1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
|
/*
* Copyright (c) 2002, 2017 Jens Keiner, Stefan Kunis, Daniel Potts
*
* This program is free software; you can redistribute it and/or modify it under
* the terms of the GNU General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option) any later
* version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 51
* Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include "infft.h"
/**
* Compute damping factor for modified Fejer kernel:
* /f$\frac{2}{N}\left(1-\frac{\left|2k+1\right|}{N}\right)/f$
*/
R Y(modified_fejer)(const INT N, const INT kk)
{
return (K(2.0) / ((R) (N * N))
* (K(1.0) - FABS(K(2.0) * ((R) kk) + K(1.0) ) / ((R) N)));
}
/** Compute damping factor for modified Jackson kernel. */
R Y(modified_jackson2)(const INT N, const INT kk)
{
INT kj;
const R n = (((R) N) / K(2.0) + K(1.0) ) / K(2.0);
R result, k;
for (result = K(0.0), kj = kk; kj <= kk + 1; kj++)
{
k = (R)(ABS(kj));
if (k / n < K(1.0) )
result += K(1.0)
- (K(3.0) * k + K(6.0) * n * POW(k, K(2.0) )
- K(3.0) * POW(k, K(3.0) ))
/ (K(2.0) * n * (K(2.0) * POW(n, K(2.0) ) + K(1.0) ));
else
result += (K(2.0) * n - k) * (POW(2 * n - k, K(2.0) ) - K(1.0) )
/ (K(2.0) * n * (K(2.0) * POW(n, K(2.0) ) + K(1.0) ));
}
return result;
}
/** Compute damping factor for modified generalised Jackson kernel. */
R Y(modified_jackson4)(const INT N, const INT kk)
{
INT kj;
const R n = (((R) N) / K(2.0) + K(3.0) ) / K(4.0);
const R normalisation = (K(2416.0) * POW(n, K(7.0) )
+ K(1120.0) * POW(n, K(5.0) ) + K(784.0) * POW(n, K(3.0) ) + K(720.0) * n);
R result, k;
for (result = K(0.0), kj = kk; kj <= kk + 1; kj++)
{
k = (R)(ABS(kj));
if (k / n < K(1.0) )
result += K(1.0)
- (K(1260.0) * k
+ (K(1680.0) * POW(n, K(5.0) ) + K(2240.0) * POW(n, K(3.0) )
+ K(2940.0) * n) * POW(k, K(2.0) )
- K(1715.0) * POW(k, K(3.0) )
- (K(560.0) * POW(n, K(3.0) ) + K(1400.0) * n) * POW(k, K(4.0) )
+ K(490.0) * POW(k, K(5.0) ) + K(140.0) * n * POW(k, K(6.0) )
- K(35.0) * POW(k, K(7.0) )) / normalisation;
if ((K(1.0) <= k / n) && (k / n < K(2.0) ))
result += ((K(2472.0) * POW(n, K(7.0) ) + K(336.0) * POW(n, K(5.0) )
+ K(3528.0) * POW(n, K(3.0) ) - K(1296.0) * n)
- (K(392.0) * POW(n, K(6.0) ) - K(3920.0) * POW(n, K(4.0) )
+ K(8232.0) * POW(n, K(2.0) ) - K(756.0) )*k
- (K(504.0)*POW(n, K(5.0)) + K(10080.0)*POW(n, K(3.0))
- K(5292.0)*n)*POW(k, K(2.0)) - (K(1960.0)*POW(n, K(4.0))
- K(7840.0)*POW(n, K(2.0)) + K(1029.0))*POW(k, K(3.0))
+ (K(2520.0)*POW(n, K(3.0)) - K(2520.0)*n) * POW(k, K(4.0))
- (K(1176.0)*POW(n, K(2.0)) - K(294.0)) * POW(k, K(5.0))
+ K(252.0)*n*POW(k, K(6.0)) - K(21.0)*POW(k, K(7.0)))/normalisation;
if ((K(2.0) <= k / n) && (k / n < K(3.0) ))
result += (-(K(1112.0) * POW(n, K(7.0) ) - K(12880.0) * POW(n, K(5.0) )
+ K(7448.0) * POW(n, K(3.0) ) - K(720.0) * n)
+ (K(12152.0) * POW(n, K(6.0) ) - K(27440.0) * POW(n, K(4.0) )
+ K(8232.0) * POW(n, K(2.0) ) - K(252.0) )*k
- (K(19320.0)*POW(n, K(5.0)) - K(21280.0)*POW(n, K(3.0))
+ K(2940.0)*n)*POW(k, K(2.0)) + (K(13720.0)*POW(n, K(4.0))
- K(7840.0)*POW(n, K(2.0)) + K(343.0))*POW(k, K(3.0))
- (K(5320.0)*POW(n, K(3.0)) - K(1400.0)*n)*POW(k, K(4.0))
+ (K(1176.0)*POW(n, K(2.0)) - K(98.0))*POW(k, K(5.0))
- K(140.0)*n*POW(k, K(6.0)) + K(7.0) * POW(k, K(7.0)))/normalisation;
if ((K(3.0) <= k / n) && (k / n < K(4.0) ))
result += ((4 * n - k)
* (POW(4 * n - k, K(2.0) ) - K(1.0) )*(POW(4*n-k, K(2.0))
- K(4.0))*(POW(4*n-k, K(2.0)) - K(9.0)))/normalisation;
}
return result;
}
/** Compute damping factor for modified Sobolev kernel. */
R Y(modified_sobolev)(const R mu, const INT kk)
{
R result;
INT kj, k;
for (result = K(0.0), kj = kk; kj <= kk + 1; kj++)
{
k = ABS(kj);
if (k == 0)
result += K(1.0);
else
result += POW((R) k, -K(2.0) * mu);
}
return result;
}
/** Comput damping factor for modified multiquadric kernel. */
R Y(modified_multiquadric)(const R mu, const R c, const INT kk)
{
R result;
INT kj, k;
for (result = K(0.0), kj = kk; kj <= kk + 1; kj++)
{
k = ABS(kj);
result += POW((R)(k * k) + c * c, -mu);
}
return result;
}
|