1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
|
/*
* nextpnr -- Next Generation Place and Route
*
* Copyright (C) 2021 gatecat <gatecat@ds0.me>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "design_utils.h"
#include "log.h"
#include "nextpnr.h"
#include "util.h"
NEXTPNR_NAMESPACE_BEGIN
namespace {
struct MistralPacker
{
MistralPacker(Context *ctx) : ctx(ctx){};
Context *ctx;
NetInfo *gnd_net, *vcc_net;
void init_constant_nets()
{
CellInfo *gnd_drv = ctx->createCell(ctx->id("$PACKER_GND_DRV"), id_MISTRAL_CONST);
gnd_drv->params[id_LUT] = 0;
gnd_drv->addOutput(id_Q);
CellInfo *vcc_drv = ctx->createCell(ctx->id("$PACKER_VCC_DRV"), id_MISTRAL_CONST);
vcc_drv->params[id_LUT] = 1;
vcc_drv->addOutput(id_Q);
gnd_net = ctx->createNet(ctx->id("$PACKER_GND_NET"));
vcc_net = ctx->createNet(ctx->id("$PACKER_VCC_NET"));
gnd_drv->connectPort(id_Q, gnd_net);
vcc_drv->connectPort(id_Q, vcc_net);
}
CellPinState get_pin_needed_muxval(CellInfo *cell, IdString port)
{
NetInfo *net = cell->getPort(port);
if (net == nullptr || net->driver.cell == nullptr) {
// Pin is disconnected
// If a mux value exists already, honour it
CellPinState exist_mux = cell->get_pin_state(port);
if (exist_mux != PIN_SIG)
return exist_mux;
// Otherwise, look up the default value and use that
CellPinStyle pin_style = ctx->get_cell_pin_style(cell, port);
if ((pin_style & PINDEF_MASK) == PINDEF_0)
return PIN_0;
else if ((pin_style & PINDEF_MASK) == PINDEF_1)
return PIN_1;
else
return PIN_SIG;
}
// Look to see if the driver is an inverter or constant
IdString drv_type = net->driver.cell->type;
if (drv_type == id_MISTRAL_NOT)
return PIN_INV;
else if (drv_type == id_GND)
return PIN_0;
else if (drv_type == id_VCC)
return PIN_1;
else
return PIN_SIG;
}
void uninvert_port(CellInfo *cell, IdString port)
{
// Rewire a port so it is driven by the input to an inverter
NetInfo *net = cell->getPort(port);
NPNR_ASSERT(net != nullptr && net->driver.cell != nullptr && net->driver.cell->type == id_MISTRAL_NOT);
CellInfo *inv = net->driver.cell;
cell->disconnectPort(port);
NetInfo *inv_a = inv->getPort(id_A);
if (inv_a != nullptr) {
cell->connectPort(port, inv_a);
}
}
void process_inv_constants(CellInfo *cell)
{
// TODO: we might need to create missing inputs here in some cases so we can tie them to the correct constant?
// Fold inverters and constants into a cell
for (auto &port : cell->ports) {
// Iterate over all inputs
if (port.second.type != PORT_IN)
continue;
IdString port_name = port.first;
CellPinState req_mux = get_pin_needed_muxval(cell, port_name);
if (req_mux == PIN_SIG) {
// No special setting required, ignore
continue;
}
CellPinStyle pin_style = ctx->get_cell_pin_style(cell, port_name);
if (req_mux == PIN_INV) {
// Pin is inverted. If there is a hard inverter; then use it
if (pin_style & PINOPT_INV) {
uninvert_port(cell, port_name);
cell->pin_data[port_name].state = PIN_INV;
}
} else if (req_mux == PIN_0 || req_mux == PIN_1) {
// Pin is tied to a constant
// If there is a hard constant option; use it
if ((pin_style & int(req_mux)) == req_mux) {
cell->disconnectPort(port_name);
cell->pin_data[port_name].state = req_mux;
} else {
cell->disconnectPort(port_name);
// There is no hard constant, we need to connect it to the relevant soft-constant net
cell->connectPort(port_name, (req_mux == PIN_1) ? vcc_net : gnd_net);
}
}
}
}
void trim_design()
{
// Remove unused inverters and high/low drivers
std::vector<IdString> trim_cells;
std::vector<IdString> trim_nets;
for (auto &cell : ctx->cells) {
CellInfo *ci = cell.second.get();
if (ci->type != id_MISTRAL_NOT && ci->type != id_GND && ci->type != id_VCC)
continue;
IdString port = (ci->type == id_MISTRAL_NOT) ? id_Q : id_Y;
NetInfo *out = ci->getPort(port);
if (out == nullptr) {
trim_cells.push_back(ci->name);
continue;
}
if (!out->users.empty())
continue;
ci->disconnectPort(id_A);
trim_cells.push_back(ci->name);
trim_nets.push_back(out->name);
}
for (IdString rem_net : trim_nets)
ctx->nets.erase(rem_net);
for (IdString rem_cell : trim_cells)
ctx->cells.erase(rem_cell);
}
void pack_constants()
{
// Iterate through cells
for (auto &cell : ctx->cells) {
CellInfo *ci = cell.second.get();
// Skip certain cells at this point
if (ci->type != id_MISTRAL_NOT && ci->type != id_GND && ci->type != id_VCC)
process_inv_constants(ci);
}
// Special case - SDATA can only be trimmed if SLOAD is low
for (auto &cell : ctx->cells) {
CellInfo *ci = cell.second.get();
if (ci->type != id_MISTRAL_FF)
continue;
if (ci->get_pin_state(id_SLOAD) != PIN_0)
continue;
ci->disconnectPort(id_SDATA);
}
// Remove superfluous inverters and constant drivers
trim_design();
}
void prepare_io()
{
// Find the actual IO buffer corresponding to a port; and copy attributes across to it
// Note that this relies on Yosys to do IO buffer inference, to avoid tristate issues once we get to synthesised
// JSON. In all cases the nextpnr-inserted IO buffers are removed as redundant.
for (auto &port : ctx->ports) {
if (!ctx->cells.count(port.first))
log_error("Port '%s' doesn't seem to have a corresponding top level IO\n", ctx->nameOf(port.first));
CellInfo *ci = ctx->cells.at(port.first).get();
PortRef top_port;
top_port.cell = nullptr;
bool is_npnr_iob = false;
if (ci->type == ctx->id("$nextpnr_ibuf") || ci->type == ctx->id("$nextpnr_iobuf")) {
// Might have an input buffer (IB etc) connected to it
is_npnr_iob = true;
NetInfo *o = ci->getPort(id_O);
if (o == nullptr)
;
else if (o->users.entries() > 1)
log_error("Top level pin '%s' has multiple input buffers\n", ctx->nameOf(port.first));
else if (o->users.entries() == 1)
top_port = *o->users.begin();
}
if (ci->type == ctx->id("$nextpnr_obuf") || ci->type == ctx->id("$nextpnr_iobuf")) {
// Might have an output buffer (OB etc) connected to it
is_npnr_iob = true;
NetInfo *i = ci->getPort(id_I);
if (i != nullptr && i->driver.cell != nullptr) {
if (top_port.cell != nullptr)
log_error("Top level pin '%s' has multiple input/output buffers\n", ctx->nameOf(port.first));
top_port = i->driver;
}
// Edge case of a bidirectional buffer driving an output pin
if (i->users.entries() > 2) {
log_error("Top level pin '%s' has illegal buffer configuration\n", ctx->nameOf(port.first));
} else if (i->users.entries() == 2) {
if (top_port.cell != nullptr)
log_error("Top level pin '%s' has illegal buffer configuration\n", ctx->nameOf(port.first));
for (auto &usr : i->users) {
if (usr.cell->type == ctx->id("$nextpnr_obuf") || usr.cell->type == ctx->id("$nextpnr_iobuf"))
continue;
top_port = usr;
break;
}
}
}
if (!is_npnr_iob)
log_error("Port '%s' doesn't seem to have a corresponding top level IO (internal cell type mismatch)\n",
ctx->nameOf(port.first));
if (top_port.cell == nullptr) {
log_info("Trimming port '%s' as it is unused.\n", ctx->nameOf(port.first));
} else {
// Copy attributes to real IO buffer
if (ctx->io_attr.count(port.first)) {
for (auto &kv : ctx->io_attr.at(port.first)) {
top_port.cell->attrs[kv.first] = kv.second;
}
}
// Make sure that top level net is set correctly
port.second.net = top_port.cell->ports.at(top_port.port).net;
}
// Now remove the nextpnr-inserted buffer
ci->disconnectPort(id_I);
ci->disconnectPort(id_O);
ctx->cells.erase(port.first);
}
}
void pack_io()
{
// Step 0: deal with top level inserted IO buffers
prepare_io();
// Stage 1: apply constraints
for (auto &cell : ctx->cells) {
CellInfo *ci = cell.second.get();
// Iterate through all IO buffer primitives
if (!ctx->is_io_cell(ci->type))
continue;
// We need all IO constrained at the moment, unconstrained IO are rare enough not to care
if (!ci->attrs.count(id_LOC))
log_error("Found unconstrained IO '%s', these are currently unsupported\n", ctx->nameOf(ci));
// Convert package pin constraint to bel constraint
std::string loc = ci->attrs.at(id_LOC).as_string();
if (loc.compare(0, 4, "PIN_") != 0)
log_error("Expecting PIN_-prefixed pin for IO '%s', got '%s'\n", ctx->nameOf(ci), loc.c_str());
auto pin_info = ctx->cyclonev->pin_find_name(loc.substr(4));
if (pin_info == nullptr)
log_error("IO '%s' is constrained to invalid pin '%s'\n", ctx->nameOf(ci), loc.c_str());
BelId bel = ctx->get_io_pin_bel(pin_info);
if (bel == BelId()) {
log_error("IO '%s' is constrained to pin %s which is not a supported IO pin.\n", ctx->nameOf(ci),
loc.c_str());
} else {
log_info("Constraining IO '%s' to pin %s (bel %s)\n", ctx->nameOf(ci), loc.c_str(),
ctx->nameOfBel(bel));
ctx->bindBel(bel, ci, STRENGTH_LOCKED);
}
}
}
void constrain_carries()
{
for (auto &cell : ctx->cells) {
CellInfo *ci = cell.second.get();
if (ci->type != id_MISTRAL_ALUT_ARITH)
continue;
const NetInfo *cin = ci->getPort(id_CI);
if (cin != nullptr && cin->driver.cell != nullptr)
continue; // not the start of a chain
std::vector<CellInfo *> chain;
CellInfo *cursor = ci;
while (true) {
chain.push_back(cursor);
const NetInfo *co = cursor->getPort(id_CO);
if (co == nullptr || co->users.empty())
break;
if (co->users.entries() > 1)
log_error("Carry net %s has more than one sink!\n", ctx->nameOf(co));
auto &usr = *co->users.begin();
if (usr.port != id_CI)
log_error("Carry net %s drives port %s, expected CI\n", ctx->nameOf(co), ctx->nameOf(usr.port));
cursor = usr.cell;
}
chain.at(0)->constr_abs_z = true;
chain.at(0)->constr_z = 0;
chain.at(0)->cluster = chain.at(0)->name;
for (int i = 1; i < int(chain.size()); i++) {
chain.at(i)->constr_x = 0;
chain.at(i)->constr_y = -(i / 20);
// 2 COMB, 4 FF per ALM
chain.at(i)->constr_z = ((i / 2) % 10) * 6 + (i % 2);
chain.at(i)->constr_abs_z = true;
chain.at(i)->cluster = chain.at(0)->name;
chain.at(0)->constr_children.push_back(chain.at(i));
}
if (ctx->debug) {
log_info("Chain: \n");
for (int i = 0; i < int(chain.size()); i++) {
auto &c = chain.at(i);
log_info(" i=%d cell=%s dy=%d z=%d ci=%s co=%s\n", i, ctx->nameOf(c), c->constr_y, c->constr_z,
ctx->nameOf(c->getPort(id_CI)), ctx->nameOf(c->getPort(id_CO)));
}
}
}
// Check we reached all the cells in the above pass
for (auto &cell : ctx->cells) {
CellInfo *ci = cell.second.get();
if (ci->type != id_MISTRAL_ALUT_ARITH)
continue;
if (ci->cluster == ClusterId())
log_error("Failed to include arith cell '%s' in any chain (CI=%s)\n", ctx->nameOf(ci),
ctx->nameOf(ci->getPort(id_CI)));
}
}
void constrain_lutram()
{
// We form clusters based on both read and write address; as both being the same makes it more likely these
// cells should be packed together, too.
// This makes things easier for the placement legaliser to deal with RAM in LAB-compatible blocks without
// over-constraining things
idict<dict<IdString, IdString>> mlab_keys;
std::vector<std::vector<CellInfo *>> mlab_groups;
for (auto &cell : ctx->cells) {
CellInfo *ci = cell.second.get();
if (ci->type != id_MISTRAL_MLAB)
continue;
auto key = ctx->get_mlab_key(ci, true);
int key_idx = mlab_keys(key);
if (key_idx >= int(mlab_groups.size()))
mlab_groups.resize(key_idx + 1);
mlab_groups.at(key_idx).push_back(ci);
}
// Combine into clusters
size_t cluster_size = 20;
for (auto &group : mlab_groups) {
for (size_t i = 0; i < group.size(); i++) {
CellInfo *ci = group.at(i);
CellInfo *base = group.at((i / cluster_size) * cluster_size);
int cell_index = int(i) % cluster_size;
int alm = cell_index / 2;
int alm_cell = cell_index % 2;
ci->cluster = base->name;
ci->constr_abs_z = true;
ci->constr_z = alm * 6 + alm_cell;
if (cell_index != 0) {
// Not the root of a cluster
base->constr_children.push_back(ci);
ci->constr_x = 0;
ci->constr_y = 0;
}
}
}
}
void setup_m10ks()
{
for (auto &cell : ctx->cells) {
CellInfo *ci = cell.second.get();
if (ci->type != id_MISTRAL_M10K)
continue;
auto abits = ci->params.at(id_CFG_ABITS).as_int64();
auto dbits = ci->params.at(id_CFG_DBITS).as_int64();
NPNR_ASSERT(abits >= 7 && abits <= 13);
NPNR_ASSERT(dbits == 1 || dbits == 2 || dbits == 5 || dbits == 10 || dbits == 20 || dbits == 40);
NPNR_ASSERT((1 << abits) * dbits <= 10240);
log_info("Setting up %ld-bit address, %ld-bit data M10K for %s.\n", abits, dbits,
ci->name.str(ctx).c_str());
// Quartus doesn't seem to generate ADDRSTALL[AB], BYTEENABLE[AB][01].
// It *does* generate ACLR[01] but leaves them unconnected if unused.
// Enables.
// RDEN[1] is left unconnected.
if (dbits == 40)
ci->pin_data[ctx->id("A1EN")].bel_pins = {ctx->id("WREN[0]")};
else
ci->pin_data[ctx->id("A1EN")].bel_pins = {ctx->id("WREN[1]")};
ci->pin_data[ctx->id("B1EN")].bel_pins = {ctx->id("RDEN[0]")};
// Clocks.
ci->pin_data[ctx->id("CLK1")].bel_pins = {ctx->id("CLKIN[0]")};
// Enables left unconnected.
// Address lines.
// One could remove the std::max here and the `- bit_offset`s here,
// because they would cancel out, but I think this way is less confusing.
int addr_offset = std::max(12 - std::max(abits, dbits == 40 ? 8L : 9L), 0L);
int bit_offset = (abits == 13);
if (abits == 13) {
ci->pin_data[ctx->id("A1ADDR[0]")].bel_pins = {ctx->id("DATAAIN[4]")};
ci->pin_data[ctx->id("B1ADDR[0]")].bel_pins = {ctx->id("DATABIN[19]")};
}
for (int bit = bit_offset; bit < abits; bit++) {
ci->pin_data[ctx->idf("A1ADDR[%d]", bit)].bel_pins = {
ctx->idf("ADDRA[%d]", bit + addr_offset - bit_offset)};
ci->pin_data[ctx->idf("B1ADDR[%d]", bit)].bel_pins = {
ctx->idf("ADDRB[%d]", bit + addr_offset - bit_offset)};
}
// Data lines
std::vector<int> offsets;
offsets.push_back(0);
if (abits >= 10 && dbits <= 10) {
offsets.push_back(10);
}
if (abits >= 11 && dbits <= 5) {
offsets.push_back(5);
offsets.push_back(15);
}
if (abits >= 12 && dbits <= 2) {
offsets.push_back(2);
offsets.push_back(7);
offsets.push_back(12);
offsets.push_back(17);
}
if (abits == 13 && dbits == 1) {
offsets.push_back(1);
offsets.push_back(3);
offsets.push_back(6);
offsets.push_back(8);
offsets.push_back(11);
offsets.push_back(13);
offsets.push_back(16);
offsets.push_back(18);
}
// In this corner case the pin name does not have indexing
// because it's a single bit wide...
if (abits == 13 && dbits == 1) {
for (int offset : offsets)
ci->pin_data[ctx->idf("A1DATA")].bel_pins.push_back(ctx->idf("DATAAIN[%d]", offset));
ci->pin_data[ctx->idf("B1DATA")].bel_pins = {ctx->idf("DATABOUT[0]")};
continue;
}
// 40-bit data mode causes some headaches...
bit_offset = dbits == 40 ? 20 : 0;
// Write port
for (int bit = 0; bit < std::min(dbits, 20L); bit++)
for (int offset : offsets)
ci->pin_data[ctx->idf("A1DATA[%d]", bit)].bel_pins.push_back(ctx->idf("DATAAIN[%d]", bit + offset));
if (dbits == 40)
for (int bit = bit_offset; bit < dbits; bit++)
ci->pin_data[ctx->idf("A1DATA[%d]", bit)].bel_pins.push_back(
ctx->idf("DATABIN[%d]", bit - bit_offset));
// Read port
if (dbits == 40)
for (int bit = 0; bit < 20; bit++)
ci->pin_data[ctx->idf("B1DATA[%d]", bit)].bel_pins = {ctx->idf("DATAAOUT[%d]", bit)};
for (int bit = bit_offset; bit < dbits; bit++)
ci->pin_data[ctx->idf("B1DATA[%d]", bit)].bel_pins = {ctx->idf("DATABOUT[%d]", bit - bit_offset)};
}
}
void run()
{
init_constant_nets();
pack_constants();
pack_io();
constrain_carries();
constrain_lutram();
setup_m10ks();
}
};
}; // namespace
bool Arch::pack()
{
MistralPacker packer(getCtx());
packer.run();
assignArchInfo();
return true;
}
NEXTPNR_NAMESPACE_END
|