1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
|
/*
* nextpnr -- Next Generation Place and Route
*
* Copyright (C) 2021 gatecat <gatecat@ds0.me>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "design_utils.h"
#include "log.h"
#include "nextpnr.h"
#include "util.h"
NEXTPNR_NAMESPACE_BEGIN
// This file contains functions related to our custom LAB structure, including creating the LAB bels; checking the
// legality of LABs; and manipulating LUT inputs and equations
// LAB/ALM structure creation functions
namespace {
static void create_alm(Arch *arch, int x, int y, int z, uint32_t lab_idx)
{
auto &lab = arch->labs.at(lab_idx);
auto &alm = lab.alms.at(z);
auto block_type = lab.is_mlab ? CycloneV::MLAB : CycloneV::LAB;
// Create the control set and E/F selection - which is per pair of FF
for (int i = 0; i < 2; i++) {
// Wires
alm.sel_clk[i] = arch->add_wire(x, y, arch->idf("CLK%c[%d]", i ? 'B' : 'T', z));
alm.sel_ena[i] = arch->add_wire(x, y, arch->idf("ENA%c[%d]", i ? 'B' : 'T', z));
alm.sel_aclr[i] = arch->add_wire(x, y, arch->idf("ACLR%c[%d]", i ? 'B' : 'T', z));
alm.sel_ef[i] = arch->add_wire(x, y, arch->idf("%cEF[%d]", i ? 'B' : 'T', z));
// Muxes - three CLK/ENA per LAB, two ACLR
for (int j = 0; j < 3; j++) {
arch->add_pip(lab.clk_wires[j], alm.sel_clk[i]);
arch->add_pip(lab.ena_wires[j], alm.sel_ena[i]);
if (j < 2)
arch->add_pip(lab.aclr_wires[j], alm.sel_aclr[i]);
}
// E/F pips
// Note that the F choice is mirrored, F from the other half is picked
arch->add_pip(arch->get_port(block_type, x, y, z, i ? CycloneV::E1 : CycloneV::E0), alm.sel_ef[i]);
arch->add_pip(arch->get_port(block_type, x, y, z, i ? CycloneV::F0 : CycloneV::F1), alm.sel_ef[i]);
}
// Create the combinational part of ALMs.
// There are two of these, for the two LUT outputs, and these also contain the carry chain and associated logic
// Each one has all 8 ALM inputs as input pins. In many cases only a subset of these are used; depending on mode;
// and the bel-cell pin mappings are used to handle this post-placement without losing flexibility
for (int i = 0; i < 2; i++) {
// Carry/share wires are a bit tricky due to all the different permutations
WireId carry_in, share_in;
WireId carry_out, share_out;
if (z == 0 && i == 0) {
carry_in = arch->add_wire(x, y, id_CI);
share_in = arch->add_wire(x, y, id_SHAREIN);
if (y < (arch->getGridDimY() - 1)) {
// Carry is split at tile boundary (TTO_DIS bit), add a PIP to represent this.
// TODO: what about BTO_DIS, in the middle of the LAB?
arch->add_pip(arch->add_wire(x, y + 1, id_CO), carry_in);
arch->add_pip(arch->add_wire(x, y + 1, id_SHAREOUT), share_in);
}
} else {
// Output from last combinational unit
carry_in = arch->add_wire(x, y, arch->idf("CARRY[%d]", (z * 2 + i) - 1));
share_in = arch->add_wire(x, y, arch->idf("SHARE[%d]", (z * 2 + i) - 1));
}
if (z == 9 && i == 1) {
carry_out = arch->add_wire(x, y, id_CO);
share_out = arch->add_wire(x, y, id_SHAREOUT);
} else {
carry_out = arch->add_wire(x, y, arch->idf("CARRY[%d]", z * 2 + i));
share_out = arch->add_wire(x, y, arch->idf("SHARE[%d]", z * 2 + i));
}
BelId bel =
arch->add_bel(x, y, arch->idf("ALM%d_COMB%d", z, i), lab.is_mlab ? id_MISTRAL_MCOMB : id_MISTRAL_COMB);
// LUT/MUX inputs
arch->add_bel_pin(bel, id_A, PORT_IN, arch->get_port(block_type, x, y, z, CycloneV::A));
arch->add_bel_pin(bel, id_B, PORT_IN, arch->get_port(block_type, x, y, z, CycloneV::B));
arch->add_bel_pin(bel, id_C, PORT_IN, arch->get_port(block_type, x, y, z, CycloneV::C));
arch->add_bel_pin(bel, id_D, PORT_IN, arch->get_port(block_type, x, y, z, CycloneV::D));
arch->add_bel_pin(bel, id_E0, PORT_IN, arch->get_port(block_type, x, y, z, CycloneV::E0));
arch->add_bel_pin(bel, id_E1, PORT_IN, arch->get_port(block_type, x, y, z, CycloneV::E1));
arch->add_bel_pin(bel, id_F0, PORT_IN, arch->get_port(block_type, x, y, z, CycloneV::F0));
arch->add_bel_pin(bel, id_F1, PORT_IN, arch->get_port(block_type, x, y, z, CycloneV::F1));
// Carry/share chain
arch->add_bel_pin(bel, id_CI, PORT_IN, carry_in);
arch->add_bel_pin(bel, id_SHAREIN, PORT_IN, share_in);
arch->add_bel_pin(bel, id_CO, PORT_OUT, carry_out);
arch->add_bel_pin(bel, id_SHAREOUT, PORT_OUT, share_out);
// Combinational output
alm.comb_out[i] = arch->add_wire(x, y, arch->idf("COMBOUT[%d]", z * 2 + i));
arch->add_bel_pin(bel, id_COMBOUT, PORT_OUT, alm.comb_out[i]);
if (lab.is_mlab) {
// Write address - shared between all ALMs in a LAB
arch->add_bel_pin(bel, id_WA0, PORT_IN, arch->get_port(block_type, x, y, 2, CycloneV::F1));
arch->add_bel_pin(bel, id_WA1, PORT_IN, arch->get_port(block_type, x, y, 3, CycloneV::F1));
arch->add_bel_pin(bel, id_WA2, PORT_IN, arch->get_port(block_type, x, y, 7, CycloneV::F1));
arch->add_bel_pin(bel, id_WA3, PORT_IN, arch->get_port(block_type, x, y, 6, CycloneV::F1));
arch->add_bel_pin(bel, id_WA4, PORT_IN, arch->get_port(block_type, x, y, 1, CycloneV::F1));
// Write clock and enable appear to be based on bottom FF
arch->add_bel_pin(bel, id_WCLK, PORT_IN, alm.sel_clk[1]);
arch->add_bel_pin(bel, id_WE, PORT_IN, alm.sel_ena[1]);
}
// Assign indexing
alm.lut_bels.at(i) = bel;
auto &b = arch->bel_data(bel);
b.lab_data.lab = lab_idx;
b.lab_data.alm = z;
b.lab_data.idx = i;
}
// Create the flipflops and associated routing
const CycloneV::port_type_t outputs[4] = {CycloneV::FFT0, CycloneV::FFT1, CycloneV::FFB0, CycloneV::FFB1};
const CycloneV::port_type_t l_outputs[4] = {CycloneV::FFT1L, CycloneV::FFB1L};
for (int i = 0; i < 4; i++) {
// FF input, selected by *PKREG*
alm.ff_in[i] = arch->add_wire(x, y, arch->idf("FFIN[%d]", (z * 4) + i));
arch->add_pip(alm.comb_out[i / 2], alm.ff_in[i]);
arch->add_pip(alm.sel_ef[i / 2], alm.ff_in[i]);
// FF bel
BelId bel = arch->add_bel(x, y, arch->idf("ALM%d_FF%d", z, i), id_MISTRAL_FF);
arch->add_bel_pin(bel, id_CLK, PORT_IN, alm.sel_clk[i / 2]);
arch->add_bel_pin(bel, id_ENA, PORT_IN, alm.sel_ena[i / 2]);
arch->add_bel_pin(bel, id_ACLR, PORT_IN, alm.sel_aclr[i / 2]);
arch->add_bel_pin(bel, id_SCLR, PORT_IN, lab.sclr_wire);
arch->add_bel_pin(bel, id_SLOAD, PORT_IN, lab.sload_wire);
arch->add_bel_pin(bel, id_DATAIN, PORT_IN, alm.ff_in[i]);
arch->add_bel_pin(bel, id_SDATA, PORT_IN, alm.sel_ef[i / 2]);
// FF output
alm.ff_out[i] = arch->add_wire(x, y, arch->idf("FFOUT[%d]", (z * 4) + i));
arch->add_bel_pin(bel, id_Q, PORT_OUT, alm.ff_out[i]);
// Output mux (*DFF*)
WireId out = arch->get_port(block_type, x, y, z, outputs[i]);
arch->add_pip(alm.ff_out[i], out);
arch->add_pip(alm.comb_out[i / 2], out);
// 'L' output mux where applicable
if (i == 1 || i == 3) {
WireId l_out = arch->get_port(block_type, x, y, z, l_outputs[i / 2]);
arch->add_pip(alm.ff_out[i], l_out);
arch->add_pip(alm.comb_out[i / 2], l_out);
}
lab.alms.at(z).ff_bels.at(i) = bel;
auto &b = arch->bel_data(bel);
b.lab_data.lab = lab_idx;
b.lab_data.alm = z;
b.lab_data.idx = i;
}
// TODO: MLAB-specific pins
}
} // namespace
void Arch::create_lab(int x, int y, bool is_mlab)
{
uint32_t lab_idx = labs.size();
labs.emplace_back();
auto &lab = labs.back();
lab.is_mlab = is_mlab;
auto block_type = is_mlab ? CycloneV::MLAB : CycloneV::LAB;
// Create common control set configuration. This is actually a subset of what's possible, but errs on the side of
// caution due to incomplete documentation
// Clocks - hardcode to CLKA choices, as both CLKA and CLKB coming from general routing causes unexpected
// permutations
for (int i = 0; i < 3; i++) {
lab.clk_wires[i] = add_wire(x, y, idf("CLK%d", i));
add_pip(get_port(block_type, x, y, -1, CycloneV::CLKIN, 0), lab.clk_wires[i]); // dedicated routing
add_pip(get_port(block_type, x, y, -1, CycloneV::DATAIN, 0), lab.clk_wires[i]); // general routing
}
// Enables - while it looks from the config like there are choices for these, it seems like EN0_SEL actually selects
// SCLR not ENA0 and EN1_SEL actually selects SLOAD?
lab.ena_wires[0] = get_port(block_type, x, y, -1, CycloneV::DATAIN, 2);
lab.ena_wires[1] = get_port(block_type, x, y, -1, CycloneV::DATAIN, 3);
lab.ena_wires[2] = get_port(block_type, x, y, -1, CycloneV::DATAIN, 0);
// ACLRs - only consider general routing for now
lab.aclr_wires[0] = get_port(block_type, x, y, -1, CycloneV::DATAIN, 3);
lab.aclr_wires[1] = get_port(block_type, x, y, -1, CycloneV::DATAIN, 2);
// SCLR and SLOAD - as above it seems like these might be selectable using the "EN*_SEL" bits but play it safe for
// now
lab.sclr_wire = get_port(block_type, x, y, -1, CycloneV::DATAIN, 3);
lab.sload_wire = get_port(block_type, x, y, -1, CycloneV::DATAIN, 1);
for (int i = 0; i < 10; i++) {
create_alm(this, x, y, i, lab_idx);
}
}
// Cell handling and annotation functions
namespace {
ControlSig get_ctrlsig(const Context *ctx, const CellInfo *cell, IdString port, bool explicit_const = false)
{
ControlSig result;
result.net = cell->getPort(port);
if (result.net == nullptr && explicit_const) {
// For ENA, 1 (and 0) are explicit control set choices even though they aren't routed, as "no ENA" still
// consumes a clock+ENA pair
CellPinState st = PIN_1;
result.net = ctx->nets.at((st == PIN_1) ? ctx->id("$PACKER_VCC_NET") : ctx->id("$PACKER_GND_NET")).get();
}
if (cell->pin_data.count(port))
result.inverted = cell->pin_data.at(port).state == PIN_INV;
else
result.inverted = false;
return result;
}
} // namespace
bool Arch::is_comb_cell(IdString cell_type) const
{
// Return true if a cell is a combinational cell type, to be a placed at a MISTRAL_COMB location
switch (cell_type.index) {
case ID_MISTRAL_ALUT6:
case ID_MISTRAL_ALUT5:
case ID_MISTRAL_ALUT4:
case ID_MISTRAL_ALUT3:
case ID_MISTRAL_ALUT2:
case ID_MISTRAL_NOT:
case ID_MISTRAL_CONST:
case ID_MISTRAL_ALUT_ARITH:
return true;
default:
return false;
}
}
dict<IdString, IdString> Arch::get_mlab_key(const CellInfo *cell, bool include_raddr) const
{
dict<IdString, IdString> key;
for (auto &port : cell->ports) {
if (port.first.in(id_A1DATA, id_B1DATA))
continue;
if (!include_raddr && port.first.str(this).find("B1ADDR") == 0)
continue;
key[port.first] = port.second.net ? port.second.net->name : IdString();
}
if (cell->pin_data.count(id_CLK1) && cell->pin_data.at(id_CLK1).state == PIN_INV)
key[id_WCLK_INV] = id_Y;
if (cell->pin_data.count(id_A1EN) && cell->pin_data.at(id_A1EN).state == PIN_INV)
key[id_WE_INV] = id_Y;
return key;
}
void Arch::assign_comb_info(CellInfo *cell) const
{
cell->combInfo.is_carry = false;
cell->combInfo.is_shared = false;
cell->combInfo.is_extended = false;
cell->combInfo.carry_start = false;
cell->combInfo.carry_end = false;
cell->combInfo.chain_shared_input_count = 0;
cell->combInfo.mlab_group = -1;
if (cell->type == id_MISTRAL_MLAB) {
cell->combInfo.wclk = get_ctrlsig(getCtx(), cell, id_CLK1);
cell->combInfo.we = get_ctrlsig(getCtx(), cell, id_A1EN, true);
cell->combInfo.lut_input_count = 5;
cell->combInfo.lut_bits_count = 32;
for (int i = 0; i < 5; i++)
cell->combInfo.lut_in[i] = cell->getPort(idf("B1ADDR[%d]", i));
auto key = get_mlab_key(cell);
cell->combInfo.mlab_group = mlab_groups(key);
cell->combInfo.comb_out = cell->getPort(id_B1DATA);
} else if (cell->type == id_MISTRAL_ALUT_ARITH) {
cell->combInfo.is_carry = true;
cell->combInfo.lut_input_count = 5;
cell->combInfo.lut_bits_count = 32;
// This is a special case in terms of naming
const std::array<IdString, 5> arith_pins{id_A, id_B, id_C, id_D0, id_D1};
{
int i = 0;
for (auto pin : arith_pins) {
cell->combInfo.lut_in[i++] = cell->getPort(pin);
}
}
const NetInfo *ci = cell->getPort(id_CI);
const NetInfo *co = cell->getPort(id_CO);
cell->combInfo.comb_out = cell->getPort(id_SO);
cell->combInfo.carry_start = (ci == nullptr) || (ci->driver.cell == nullptr);
cell->combInfo.carry_end = (co == nullptr) || (co->users.empty());
// Compute cross-ALM routing sharing - only check the z=0 case inside ALMs
if (cell->constr_z > 0 && ((cell->constr_z % 2) == 0) && ci) {
const CellInfo *prev = ci->driver.cell;
if (prev != nullptr) {
for (int i = 0; i < 5; i++) {
const NetInfo *a = cell->getPort(arith_pins[i]);
if (a == nullptr)
continue;
const NetInfo *b = prev->getPort(arith_pins[i]);
if (a == b)
++cell->combInfo.chain_shared_input_count;
}
}
}
} else {
cell->combInfo.comb_out = cell->getPort(id_Q);
cell->combInfo.lut_input_count = 0;
switch (cell->type.index) {
case ID_MISTRAL_ALUT6:
++cell->combInfo.lut_input_count;
cell->combInfo.lut_in[5] = cell->getPort(id_F);
[[fallthrough]];
case ID_MISTRAL_ALUT5:
++cell->combInfo.lut_input_count;
cell->combInfo.lut_in[4] = cell->getPort(id_E);
[[fallthrough]];
case ID_MISTRAL_ALUT4:
++cell->combInfo.lut_input_count;
cell->combInfo.lut_in[3] = cell->getPort(id_D);
[[fallthrough]];
case ID_MISTRAL_ALUT3:
++cell->combInfo.lut_input_count;
cell->combInfo.lut_in[2] = cell->getPort(id_C);
[[fallthrough]];
case ID_MISTRAL_ALUT2:
++cell->combInfo.lut_input_count;
cell->combInfo.lut_in[1] = cell->getPort(id_B);
[[fallthrough]];
case ID_MISTRAL_BUF: // used to route through to FFs etc
case ID_MISTRAL_NOT: // used for inverters that map to LUTs
++cell->combInfo.lut_input_count;
cell->combInfo.lut_in[0] = cell->getPort(id_A);
[[fallthrough]];
case ID_MISTRAL_CONST:
// MISTRAL_CONST is a nextpnr-inserted cell type for 0-input, constant-generating LUTs
break;
default:
log_error("unexpected combinational cell type %s\n", getCtx()->nameOf(cell->type));
}
// Note that this relationship won't hold for extended mode, when that is supported
cell->combInfo.lut_bits_count = (1 << cell->combInfo.lut_input_count);
}
cell->combInfo.used_lut_input_count = 0;
for (int i = 0; i < cell->combInfo.lut_input_count; i++)
if (cell->combInfo.lut_in[i])
++cell->combInfo.used_lut_input_count;
}
void Arch::assign_ff_info(CellInfo *cell) const
{
cell->ffInfo.ctrlset.clk = get_ctrlsig(getCtx(), cell, id_CLK);
cell->ffInfo.ctrlset.ena = get_ctrlsig(getCtx(), cell, id_ENA, true);
cell->ffInfo.ctrlset.aclr = get_ctrlsig(getCtx(), cell, id_ACLR);
cell->ffInfo.ctrlset.sclr = get_ctrlsig(getCtx(), cell, id_SCLR);
cell->ffInfo.ctrlset.sload = get_ctrlsig(getCtx(), cell, id_SLOAD);
// If SCLR is used, but SLOAD isn't, then it seems like we need to pretend as if SLOAD is connected GND (so set
// [BT]SLOAD_EN inside the ALMs, and clear SLOAD_INV)
if (cell->ffInfo.ctrlset.sclr.net != nullptr && cell->ffInfo.ctrlset.sload.net == nullptr) {
cell->ffInfo.ctrlset.sload.net = nets.at(id("$PACKER_GND_NET")).get();
cell->ffInfo.ctrlset.sload.inverted = false;
}
cell->ffInfo.sdata = cell->getPort(id_SDATA);
cell->ffInfo.datain = cell->getPort(id_DATAIN);
}
// Validity checking functions
bool Arch::is_alm_legal(uint32_t lab, uint8_t alm) const
{
auto &alm_data = labs.at(lab).alms.at(alm);
// Get cells into an array for fast access
std::array<const CellInfo *, 2> luts{getBoundBelCell(alm_data.lut_bels[0]), getBoundBelCell(alm_data.lut_bels[1])};
std::array<const CellInfo *, 4> ffs{getBoundBelCell(alm_data.ff_bels[0]), getBoundBelCell(alm_data.ff_bels[1]),
getBoundBelCell(alm_data.ff_bels[2]), getBoundBelCell(alm_data.ff_bels[3])};
int used_lut_bits = 0;
int total_lut_inputs = 0;
// TODO: for more complex modes like extended/arithmetic, it might not always be possible for any LUT input to map
// to any of the ALM half inputs particularly shared and extended mode will need more thought and probably for this
// to be revisited
for (int i = 0; i < 2; i++) {
if (!luts[i])
continue;
total_lut_inputs += luts[i]->combInfo.lut_input_count;
used_lut_bits += luts[i]->combInfo.lut_bits_count;
}
// An ALM only has 64 bits of storage. In theory some of these cases might be legal because of overlap between the
// two functions, but the current placer is unlikely to stumble upon these cases frequently without anything to
// guide it, and the cost of checking them here almost certainly outweighs any marginal benefit in supporting them,
// at least for now.
if (used_lut_bits > 64)
return false;
if (total_lut_inputs > 8) {
NPNR_ASSERT(luts[0] && luts[1]); // something has gone badly wrong if this fails!
// Make sure that LUT inputs are not overprovisioned
int shared_lut_inputs = 0;
// Even though this N^2 search looks inefficient, it's unlikely a set lookup or similar is going to be much
// better given the low N.
for (int i = 0; i < luts[1]->combInfo.lut_input_count; i++) {
const NetInfo *sig = luts[1]->combInfo.lut_in[i];
for (int j = 0; j < luts[0]->combInfo.lut_input_count; j++) {
if (sig == luts[0]->combInfo.lut_in[j]) {
++shared_lut_inputs;
break;
}
}
}
if ((total_lut_inputs - shared_lut_inputs) > 8)
return false;
}
bool carry_mode = (luts[0] && luts[0]->combInfo.is_carry) || (luts[1] && luts[1]->combInfo.is_carry);
// No mixing of carry and non-carry
if (luts[0] && luts[1] && luts[0]->combInfo.is_carry != luts[1]->combInfo.is_carry)
return false;
// For each ALM half; check FF control set sharing and input routeability
for (int i = 0; i < 2; i++) {
// There are two ways to route from the fabric into FF data - either routing through a LUT or using the E/F
// signals and SLOAD=1 (*PKREF*)
bool route_thru_lut_avail = !luts[i] && !carry_mode && (total_lut_inputs < 8) && (used_lut_bits < 64);
// E/F is available if this LUT is using 3 or fewer inputs - this is conservative and sharing can probably
// improve this situation. (1 - i) because the F input to EF_SEL is mirrored.
bool ef_available = (!luts[1 - i] || (luts[1 - i]->combInfo.used_lut_input_count <= 2));
// Control set checking
bool found_ff = false;
FFControlSet ctrlset;
for (int j = 0; j < 2; j++) {
const CellInfo *ff = ffs[i * 2 + j];
if (!ff)
continue;
if (j == 1)
return false; // TODO: why are these FFs broken?
if (found_ff) {
// Two FFs in the same half with an incompatible control set
if (ctrlset != ff->ffInfo.ctrlset)
return false;
} else {
ctrlset = ff->ffInfo.ctrlset;
}
// SDATA must use the E/F input
// TODO: rare case of two FFs with the same SDATA in the same ALM half
if (ff->ffInfo.sdata) {
if (!ef_available)
return false;
ef_available = false;
}
// Find a way of routing the input through fabric, if it's not driven by the LUT
if (ff->ffInfo.datain && (!luts[i] || (ff->ffInfo.datain != luts[i]->combInfo.comb_out))) {
if (route_thru_lut_avail)
route_thru_lut_avail = false;
else if (ef_available)
ef_available = false;
else
return false;
}
found_ff = true;
}
}
return true;
}
void Arch::update_alm_input_count(uint32_t lab, uint8_t alm)
{
// TODO: duplication with above
auto &alm_data = labs.at(lab).alms.at(alm);
// Get cells into an array for fast access
std::array<const CellInfo *, 2> luts{getBoundBelCell(alm_data.lut_bels[0]), getBoundBelCell(alm_data.lut_bels[1])};
std::array<const CellInfo *, 4> ffs{getBoundBelCell(alm_data.ff_bels[0]), getBoundBelCell(alm_data.ff_bels[1]),
getBoundBelCell(alm_data.ff_bels[2]), getBoundBelCell(alm_data.ff_bels[3])};
int total_inputs = 0;
int total_lut_inputs = 0;
for (int i = 0; i < 2; i++) {
if (!luts[i])
continue;
// MLAB that has been clustered with other MLABs (due to shared read port) costs no extra inputs
if (luts[i]->combInfo.mlab_group != -1 && luts[i]->constr_z > 2) {
alm_data.unique_input_count = 0;
return;
}
total_lut_inputs += luts[i]->combInfo.used_lut_input_count - luts[i]->combInfo.chain_shared_input_count;
}
int shared_lut_inputs = 0;
if (luts[0] && luts[1]) {
for (int i = 0; i < luts[1]->combInfo.lut_input_count; i++) {
const NetInfo *sig = luts[1]->combInfo.lut_in[i];
if (!sig)
continue;
for (int j = 0; j < luts[0]->combInfo.lut_input_count; j++) {
if (sig == luts[0]->combInfo.lut_in[j]) {
++shared_lut_inputs;
break;
}
}
if (shared_lut_inputs >= 2 && luts[0]->combInfo.mlab_group == -1) {
// only 2 inputs have guaranteed sharing in non-MLAB mode, without routeability based LUT permutation at
// least
break;
}
}
}
total_inputs = std::max(0, total_lut_inputs - shared_lut_inputs);
for (int i = 0; i < 4; i++) {
const CellInfo *ff = ffs[i];
if (!ff)
continue;
if (ff->ffInfo.sdata)
++total_inputs;
// FF input doesn't consume routing resources if driven by associated LUT
if (ff->ffInfo.datain && (!luts[i / 2] || ff->ffInfo.datain != luts[i / 2]->combInfo.comb_out))
++total_inputs;
}
alm_data.unique_input_count = total_inputs;
}
bool Arch::check_lab_input_count(uint32_t lab) const
{
// There are only 46 TD signals available to route signals from general routing to the ALM input. Currently, we
// check the total sum of ALM inputs is less than 42; 46 minus 4 FF control inputs. This is a conservative check for
// several reasons, because LD signals are also available for feedback routing from ALM output to input, and because
// TD signals may be shared if the same net routes to multiple ALMs. But these cases will need careful handling and
// LUT permutation during routing to be useful; and in any event conservative LAB packing will help nextpnr's
// currently perfunctory place and route algorithms to achieve satisfactory runtimes.
int count = 0;
auto &lab_data = labs.at(lab);
for (int i = 0; i < 10; i++) {
count += lab_data.alms.at(i).unique_input_count;
}
return (count <= 42);
}
bool Arch::check_mlab_groups(uint32_t lab) const
{
auto &lab_data = labs.at(lab);
if (!lab_data.is_mlab)
return true;
int found_group = -2;
for (const auto &alm_data : lab_data.alms) {
std::array<const CellInfo *, 2> luts{getBoundBelCell(alm_data.lut_bels[0]),
getBoundBelCell(alm_data.lut_bels[1])};
for (const CellInfo *lut : luts) {
if (!lut)
continue;
if (found_group == -2)
found_group = lut->combInfo.mlab_group;
else if (found_group != lut->combInfo.mlab_group)
return false;
}
}
if (found_group >= 0) {
for (const auto &alm_data : lab_data.alms) {
std::array<const CellInfo *, 4> ffs{
getBoundBelCell(alm_data.ff_bels[0]), getBoundBelCell(alm_data.ff_bels[1]),
getBoundBelCell(alm_data.ff_bels[2]), getBoundBelCell(alm_data.ff_bels[3])};
for (const CellInfo *ff : ffs) {
if (ff)
return false; // be conservative and don't allow LUTRAMs and FFs together
}
}
}
return true;
}
namespace {
bool check_assign_sig(ControlSig &sig_set, const ControlSig &sig)
{
if (sig.net == nullptr) {
return true;
} else if (sig_set == sig) {
return true;
} else if (sig_set.net == nullptr) {
sig_set = sig;
return true;
} else {
return false;
}
};
template <size_t N> bool check_assign_sig(std::array<ControlSig, N> &sig_set, const ControlSig &sig)
{
if (sig.net == nullptr)
return true;
for (size_t i = 0; i < N; i++)
if (sig_set[i] == sig) {
return true;
} else if (sig_set[i].net == nullptr) {
sig_set[i] = sig;
return true;
}
return false;
};
// DATAIN mapping rules - which LAB DATAIN signals can be used for ENA and ACLR
static constexpr std::array<int, 3> ena_datain{2, 3, 0};
static constexpr std::array<int, 2> aclr_datain{3, 2};
struct LabCtrlSetWorker
{
ControlSig clk{}, sload{}, sclr{};
std::array<ControlSig, 2> aclr{};
std::array<ControlSig, 3> ena{};
std::array<ControlSig, 4> datain{};
bool run(const Arch *arch, uint32_t lab)
{
// Strictly speaking the constraint is up to 2 unique CLK and 3 CLK+ENA pairs. For now we simplify this to 1 CLK
// and 3 ENA though.
for (uint8_t alm = 0; alm < 10; alm++) {
for (uint8_t i = 0; i < 4; i++) {
const CellInfo *ff = arch->getBoundBelCell(arch->labs.at(lab).alms.at(alm).ff_bels.at(i));
if (ff == nullptr)
continue;
if (!check_assign_sig(clk, ff->ffInfo.ctrlset.clk))
return false;
if (!check_assign_sig(sload, ff->ffInfo.ctrlset.sload))
return false;
if (!check_assign_sig(sclr, ff->ffInfo.ctrlset.sclr))
return false;
if (!check_assign_sig(aclr, ff->ffInfo.ctrlset.aclr))
return false;
if (!check_assign_sig(ena, ff->ffInfo.ctrlset.ena))
return false;
}
}
// Check for overuse of the shared, LAB-wide datain signals
if (clk.net != nullptr && !clk.net->is_global)
if (!check_assign_sig(datain[0], clk)) // CLK only needs DATAIN[0] if it's not global
return false;
if (!check_assign_sig(datain[1], sload))
return false;
if (!check_assign_sig(datain[3], sclr))
return false;
for (const auto &aclr_sig : aclr) {
// Check both possibilities that ACLR can map to
// TODO: ACLR could be global, too
if (check_assign_sig(datain[aclr_datain[0]], aclr_sig))
continue;
if (check_assign_sig(datain[aclr_datain[1]], aclr_sig))
continue;
// Failed to find any free ACLR-capable DATAIN
return false;
}
for (const auto &ena_sig : ena) {
// Check all 3 possibilities that ACLR can map to
// TODO: ACLR could be global, too
if (check_assign_sig(datain[ena_datain[0]], ena_sig))
continue;
if (check_assign_sig(datain[ena_datain[1]], ena_sig))
continue;
if (check_assign_sig(datain[ena_datain[2]], ena_sig))
continue;
// Failed to find any free ENA-capable DATAIN
return false;
}
return true;
}
};
}; // namespace
bool Arch::is_lab_ctrlset_legal(uint32_t lab) const
{
LabCtrlSetWorker worker;
return worker.run(this, lab);
}
void Arch::lab_pre_route()
{
log_info("Preparing LABs for routing...\n");
for (uint32_t lab = 0; lab < labs.size(); lab++) {
assign_control_sets(lab);
for (uint8_t alm = 0; alm < 10; alm++) {
reassign_alm_inputs(lab, alm);
}
}
}
void Arch::assign_control_sets(uint32_t lab)
{
// Set up reservations for checkPipAvail for control set signals
// This will be needed because clock and CE are routed together and must be kept together, there isn't free choice
// e.g. CLK0 & ENA0 must be use for one control set, and CLK1 & ENA1 for another, they can't be mixed and matched
// Similarly for how inverted & noninverted variants must be kept separate
LabCtrlSetWorker worker;
bool legal = worker.run(this, lab);
NPNR_ASSERT(legal);
auto &lab_data = labs.at(lab);
for (int j = 0; j < 2; j++) {
lab_data.aclr_used[j] = false;
}
for (uint8_t alm = 0; alm < 10; alm++) {
auto &alm_data = lab_data.alms.at(alm);
if (lab_data.is_mlab) {
for (uint8_t i = 0; i < 2; i++) {
BelId lut_bel = alm_data.lut_bels.at(i);
const CellInfo *lut = getBoundBelCell(lut_bel);
if (!lut || lut->combInfo.mlab_group == -1)
continue;
WireId wclk_wire = getBelPinWire(lut_bel, id_WCLK);
WireId we_wire = getBelPinWire(lut_bel, id_WE);
// Force use of CLK0/ENA0 for LUTRAMs. Might have to revisit if we ever support packing LUTRAMs and FFs
reserve_route(lab_data.clk_wires[0], wclk_wire);
reserve_route(lab_data.ena_wires[0], we_wire);
}
}
for (uint8_t i = 0; i < 4; i++) {
BelId ff_bel = alm_data.ff_bels.at(i);
const CellInfo *ff = getBoundBelCell(ff_bel);
if (ff == nullptr)
continue;
ControlSig ena_sig = ff->ffInfo.ctrlset.ena;
WireId clk_wire = getBelPinWire(ff_bel, id_CLK);
WireId ena_wire = getBelPinWire(ff_bel, id_ENA);
for (int j = 0; j < 3; j++) {
if (ena_sig == worker.datain[ena_datain[j]]) {
if (getCtx()->debug) {
log_info("Assigned CLK/ENA set %d to FF %s (%s)\n", j, nameOf(ff), getCtx()->nameOfBel(ff_bel));
}
// TODO: lock clock according to ENA choice, too, when we support two clocks per ALM
reserve_route(lab_data.clk_wires[0], clk_wire);
reserve_route(lab_data.ena_wires[j], ena_wire);
alm_data.clk_ena_idx[i / 2] = j;
break;
}
}
ControlSig aclr_sig = ff->ffInfo.ctrlset.aclr;
WireId aclr_wire = getBelPinWire(ff_bel, id_ACLR);
for (int j = 0; j < 2; j++) {
// TODO: could be global ACLR, too
if (aclr_sig == worker.datain[aclr_datain[j]]) {
if (getCtx()->debug) {
log_info("Assigned ACLR set %d to FF %s (%s)\n", i, nameOf(ff), getCtx()->nameOfBel(ff_bel));
}
reserve_route(lab_data.aclr_wires[j], aclr_wire);
lab_data.aclr_used[j] = (aclr_sig.net != nullptr);
alm_data.aclr_idx[i / 2] = j;
break;
}
}
}
}
}
namespace {
// Gets the name of logical LUT pin i for a given cell
static IdString get_lut_pin(CellInfo *cell, int i)
{
const std::array<IdString, 6> log_pins{id_A, id_B, id_C, id_D, id_E, id_F};
const std::array<IdString, 5> log_pins_arith{id_A, id_B, id_C, id_D0, id_D1};
return (cell->type == id_MISTRAL_ALUT_ARITH) ? log_pins_arith.at(i) : log_pins.at(i);
}
static void assign_lut6_inputs(CellInfo *cell, int lut)
{
std::array<IdString, 6> phys_pins{id_A, id_B, id_C, id_D, (lut == 1) ? id_E1 : id_E0, (lut == 1) ? id_F1 : id_F0};
int phys_idx = 0;
for (int i = 0; i < 6; i++) {
IdString log = get_lut_pin(cell, i);
if (!cell->ports.count(log) || cell->ports.at(log).net == nullptr)
continue;
cell->pin_data[log].bel_pins.clear();
cell->pin_data[log].bel_pins.push_back(phys_pins.at(phys_idx++));
}
}
static void assign_mlab_inputs(Context *ctx, CellInfo *cell, int lut)
{
cell->pin_data[id_CLK1].bel_pins = {id_WCLK};
cell->pin_data[id_A1EN].bel_pins = {id_WE};
cell->pin_data[id_A1DATA].bel_pins = {(lut == 1) ? id_E1 : id_E0};
cell->pin_data[id_B1DATA].bel_pins = {id_COMBOUT};
cell->pin_data[id_A1EN].bel_pins = {id_WE};
std::array<IdString, 6> raddr_pins{id_A, id_B, id_C, id_D, id_F0};
for (int i = 0; i < 5; i++) {
cell->pin_data[ctx->idf("A1ADDR[%d]", i)].bel_pins = {ctx->idf("WA%d", i)};
cell->pin_data[ctx->idf("B1ADDR[%d]", i)].bel_pins = {raddr_pins.at(i)};
}
}
} // namespace
void Arch::reassign_alm_inputs(uint32_t lab, uint8_t alm)
{
// Based on the usage of LUTs inside the ALM, set up cell-bel pin map for the combinational cells in the ALM
// so that each physical bel pin is only used for one net; and the logical functions can be implemented correctly.
// This function should also insert route-through LUTs to legalise flipflop inputs as needed.
auto &alm_data = labs.at(lab).alms.at(alm);
alm_data.l6_mode = false;
alm_data.carry_mode = false;
std::array<CellInfo *, 2> luts{getBoundBelCell(alm_data.lut_bels[0]), getBoundBelCell(alm_data.lut_bels[1])};
std::array<CellInfo *, 4> ffs{getBoundBelCell(alm_data.ff_bels[0]), getBoundBelCell(alm_data.ff_bels[1]),
getBoundBelCell(alm_data.ff_bels[2]), getBoundBelCell(alm_data.ff_bels[3])};
bool found_mlab = false;
for (int i = 0; i < 2; i++) {
// Currently we treat LUT6s and MLABs as a special case, as they never share inputs or have fixed mappings
if (!luts[i])
continue;
if (luts[i]->combInfo.is_carry)
alm_data.carry_mode = true;
if (luts[i]->type == id_MISTRAL_ALUT6) {
alm_data.l6_mode = true;
NPNR_ASSERT(luts[1 - i] == nullptr); // only allow one LUT6 per ALM and no other LUTs
assign_lut6_inputs(luts[i], i);
} else if (luts[i]->type == id_MISTRAL_MLAB) {
found_mlab = true;
assign_mlab_inputs(getCtx(), luts[i], i);
}
}
if (!alm_data.l6_mode && !found_mlab) {
// In L5 mode; which is what we use in this case
// - A and B are shared
// - C, E0, and F0 are exclusive to the top LUT5 secion
// - D, E1, and F1 are exclusive to the bottom LUT5 section
// First find up to two shared inputs
dict<IdString, int> shared_nets;
if (luts[0] && luts[1]) {
for (int i = 0; i < luts[0]->combInfo.lut_input_count; i++) {
for (int j = 0; j < luts[1]->combInfo.lut_input_count; j++) {
if (luts[0]->combInfo.lut_in[i] == nullptr)
continue;
if (luts[0]->combInfo.lut_in[i] != luts[1]->combInfo.lut_in[j])
continue;
IdString net = luts[0]->combInfo.lut_in[i]->name;
if (shared_nets.count(net))
continue;
int idx = int(shared_nets.size());
shared_nets[net] = idx;
if (shared_nets.size() >= 2)
goto shared_search_done;
}
}
shared_search_done:;
}
// A and B can be used for half-specific nets if not assigned to shared nets
bool a_avail = shared_nets.size() == 0, b_avail = shared_nets.size() <= 1;
// Do the actual port assignment
for (int i = 0; i < 2; i++) {
if (!luts[i])
continue;
// Work out which physical ports are available
std::vector<IdString> avail_phys_ports;
// D/C always available and dedicated to the half, in L5 mode
avail_phys_ports.push_back((i == 1) ? id_D : id_C);
// In arithmetic mode, Ei can only be used for D0 and Fi can only be used for D1
// otherwise, these are general and dedicated to one half
if (!luts[i]->combInfo.is_carry) {
avail_phys_ports.push_back((i == 1) ? id_E1 : id_E0);
avail_phys_ports.push_back((i == 1) ? id_F1 : id_F0);
}
// A and B might be used for shared signals, or already used by the other half
if (b_avail)
avail_phys_ports.push_back(id_B);
if (a_avail)
avail_phys_ports.push_back(id_A);
int phys_idx = 0;
for (int j = 0; j < luts[i]->combInfo.lut_input_count; j++) {
IdString log = get_lut_pin(luts[i], j);
auto &bel_pins = luts[i]->pin_data[log].bel_pins;
bel_pins.clear();
NetInfo *net = luts[i]->getPort(log);
if (net == nullptr) {
// Disconnected inputs don't need to be allocated a pin, because the router won't be routing these
continue;
} else if (shared_nets.count(net->name)) {
// This pin is to be allocated one of the shared nets
bel_pins.push_back(shared_nets.at(net->name) ? id_B : id_A);
} else if (log == id_D0) {
// Arithmetic
bel_pins.push_back((i == 1) ? id_E1 : id_E0); // reserved
} else if (log == id_D1) {
bel_pins.push_back((i == 1) ? id_F1 : id_F0); // reserved
} else {
// Allocate from the general pool of available physical pins
IdString phys = avail_phys_ports.at(phys_idx++);
bel_pins.push_back(phys);
// Mark A/B unavailable for the other LUT, if needed
if (phys == id_A)
a_avail = false;
else if (phys == id_B)
b_avail = false;
}
}
}
}
// FF route-through insertion
for (int i = 0; i < 2; i++) {
// FF route-through will never be inserted if LUT is used
if (luts[i])
continue;
for (int j = 0; j < 2; j++) {
CellInfo *ff = ffs[i * 2 + j];
if (!ff || !ff->ffInfo.datain || alm_data.l6_mode || alm_data.carry_mode)
continue;
CellInfo *rt_lut = createCell(idf("%s$ROUTETHRU", nameOf(ff)), id_MISTRAL_BUF);
rt_lut->addInput(id_A);
rt_lut->addOutput(id_Q);
// Disconnect the original data input to the FF, and connect it to the route-thru LUT instead
NetInfo *datain = ff->getPort(id_DATAIN);
ff->disconnectPort(id_DATAIN);
rt_lut->connectPort(id_A, datain);
rt_lut->connectPorts(id_Q, ff, id_DATAIN);
// Assign route-thru LUT physical ports, input goes to the first half-specific input
rt_lut->pin_data[id_A].bel_pins.push_back(i ? id_D : id_C);
rt_lut->pin_data[id_Q].bel_pins.push_back(id_COMBOUT);
assign_comb_info(rt_lut);
// Place the route-thru LUT at the relevant combinational bel
bindBel(alm_data.lut_bels[i], rt_lut, STRENGTH_STRONG);
break;
}
}
// TODO: in the future, as well as the reassignment here we will also have pseudo PIPs in front of the ALM so that
// the router can permute LUTs for routeability; too. Here we will need to lock out some of those PIPs depending on
// the usage of the ALM, as not all inputs are always interchangeable.
// Get cells into an array for fast access
}
// This default cell-bel pin mapping is used to provide estimates during placement only. It will have errors and
// overlaps and a correct mapping will be resolved twixt placement and routing
const dict<IdString, IdString> Arch::comb_pinmap = {
{id_A, id_F0}, // fastest input first
{id_B, id_E0}, {id_C, id_D}, {id_D, id_C}, {id_D0, id_C}, {id_D1, id_B},
{id_E, id_B}, {id_F, id_A}, {id_Q, id_COMBOUT}, {id_SO, id_COMBOUT},
};
namespace {
// gets the value of the ith LUT init property of a given cell
uint64_t get_lut_init(const CellInfo *cell, int i)
{
if (cell->type == id_MISTRAL_NOT) {
return 1;
} else if (cell->type == id_MISTRAL_BUF) {
return 2;
} else {
IdString prop;
if (cell->type == id_MISTRAL_ALUT_ARITH)
prop = (i == 1) ? id_LUT1 : id_LUT0;
else
prop = id_LUT;
auto fnd = cell->params.find(prop);
if (fnd == cell->params.end())
return 0;
else
return fnd->second.as_int64();
}
}
// gets the state of a physical pin when evaluating the a given bit of LUT init for
bool get_phys_pin_val(bool l6_mode, bool arith_mode, int bit, IdString pin)
{
switch (pin.index) {
case ID_A:
return (bit >> 0) & 0x1;
case ID_B:
return (bit >> 1) & 0x1;
case ID_C:
return (l6_mode && bit >= 32) ? ((bit >> 3) & 0x1) : ((bit >> 2) & 0x1);
case ID_D:
return (l6_mode && bit < 32) ? ((bit >> 3) & 0x1) : ((bit >> 2) & 0x1);
case ID_E0:
case ID_E1:
return l6_mode ? ((bit >> 5) & 0x1) : ((bit >> 3) & 0x1);
case ID_F0:
case ID_F1:
return arith_mode ? ((bit >> 3) & 0x1) : ((bit >> 4) & 0x1);
default:
NPNR_ASSERT_FALSE("unknown physical pin!");
}
}
static const std::array<int, 64> mlab_permute = {0, 1, 4, 5, 8, 9, 12, 13, 29, 28, 25, 24, 21, 20, 17, 16,
2, 3, 6, 7, 10, 11, 14, 15, 31, 30, 27, 26, 23, 22, 19, 18,
32, 33, 36, 37, 40, 41, 44, 45, 61, 60, 57, 56, 53, 52, 49, 48,
34, 35, 38, 39, 42, 43, 46, 47, 63, 62, 59, 58, 55, 54, 51, 50};
// MLABs have permuted init values in hardware, we need to correct for this
uint64_t permute_mlab_init(uint64_t orig)
{
uint64_t result = 0;
for (int i = 0; i < 64; i++) {
if ((orig >> uint64_t(i)) & 0x1) {
result |= (uint64_t(1) << uint64_t(mlab_permute.at(i)));
}
}
return result;
}
} // namespace
uint64_t Arch::compute_lut_mask(uint32_t lab, uint8_t alm)
{
uint64_t mask = 0;
auto &alm_data = labs.at(lab).alms.at(alm);
std::array<CellInfo *, 2> luts{getBoundBelCell(alm_data.lut_bels[0]), getBoundBelCell(alm_data.lut_bels[1])};
for (int i = 0; i < 2; i++) {
CellInfo *lut = luts[i];
if (!lut)
continue;
int offset = ((i == 1) && !alm_data.l6_mode) ? 32 : 0;
bool arith = lut->combInfo.is_carry;
for (int j = 0; j < (alm_data.l6_mode ? 64 : 32); j++) {
// Evaluate LUT function at this point
uint64_t init = get_lut_init(lut, (arith && j >= 16) ? 1 : 0);
int index = 0;
for (int k = 0; k < lut->combInfo.lut_input_count; k++) {
IdString log_pin = get_lut_pin(lut, k);
int init_idx = k;
if (arith) {
// D0 only affects lower half; D1 upper half
if (k == 3 && j >= 16)
continue;
if (k == 4) {
if (j < 16)
continue;
else
init_idx = 3;
}
}
CellPinState state = lut->get_pin_state(log_pin);
if (state == PIN_0) {
continue;
} else if (state == PIN_1) {
index |= (1 << init_idx);
continue;
}
// Ignore if no associated physical pin
if (lut->getPort(log_pin) == nullptr || lut->pin_data.at(log_pin).bel_pins.empty())
continue;
// ALM inputs appear to be inverted by default (TODO: check!)
// so only invert if an inverter has _not_ been folded into the pin
bool inverted = (state != PIN_INV);
// Depermute physical pin
IdString phys_pin = lut->pin_data.at(log_pin).bel_pins.at(0);
if (get_phys_pin_val(alm_data.l6_mode, arith, j, phys_pin) != inverted)
index |= (1 << init_idx);
}
if ((init >> index) & 0x1) {
mask |= (1ULL << uint64_t(j + offset));
}
}
}
// TODO: always inverted, or just certain paths?
mask = ~mask;
if (labs.at(lab).is_mlab)
mask = permute_mlab_init(mask);
#if 1
if (getCtx()->debug) {
auto pos = alm_data.lut_bels[0].pos;
log("ALM %03d.%03d.%d\n", CycloneV::pos2x(pos), CycloneV::pos2y(pos), alm);
for (int i = 0; i < 2; i++) {
log(" LUT%d: ", i);
if (luts[i]) {
log("%s:%s", nameOf(luts[i]), nameOf(luts[i]->type));
for (auto &pin : luts[i]->pin_data) {
if (!luts[i]->ports.count(pin.first) || luts[i]->ports.at(pin.first).type != PORT_IN)
continue;
log(" %s:", nameOf(pin.first));
if (pin.second.state == PIN_0)
log("0");
else if (pin.second.state == PIN_1)
log("1");
else if (pin.second.state == PIN_INV)
log("~");
for (auto bp : pin.second.bel_pins)
log("%s", nameOf(bp));
}
} else {
log("<null>");
}
log("\n");
}
log("INIT: %016lx\n", mask);
log("\n");
}
#endif
return mask;
}
NEXTPNR_NAMESPACE_END
|