File: int.c

package info (click to toggle)
nfft 3.5.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 8,972 kB
  • sloc: ansic: 44,442; lisp: 1,697; makefile: 1,322; sh: 744; sed: 5
file content (212 lines) | stat: -rw-r--r-- 4,889 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
/*
 * Copyright (c) 2002, 2017 Jens Keiner, Stefan Kunis, Daniel Potts
 *
 * This program is free software; you can redistribute it and/or modify it under
 * the terms of the GNU General Public License as published by the Free Software
 * Foundation; either version 2 of the License, or (at your option) any later
 * version.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 51
 * Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

#include "infft.h"

INT Y(exp2i)(const INT a)
{
  return (1U << a);
}

/**
 * Return floor(log2(x)) for an integer input x. If x is zero or negative this
 * method returns -1.
 *
 * see https://graphics.stanford.edu/~seander/bithacks.html#IntegerLogDeBruijn
 */
INT Y(log2i)(const INT m)
{
  /* Special case, zero or negative input. */
  if (m <= 0)
    return -1;

#if SIZEOF_PTRDIFF_T == 8
  /* Hash map with return values based on De Bruijn sequence. */
  static INT debruijn[64] =
  {
    0, 58, 1, 59, 47, 53, 2, 60, 39, 48, 27, 54, 33, 42, 3, 61, 51, 37, 40, 49,
    18, 28, 20, 55, 30, 34, 11, 43, 14, 22, 4, 62, 57, 46, 52, 38, 26, 32, 41,
    50, 36, 17, 19, 29, 10, 13, 21, 56, 45, 25, 31, 35, 16, 9, 12, 44, 24, 15,
    8, 23, 7, 6, 5, 63
  };

  register uint64_t v = (uint64_t)(m);

  /* Round down to one less than a power of 2. */
  v |= v >> 1;
  v |= v >> 2;
  v |= v >> 4;
  v |= v >> 8;
  v |= v >> 16;
  v |= v >> 32;

  /* 0x03f6eaf2cd271461 is a hexadecimal representation of a De Bruijn
   * sequence for binary words of length 6. The binary representation
   * starts with 000000111111. This is required to make it work with one less
   * than a power of 2 instead of an actual power of 2.
   */
  return debruijn[(uint64_t)(v * 0x03f6eaf2cd271461LU) >> 58];
#elif SIZEOF_PTRDIFF_T == 4
  /* Hash map with return values based on De Bruijn sequence. */
  static INT debruijn[32] =
  {
    0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28,
    15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31
  };

  register uint32_t v = (uint32_t)(m);

  /* Round down to one less than a power of 2. */
  v |= v >> 1;
  v |= v >> 2;
  v |= v >> 4;
  v |= v >> 8;
  v |= v >> 16;

  /* 0x07C4ACDD is a hexadecimal representation of a De Bruijn sequence for
   * binary words of length 5. The binary representation starts with
   * 0000011111. This is required to make it work with one less than a power of
   * 2 instead of an actual power of 2.
   */
  return debruijn[(uint32_t)(v * 0x07C4ACDDU) >> 27];
#else
#error Incompatible size of ptrdiff_t
#endif
}

/**
 * Calculate next power of two larger or equal to a given integer value.
 *
 * If the input is negative, this method returns -1. As a special case, 2 is
 * returned when the input is 1. In all other cases, the smallest power of 2
 * larger or equal to the input is returned.
 *
 * see https://graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2
 */
INT Y(next_power_of_2)(const INT x)
{
    if (x < 0)
        return -1;
    else if (x < 2)
        return x + 1;
    else
    {
        uint64_t v = (uint64_t)x;

        /* Subtract one, so we return the input if it is a power of two. */
        v--;

        /* Round down to one less than a power of two. */
        v |= v >> 1;
        v |= v >> 2;
        v |= v >> 4;
#if SIZEOF_PTRDIFF_T >= 2
        v |= v >> 8;
#endif
#if SIZEOF_PTRDIFF_T >= 4
        v |= v >> 16;
#endif
#if SIZEOF_PTRDIFF_T >= 8
        v |= v >> 32;
#endif
        /* Add one to get power of two. */
        v++;

        return v;
    }
}

/** Computes /f$n\ge N/f$ such that /f$n=2^j,\, j\in\mathhb{N}_0/f$.
 */
void Y(next_power_of_2_exp)(const INT N, INT *N2, INT *t)
{
  INT n,i,logn;
  INT N_is_not_power_of_2=0;

  if (N == 0)
  {
    *N2 = 1;
    *t = 0;
  }
  else
  {
    n = N;
    logn = 0;
    while (n != 1)
    {
      if (n%2 == 1)
      {
          N_is_not_power_of_2=1;
      }
      n = n/2;
      logn++;
    }

    if (!N_is_not_power_of_2)
    {
      logn--;
    }

    for (i = 0; i <= logn; i++)
    {
      n = n*2;
    }

    *N2 = n;
    *t = logn+1;
  }
}

void Y(next_power_of_2_exp_int)(const int N, int *N2, int *t)
{
  int n,i,logn;
  int N_is_not_power_of_2=0;

  if (N == 0)
  {
    *N2 = 1;
    *t = 0;
  }
  else
  {
    n = N;
    logn = 0;
    while (n != 1)
    {
      if (n%2 == 1)
      {
          N_is_not_power_of_2=1;
      }
      n = n/2;
      logn++;
    }

    if (!N_is_not_power_of_2)
    {
      logn--;
    }

    for (i = 0; i <= logn; i++)
    {
      n = n*2;
    }

    *N2 = n;
    *t = logn+1;
  }
}