1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
|
% Copyright (c) 2002, 2017 Jens Keiner, Stefan Kunis, Daniel Potts
%
% This program is free software; you can redistribute it and/or modify it under
% the terms of the GNU General Public License as published by the Free Software
% Foundation; either version 2 of the License, or (at your option) any later
% version.
%
% This program is distributed in the hope that it will be useful, but WITHOUT
% ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
% FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
% details.
%
% You should have received a copy of the GNU General Public License along with
% this program; if not, write to the Free Software Foundation, Inc., 51
% Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
N=64;
T=3*N; %T=5*N/2;
R=3*N/2;
f=fft2(phantom(N));
%f=imresize(im2double(imread('trui.png')),N/256);
fr=real(f); fi=imag(f);
save 'input_data_r.dat' fr -ascii -double
save 'input_data_i.dat' fi -ascii -double
if ispc
cmd='polar_fft_test.exe';
else
cmd='./polar_fft_test';
end
system(sprintf('%s %d %d %d',cmd,N,T,R));
polar_fft_error = load('polar_fft_error.dat');
polar_ifft_error3 = load('polar_ifft_error3.dat');
polar_ifft_error6 = load('polar_ifft_error6.dat');
polar_ifft_error9 = load('polar_ifft_error9.dat');
figure(1);
h=semilogy(1:length(polar_fft_error),polar_fft_error);
set(h,'LineWidth',2.0); set(h,'Markersize',10);
set(gca,'FontSize',22);
grid;
axis([0,10,10^-15,1]);
title('Test of the polar FFT');
xlabel('m');
ylabel('E_{max}');
print fig_polar_fft -deps2
figure(2);
it=0:10:100;
h=plot(it,polar_ifft_error3,'-',it,polar_ifft_error6,'--',it,polar_ifft_error9,'-.');
set(h,'LineWidth',2.0); set(h,'Markersize',10);
set(gca,'FontSize',22);
grid;
title('Test of the inverse polar FFT');
xlabel('iterations');
ylabel('E_{max}');
legend('m=3','m=6','m=9');
print fig_ipolar_fft -deps2
disp(sprintf('\n'));
if ispc
cmd_mpolar_fft_test='mpolar_fft_test.exe';
else
cmd_mpolar_fft_test='./mpolar_fft_test';
end
system(sprintf('%s %d %d %d',cmd_mpolar_fft_test,N,T,R));
mpolar_fft_error = load('mpolar_fft_error.dat');
mpolar_ifft_error3 = load('mpolar_ifft_error3.dat');
mpolar_ifft_error6 = load('mpolar_ifft_error6.dat');
mpolar_ifft_error9 = load('mpolar_ifft_error9.dat');
figure(3);
h=semilogy(1:length(mpolar_fft_error),mpolar_fft_error);
set(h,'LineWidth',2.0); set(h,'Markersize',10);
set(gca,'FontSize',22);
grid;
axis([0,10,10^-15,1]);
title('Test of the mpolar FFT');
xlabel('m');
ylabel('E_{max}');
print fig_mpolar_fft -deps2
figure(4);
it=0:2:20;
h=semilogy(it,mpolar_ifft_error3,'-',it,mpolar_ifft_error6,'--',it,mpolar_ifft_error9,'-.');
set(h,'LineWidth',2.0); set(h,'Markersize',10);
set(gca,'FontSize',22);
grid;
title('Test of the inverse mpolar FFT');
xlabel('iterations');
ylabel('E_{max}');
legend('m=3','m=6','m=9');
print fig_impolar_fft -deps2
disp(sprintf('\n'));
if ispc
cmd_linogram_fft_test='linogram_fft_test.exe';
else
cmd_linogram_fft_test='./linogram_fft_test';
end
system(sprintf('%s %d %d %d',cmd_linogram_fft_test,N,T,R));
linogram_fft_error = load('linogram_fft_error.dat');
linogram_ifft_error3 = load('linogram_ifft_error3.dat');
linogram_ifft_error6 = load('linogram_ifft_error6.dat');
linogram_ifft_error9 = load('linogram_ifft_error9.dat');
figure(5);
h=semilogy(1:length(linogram_fft_error),linogram_fft_error);
set(h,'LineWidth',2.0); set(h,'Markersize',10);
set(gca,'FontSize',22);
grid;
axis([0,10,10^-15,1]);
title('Test of the linogram FFT');
xlabel('m');
ylabel('E_{max}');
print fig_lino_fft -deps2
figure(6);
it=0:2:20;
h=semilogy(it,linogram_ifft_error3,'-',it,linogram_ifft_error6,'--',it,linogram_ifft_error9,'-.');
set(h,'LineWidth',2.0); set(h,'Markersize',10);
set(gca,'FontSize',22);
grid;
title('Test of the inverse linogram FFT');
xlabel('iterations');
ylabel('E_{max}');
legend('m=3','m=6','m=9');
print fig_ilino_fft -deps2
|