1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
|
/*
* Copyright (c) 2002, 2017 Jens Keiner, Stefan Kunis, Daniel Potts
*
* This program is free software; you can redistribute it and/or modify it under
* the terms of the GNU General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option) any later
* version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 51
* Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/**
* \file polarFFT/polar_fft_test.c
* \brief NFFT-based polar FFT and inverse.
*
* Computes the NFFT-based polar FFT and its inverse for various parameters.
* \author Markus Fenn
* \date 2006
*/
#include <math.h>
#include <stdlib.h>
#include <complex.h>
#define @NFFT_PRECISION_MACRO@
#include "nfft3mp.h"
/**
* \defgroup applications_polarFFT_polar polar_fft_test
* \ingroup applications_polarFFT
* \{
*/
/** Generates the points \f$x_{t,j}\f$ with weights \f$w_{t,j}\f$
* for the polar grid with \f$T\f$ angles and \f$R\f$ offsets.
*
* The nodes of the polar grid lie on concentric circles around the origin.
* They are given for \f$(j,t)^{\top}\in I_R\times I_T\f$ by
* a signed radius \f$r_j := \frac{j}{R} \in [-\frac{1}{2},\frac{1}{2})\f$ and
* an angle \f$\theta_t := \frac{\pi t}{T} \in [-\frac{\pi}{2},\frac{\pi}{2})\f$
* as
* \f[
* x_{t,j} := r_j\left(\cos\theta_t, \sin\theta_t\right)^{\top}\,.
* \f]
* The total number of nodes is \f$M=TR\f$,
* whereas the origin is included multiple times.
*
* Weights are introduced to compensate for local sampling density variations.
* For every point in the sampling set, we associate a small surrounding area.
* In case of the polar grid, we choose small ring segments.
* The area of such a ring segment around \f$x_{t,j}\f$ (\f$j \ne 0\f$) is
* \f[
* w_{t,j}
* = \frac{\pi}{2TR^2}\left(\left(|j|+\frac{1}{2}\right)^2-
* \left(|j|-\frac{1}{2}\right)^2\right)
* = \frac{\pi |j| }{TR^2}\, .
* \f]
* The area of the small circle of radius \f$\frac{1}{2R}\f$ around the origin is
* \f$\frac{\pi}{4R^2}\f$.
* Divided by the multiplicity of the origin in the sampling set, we get
* \f$w_{t,0} := \frac{\pi}{4TR^2}\f$.
* Thus, the sum of all weights is \f$\frac{\pi}{4}(1+\frac{1}{R^2})\f$ and
* we divide by this value for normalization.
*/
static int polar_grid(int T, int S, NFFT_R *x, NFFT_R *w)
{
int t, r;
NFFT_R W = (NFFT_R) T * (((NFFT_R) S / NFFT_K(2.0)) * ((NFFT_R) S / NFFT_K(2.0)) + NFFT_K(1.0) / NFFT_K(4.0));
for (t = -T / 2; t < T / 2; t++)
{
for (r = -S / 2; r < S / 2; r++)
{
x[2 * ((t + T / 2) * S + (r + S / 2)) + 0] = (NFFT_R) (r) / (NFFT_R)(S) * NFFT_M(cos)(NFFT_KPI * (NFFT_R)(t) / (NFFT_R)(T));
x[2 * ((t + T / 2) * S + (r + S / 2)) + 1] = (NFFT_R) (r) / (NFFT_R)(S) * NFFT_M(sin)(NFFT_KPI * (NFFT_R)(t) / (NFFT_R)(T));
if (r == 0)
w[(t + T / 2) * S + (r + S / 2)] = NFFT_K(1.0) / NFFT_K(4.0) / W;
else
w[(t + T / 2) * S + (r + S / 2)] = NFFT_M(fabs)((NFFT_R) r) / W;
}
}
return T * S; /** return the number of knots */
}
/** discrete polar FFT */
static int polar_dft(NFFT_C *f_hat, int NN, NFFT_C *f, int T, int S,
int m)
{
int j, k; /**< index for nodes and frequencies */
NFFT(plan) my_nfft_plan; /**< plan for the nfft-2D */
NFFT_R *x, *w; /**< knots and associated weights */
int N[2], n[2];
int M = T * S; /**< number of knots */
N[0] = NN;
n[0] = 2 * N[0]; /**< oversampling factor sigma=2 */
N[1] = NN;
n[1] = 2 * N[1]; /**< oversampling factor sigma=2 */
x = (NFFT_R *) NFFT(malloc)((size_t)(2 * T * S) * (sizeof(NFFT_R)));
if (x == NULL)
return EXIT_FAILURE;
w = (NFFT_R *) NFFT(malloc)((size_t)(T * S) * (sizeof(NFFT_R)));
if (w == NULL)
return EXIT_FAILURE;
/** init two dimensional NFFT plan */
NFFT(init_guru)(&my_nfft_plan, 2, N, M, n, m,
PRE_PHI_HUT | PRE_PSI | MALLOC_X | MALLOC_F_HAT | MALLOC_F | FFTW_INIT,
FFTW_MEASURE);
/** init nodes from polar grid*/
polar_grid(T, S, x, w);
for (j = 0; j < my_nfft_plan.M_total; j++)
{
my_nfft_plan.x[2 * j + 0] = x[2 * j + 0];
my_nfft_plan.x[2 * j + 1] = x[2 * j + 1];
}
/** init Fourier coefficients from given image */
for (k = 0; k < my_nfft_plan.N_total; k++)
my_nfft_plan.f_hat[k] = f_hat[k];
/** NDFT-2D */
NFFT(trafo_direct)(&my_nfft_plan);
/** copy result */
for (j = 0; j < my_nfft_plan.M_total; j++)
f[j] = my_nfft_plan.f[j];
/** finalise the plans and free the variables */
NFFT(finalize)(&my_nfft_plan);
NFFT(free)(x);
NFFT(free)(w);
return EXIT_SUCCESS;
}
/** NFFT-based polar FFT */
static int polar_fft(NFFT_C *f_hat, int NN, NFFT_C *f, int T, int S,
int m)
{
int j, k; /**< index for nodes and freqencies */
NFFT(plan) my_nfft_plan; /**< plan for the nfft-2D */
NFFT_R *x, *w; /**< knots and associated weights */
int N[2], n[2];
int M = T * S; /**< number of knots */
N[0] = NN;
n[0] = 2 * N[0]; /**< oversampling factor sigma=2 */
N[1] = NN;
n[1] = 2 * N[1]; /**< oversampling factor sigma=2 */
x = (NFFT_R *) NFFT(malloc)((size_t)(2 * T * S) * (sizeof(NFFT_R)));
if (x == NULL)
return EXIT_FAILURE;
w = (NFFT_R *) NFFT(malloc)((size_t)(T * S) * (sizeof(NFFT_R)));
if (w == NULL)
return EXIT_FAILURE;
/** init two dimensional NFFT plan */
NFFT(init_guru)(&my_nfft_plan, 2, N, M, n, m,
PRE_PHI_HUT | PRE_PSI | MALLOC_X | MALLOC_F_HAT | MALLOC_F | FFTW_INIT
| FFT_OUT_OF_PLACE,
FFTW_MEASURE | FFTW_DESTROY_INPUT);
/** init nodes from polar grid*/
polar_grid(T, S, x, w);
for (j = 0; j < my_nfft_plan.M_total; j++)
{
my_nfft_plan.x[2 * j + 0] = x[2 * j + 0];
my_nfft_plan.x[2 * j + 1] = x[2 * j + 1];
}
/** precompute psi, the entries of the matrix B */
if (my_nfft_plan.flags & PRE_LIN_PSI)
NFFT(precompute_lin_psi)(&my_nfft_plan);
if (my_nfft_plan.flags & PRE_PSI)
NFFT(precompute_psi)(&my_nfft_plan);
if (my_nfft_plan.flags & PRE_FULL_PSI)
NFFT(precompute_full_psi)(&my_nfft_plan);
/** init Fourier coefficients from given image */
for (k = 0; k < my_nfft_plan.N_total; k++)
my_nfft_plan.f_hat[k] = f_hat[k];
/** NFFT-2D */
NFFT(trafo)(&my_nfft_plan);
/** copy result */
for (j = 0; j < my_nfft_plan.M_total; j++)
f[j] = my_nfft_plan.f[j];
/** finalise the plans and free the variables */
NFFT(finalize)(&my_nfft_plan);
NFFT(free)(x);
NFFT(free)(w);
return EXIT_SUCCESS;
}
/** inverse NFFT-based polar FFT */
static int inverse_polar_fft(NFFT_C *f, int T, int S, NFFT_C *f_hat,
int NN, int max_i, int m)
{
int j, k; /**< index for nodes and freqencies */
NFFT(plan) my_nfft_plan; /**< plan for the nfft-2D */
SOLVER(plan_complex) my_infft_plan; /**< plan for the inverse nfft */
NFFT_R *x, *w; /**< knots and associated weights */
int l; /**< index for iterations */
int N[2], n[2];
int M = T * S; /**< number of knots */
N[0] = NN;
n[0] = 2 * N[0]; /**< oversampling factor sigma=2 */
N[1] = NN;
n[1] = 2 * N[1]; /**< oversampling factor sigma=2 */
x = (NFFT_R *) NFFT(malloc)((size_t)(2 * T * S) * (sizeof(NFFT_R)));
if (x == NULL)
return EXIT_FAILURE;
w = (NFFT_R *) NFFT(malloc)((size_t)(T * S) * (sizeof(NFFT_R)));
if (w == NULL)
return EXIT_FAILURE;
/** init two dimensional NFFT plan */
NFFT(init_guru)(&my_nfft_plan, 2, N, M, n, m,
PRE_PHI_HUT | PRE_PSI | MALLOC_X | MALLOC_F_HAT | MALLOC_F | FFTW_INIT
| FFT_OUT_OF_PLACE,
FFTW_MEASURE | FFTW_DESTROY_INPUT);
/** init two dimensional infft plan */
SOLVER(init_advanced_complex)(&my_infft_plan,
(NFFT(mv_plan_complex)*) (&my_nfft_plan), CGNR | PRECOMPUTE_WEIGHT);
/** init nodes, given samples and weights */
polar_grid(T, S, x, w);
for (j = 0; j < my_nfft_plan.M_total; j++)
{
my_nfft_plan.x[2 * j + 0] = x[2 * j + 0];
my_nfft_plan.x[2 * j + 1] = x[2 * j + 1];
my_infft_plan.y[j] = f[j];
my_infft_plan.w[j] = w[j];
}
/** precompute psi, the entries of the matrix B */
if (my_nfft_plan.flags & PRE_LIN_PSI)
NFFT(precompute_lin_psi)(&my_nfft_plan);
if (my_nfft_plan.flags & PRE_PSI)
NFFT(precompute_psi)(&my_nfft_plan);
if (my_nfft_plan.flags & PRE_FULL_PSI)
NFFT(precompute_full_psi)(&my_nfft_plan);
/** initialise damping factors */
if (my_infft_plan.flags & PRECOMPUTE_DAMP)
for (j = 0; j < my_nfft_plan.N[0]; j++)
for (k = 0; k < my_nfft_plan.N[1]; k++)
{
my_infft_plan.w_hat[j * my_nfft_plan.N[1] + k] = (
NFFT_M(sqrt)(
NFFT_M(pow)((NFFT_R) (j - my_nfft_plan.N[0] / 2), NFFT_K(2.0))
+ NFFT_M(pow)((NFFT_R) (k - my_nfft_plan.N[1] / 2), NFFT_K(2.0)))
> ((NFFT_R) (my_nfft_plan.N[0] / 2)) ? 0 : 1);
}
/** initialise some guess f_hat_0 */
for (k = 0; k < my_nfft_plan.N_total; k++)
my_infft_plan.f_hat_iter[k] = NFFT_K(0.0) + _Complex_I * NFFT_K(0.0);
/** solve the system */
SOLVER(before_loop_complex)(&my_infft_plan);
if (max_i < 1)
{
l = 1;
for (k = 0; k < my_nfft_plan.N_total; k++)
my_infft_plan.f_hat_iter[k] = my_infft_plan.p_hat_iter[k];
}
else
{
for (l = 1; l <= max_i; l++)
{
SOLVER(loop_one_step_complex)(&my_infft_plan);
}
}
/** copy result */
for (k = 0; k < my_nfft_plan.N_total; k++)
f_hat[k] = my_infft_plan.f_hat_iter[k];
/** finalise the plans and free the variables */
SOLVER(finalize_complex)(&my_infft_plan);
NFFT(finalize)(&my_nfft_plan);
NFFT(free)(x);
NFFT(free)(w);
return EXIT_SUCCESS;
}
/** test program for various parameters */
int main(int argc, char **argv)
{
int N; /**< mpolar FFT size NxN */
int T, S; /**< number of directions/offsets */
int M; /**< number of knots of mpolar grid */
NFFT_R *x, *w; /**< knots and associated weights */
NFFT_C *f_hat, *f, *f_direct, *f_tilde;
int k;
int max_i; /**< number of iterations */
int m = 1;
NFFT_R temp1, temp2, E_max = NFFT_K(0.0);
FILE *fp1, *fp2;
char filename[30];
if (argc != 4)
{
printf("polar_fft_test N T R \n");
printf("\n");
printf("N polar FFT of size NxN \n");
printf("T number of slopes \n");
printf("R number of offsets \n");
exit(EXIT_FAILURE);
}
N = atoi(argv[1]);
T = atoi(argv[2]);
S = atoi(argv[3]);
printf("N=%d, polar grid with T=%d, R=%d => ", N, T, S);
x = (NFFT_R *) NFFT(malloc)((size_t)(2 * 5 * (T / 2) * (S / 2)) * (sizeof(NFFT_R)));
w = (NFFT_R *) NFFT(malloc)((size_t)(5 * (T / 2) * (S / 2)) * (sizeof(NFFT_R)));
f_hat = (NFFT_C *) NFFT(malloc)(sizeof(NFFT_C) * (size_t)(N * N));
f = (NFFT_C *) NFFT(malloc)(sizeof(NFFT_C) * (size_t)(T * S));
f_direct = (NFFT_C *) NFFT(malloc)(sizeof(NFFT_C) * (size_t)(T * S));
f_tilde = (NFFT_C *) NFFT(malloc)(sizeof(NFFT_C) * (size_t)(N * N));
/** generate knots of mpolar grid */
M = polar_grid(T, S, x, w);
printf("M=%d.\n", M);
/** load data */
fp1 = fopen("input_data_r.dat", "r");
fp2 = fopen("input_data_i.dat", "r");
if (fp1 == NULL)
return (-1);
for (k = 0; k < N * N; k++)
{
fscanf(fp1, NFFT__FR__ " ", &temp1);
fscanf(fp2, NFFT__FR__ " ", &temp2);
f_hat[k] = temp1 + _Complex_I * temp2;
}
fclose(fp1);
fclose(fp2);
/** direct polar FFT */
polar_dft(f_hat, N, f_direct, T, S, m);
// polar_fft(f_hat,N,f_direct,T,R,12);
/** Test of the polar FFT with different m */
printf("\nTest of the polar FFT: \n");
fp1 = fopen("polar_fft_error.dat", "w+");
for (m = 1; m <= 12; m++)
{
/** fast polar FFT */
polar_fft(f_hat, N, f, T, S, m);
/** compute error of fast polar FFT */
E_max = NFFT(error_l_infty_complex)(f_direct, f, M);
printf("m=%2d: E_max = %" NFFT__FES__ "\n", m, E_max);
fprintf(fp1, "%" NFFT__FES__ "\n", E_max);
}
fclose(fp1);
/** Test of the inverse polar FFT for different m in dependece of the iteration number*/
for (m = 3; m <= 9; m += 3)
{
printf("\nTest of the inverse polar FFT for m=%d: \n", m);
sprintf(filename, "polar_ifft_error%d.dat", m);
fp1 = fopen(filename, "w+");
for (max_i = 0; max_i <= 100; max_i += 10)
{
/** inverse polar FFT */
inverse_polar_fft(f_direct, T, S, f_tilde, N, max_i, m);
/** compute maximum relative error */
/* E_max=0.0;
for(k=0;k<N*N;k++)
{
temp = cabs((f_hat[k]-f_tilde[k])/f_hat[k]);
if (temp>E_max) E_max=temp;
}
*/
E_max = NFFT(error_l_infty_complex)(f_hat, f_tilde, N * N);
printf("%3d iterations: E_max = %" NFFT__FES__ "\n", max_i, E_max);
fprintf(fp1, "%" NFFT__FES__ "\n", E_max);
}
fclose(fp1);
}
/** free the variables */
NFFT(free)(x);
NFFT(free)(w);
NFFT(free)(f_hat);
NFFT(free)(f);
NFFT(free)(f_direct);
NFFT(free)(f_tilde);
return EXIT_SUCCESS;
}
/* \} */
|