /* FF */ 883};
return true;
} else if (fromPort == id_D1) {
delay = DelayQuad{/* RR */ 700, /* RF */ 785, /* FR */ 696, /* FF */ 782};
return true;
} else if (fromPort == id_CI) {
delay = DelayQuad{/* RR */ 350, /* RF */ 352, /* FF */ 361, /* FR */ 368};
return true;
}
}
} else if (cell->type == id_MISTRAL_MLAB) {
if (toPort == id_B1DATA) {
if (fromPort.str(this) == "B1ADDR[0]") {
delay = DelayQuad{/* RF */ 473, /* RR */ 487, /* FR */ 452, /* FF */ 476};
return true;
} else if (fromPort.str(this) == "B1ADDR[1]") {
delay = DelayQuad{/* RF */ 472, /* RR */ 475, /* FR */ 444, /* FF */ 460};
return true;
} else if (fromPort.str(this) == "B1ADDR[2]") {
delay = DelayQuad{/* RF */ 343, /* RR */ 347, /* FR */ 358, /* FF */ 382};
return true;
} else if (fromPort.str(this) == "B1ADDR[3]") {
delay = DelayQuad{/* RF */ 263, /* RR */ 268, /* FF */ 256, /* FR */ 284};
return true;
} else if (fromPort.str(this) == "B1ADDR[4]") {
delay = DelayQuad{/* RF */ 89, /* RR */ 96, /* FF */ 73, /* FR */ 93};
return true;
}
}
}
return false;
}
DelayQuad Arch::getPipDelay(PipId pip) const
{
WireId src = getPipSrcWire(pip), dst = getPipDstWire(pip);
if (src.is_nextpnr_created() || dst.is_nextpnr_created())
return DelayQuad{20};
// This is guesswork based on average of (interconnect delay / number of pips)
auto src_type = CycloneV::rn2t(src.node);
switch (src_type) {
case CycloneV::rnode_type_t::SCLK:
return DelayQuad{136, 136, 139, 139};
case CycloneV::rnode_type_t::SCLKB1:
return DelayQuad{296, 296, 370, 370};
case CycloneV::rnode_type_t::SCLKB2:
return DelayQuad{71, 71, 83, 83};
case CycloneV::rnode_type_t::HCLK:
return DelayQuad{183, 183, 239, 239};
case CycloneV::rnode_type_t::HCLKB:
return DelayQuad{165, 165, 244, 244};
case CycloneV::rnode_type_t::XCLKB1:
return DelayQuad{97, 97, 125, 125};
case CycloneV::rnode_type_t::GIN:
return DelayQuad{100};
case CycloneV::rnode_type_t::H14:
return DelayQuad{273, 286, 288, 291};
case CycloneV::rnode_type_t::H3:
return DelayQuad{196, 226, 163, 173};
case CycloneV::rnode_type_t::H6:
return DelayQuad{220, 275, 199, 217};
case CycloneV::rnode_type_t::V12:
return DelayQuad{361, 374, 337, 340};
case CycloneV::rnode_type_t::V2:
return DelayQuad{214, 231, 163, 175};
case CycloneV::rnode_type_t::V4:
return DelayQuad{290, 294, 243, 245};
case CycloneV::rnode_type_t::WM:
// WM explicitly has zero delay.
return DelayQuad{0};
case CycloneV::rnode_type_t::TD:
return DelayQuad{208, 208, 177, 177};
default:
return DelayQuad{0};
}
}
bool Arch::getArcDelayOverride(const NetInfo *net_info, const PortRef &sink, DelayQuad &delay) const
{
if (!this->bitstream_configured)
return false;
WireId src_wire = getCtx()->getNetinfoSourceWire(net_info);
WireId dst_wire = getCtx()->getNetinfoSinkWire(net_info, sink, 0);
NPNR_ASSERT(src_wire != WireId());
bool inverted = false;
mistral::AnalogSim::wave input_wave[2], output_wave[2];
mistral::AnalogSim::time_interval output_delays[2];
mistral::AnalogSim::time_interval output_delay_sum[2];
std::vector<std::pair<mistral::CycloneV::rnode_t, int>> outputs;
auto temp = mistral::CycloneV::T_100;
auto est = mistral::CycloneV::EST_SLOW;
output_delay_sum[0].mi = 0;
output_delay_sum[0].mx = 0;
output_delay_sum[1].mi = 0;
output_delay_sum[1].mx = 0;
// Mistral's analogue simulator propagates from source to destination,
// but nextpnr finds paths from destination to source, so some slight
// contortions are necessary.
std::vector<PipId> pips;
WireId cursor = dst_wire;
while (cursor != WireId() && cursor != src_wire) {
auto it = net_info->wires.find(cursor);
if (it == net_info->wires.end())
break;
PipId pip = it->second.pip;
if (pip == PipId())
break;
pips.push_back(pip);
cursor = getPipSrcWire(pip);
}
for (auto it = pips.rbegin(); it != pips.rend(); it++) {
PipId pip = *it;
auto src = getPipSrcWire(pip);
auto dst = getPipDstWire(pip);
if (src.is_nextpnr_created())
continue;
if (dst.is_nextpnr_created())
dst.node = 0;
auto mode = cyclonev->rnode_timing_get_mode(src.node);
NPNR_ASSERT(mode != mistral::CycloneV::RTM_UNSUPPORTED);
auto inverting = cyclonev->rnode_is_inverting(src.node);
if (mode == mistral::CycloneV::RTM_P2P) {
if (inverting == mistral::CycloneV::INV_YES || inverting == mistral::CycloneV::INV_PROGRAMMABLE)
inverted = !inverted;
continue;
}
if (mode == mistral::CycloneV::RTM_NO_DELAY) {
if (inverting)
inverted = !inverted;
continue;
}
if (input_wave[0].empty()) {
cyclonev->rnode_timing_build_input_wave(src.node, temp, CycloneV::DELAY_MAX,
inverted ? mistral::CycloneV::RF_FALL : mistral::CycloneV::RF_RISE,
est, input_wave[0]);
cyclonev->rnode_timing_build_input_wave(src.node, temp, CycloneV::DELAY_MAX,
inverted ? mistral::CycloneV::RF_RISE : mistral::CycloneV::RF_FALL,
est, input_wave[1]);
if (input_wave[mistral::CycloneV::RF_RISE].empty() || input_wave[mistral::CycloneV::RF_FALL].empty())
return false;
}
for (int edge = 0; edge != 2; edge++) {
auto actual_edge = edge ? inverted ? mistral::CycloneV::RF_RISE : mistral::CycloneV::RF_FALL
: inverted ? mistral::CycloneV::RF_FALL
: mistral::CycloneV::RF_RISE;
mistral::AnalogSim sim;
int input = -1;
std::vector<std::pair<mistral::CycloneV::rnode_t, int>> outputs;
cyclonev->rnode_timing_build_circuit(src.node, temp, CycloneV::DELAY_MAX, actual_edge, sim, input, outputs);
sim.set_input_wave(input, input_wave[edge]);
auto o = std::find_if(
outputs.begin(), outputs.end(),
[&](std::pair<mistral::CycloneV::rnode_t, int> output) { return output.first == dst.node; });
NPNR_ASSERT(o != outputs.end());
output_wave[edge].clear();
sim.set_output_wave(o->second, output_wave[edge], output_delays[edge]);
sim.run();
cyclonev->rnode_timing_trim_wave(temp, CycloneV::DELAY_MAX, output_wave[edge], input_wave[edge]);
output_delay_sum[edge].mi += output_delays[edge].mi;
output_delay_sum[edge].mx += output_delays[edge].mx;
}
if (inverting == mistral::CycloneV::INV_YES || inverting == mistral::CycloneV::INV_PROGRAMMABLE)
inverted = !inverted;
}
delay = DelayQuad{delay_t(output_delay_sum[0].mi * 1e12), delay_t(output_delay_sum[0].mx * 1e12),
delay_t(output_delay_sum[1].mi * 1e12), delay_t(output_delay_sum[1].mx * 1e12)};
return true;
}
delay_t Arch::predictDelay(BelId src_bel, IdString src_pin, BelId dst_bel, IdString dst_pin) const
{
NPNR_UNUSED(src_pin);
NPNR_UNUSED(dst_pin);
Loc src_loc = getBelLocation(src_bel);
Loc dst_loc = getBelLocation(dst_bel);
int x_diff = std::abs(dst_loc.x - src_loc.x);
int y_diff = std::abs(dst_loc.y - src_loc.y);
return 75 * x_diff + 200 * y_diff;
}
delay_t Arch::estimateDelay(WireId src, WireId dst) const
{
int x0 = CycloneV::rn2x(src.node);
int y0 = CycloneV::rn2y(src.node);
int x1 = CycloneV::rn2x(dst.node);
int y1 = CycloneV::rn2y(dst.node);
int x_diff = std::abs(x1 - x0);
int y_diff = std::abs(y1 - y0);
return 75 * x_diff + 200 * y_diff;
}
NEXTPNR_NAMESPACE_END
|