1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
|
/*
* Copyright (c) 2002, 2017 Jens Keiner, Stefan Kunis, Daniel Potts
*
* This program is free software; you can redistribute it and/or modify it under
* the terms of the GNU General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option) any later
* version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 51
* Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include "infft.h"
R Y(float_property)(const float_property p)
{
const R base = FLT_RADIX;
static R eps = K(1.0);
const R t = MANT_DIG;
const R emin = MIN_EXP;
const R emax = MAX_EXP;
const R prec = eps * base;
static R rmin = K(1.0);
static R rmax = K(1.0);
const R rnd = FLTROUND;
static R sfmin = K(-1.0);
static short first = TRUE;
if (first)
{
/* Compute eps = 2^(1-MANT_DIG).
* The usual definition of EPSILON is too small for double-double arithmetic on PowerPC. */
for (INT i=0; i<MANT_DIG-1; i++)
eps /= K(2.0);
/* Compute rmin */
{
const INT n = 1 - MIN_EXP;
INT i;
for (i = 0; i < n; i++)
rmin /= base;
}
/* Compute rmax */
{
INT i;
rmax -= eps;
for (i = 0; i < emax; i++)
rmax *= base;
}
/* Compute sfmin */
{
R small = K(1.0) / rmax;
sfmin = rmin;
if (small >= sfmin)
sfmin = small * (eps + K(1.0));
}
first = FALSE;
}
if (p == NFFT_EPSILON)
return eps;
else if (p == NFFT_SAFE__MIN)
return sfmin;
else if (p == NFFT_BASE)
return base;
else if (p == NFFT_PRECISION)
return prec;
else if (p == NFFT_MANT_DIG)
return t;
else if (p == NFFT_FLTROUND)
return rnd;
else if (p == NFFT_E_MIN)
return emin;
else if (p == NFFT_R_MIN)
return rmin;
else if (p == NFFT_E_MAX)
return emax;
else if (p == NFFT_R_MAX)
return rmax;
else
CK(0 /* cannot happen */);
return K(-1.0);
} /* dlamch_ */
/** Computes double /f$\prod_{t=0}^{d-1} v_t/f$. */
R Y(prod_real)(R *vec, INT d)
{
INT t;
R prod;
prod = K(1.0);
for (t = 0; t < d; t++)
prod *= vec[t];
return prod;
}
|