File: phantom.m

package info (click to toggle)
nfft 3.5.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 8,972 kB
  • sloc: ansic: 44,442; lisp: 1,697; makefile: 1,322; sh: 744; sed: 5
file content (44 lines) | stat: -rw-r--r-- 1,974 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
% Copyright (c) 2002, 2017 Jens Keiner, Stefan Kunis, Daniel Potts
%
% This program is free software; you can redistribute it and/or modify it under
% the terms of the GNU General Public License as published by the Free Software
% Foundation; either version 2 of the License, or (at your option) any later
% version.
%
% This program is distributed in the hope that it will be useful, but WITHOUT
% ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
% FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
% details.
%
% You should have received a copy of the GNU General Public License along with
% this program; if not, write to the Free Software Foundation, Inc., 51
% Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
function I=phantom(N)
% phantom(N)
%  generates the (modified) Shepp-Logan phantom of P. Toft
%  as an NxN matrix.
%
% Reference: Peter Toft: "The Radon Transform - Theory and Implementation", Ph.D. thesis.
%   Department of Mathematical Modelling, Technical University of Denmark, June 1996. 326 pages.

% Author: Markus Fenn, 2005

I = zeros(N,N);

k = linspace(-1,1,N);
[x,y] = meshgrid(k);

I = I + 1.0 * ( (x/0.69).^2+(y/0.92).^2 <= 1 );
I = I - 0.8 * ( (x/0.6624).^2+((y+0.0184)/0.874).^2 <= 1 );
I = I - 0.2 * ( ( (cos(-18/360*2*pi)*(x-0.22)+sin(-18/360*2*pi)*y)/0.11).^2+...
                ( (sin(-18/360*2*pi)*(x-0.22)-cos(-18/360*2*pi)*y)/0.31).^2 <= 1 );
I = I - 0.2 * ( ( (cos( 18/360*2*pi)*(x+0.22)+sin( 18/360*2*pi)*y)/0.16).^2+...
                ( (sin( 18/360*2*pi)*(x+0.22)-cos( 18/360*2*pi)*y)/0.41).^2 <= 1 );
I = I + 0.1 * ( (x/0.21).^2+((y-0.35)/0.25).^2 <= 1 );
I = I + 0.1 * ( (x/0.046).^2+((y-0.1)/0.046).^2 <= 1 );
I = I + 0.1 * ( (x/0.046).^2+((y+0.1)/0.046).^2 <= 1 );
I = I + 0.1 * ( ((x+0.08)/0.046).^2+((y+0.605)/0.023).^2 <= 1 );
I = I + 0.1 * ( (x/0.023).^2+((y+0.606)/0.023).^2 <= 1 );
I = I + 0.1 * ( ((x-0.06)/0.023).^2+((y+0.605)/0.046).^2 <= 1 );

I=flipud(I);