1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
|
/*
* Copyright (c) 2002, 2017 Jens Keiner, Stefan Kunis, Daniel Potts
*
* This program is free software; you can redistribute it and/or modify it under
* the terms of the GNU General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option) any later
* version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 51
* Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/**
* @defgroup nfsft NFSFT - Nonequispaced fast spherical Fourier transform
* @{
*
* This module implements nonuniform fast spherical Fourier transforms. In the
* following, we abbreviate the term "nonuniform fast spherical Fourier
* transform" by NFSFT.
*
* \section Preliminaries
* This section summarises basic definitions and properties related to spherical
* Fourier transforms.
*
* \subsection sc Spherical Coordinates
* Every point in \f$\mathbb{R}^3\f$ can be described in \e spherical \e
* coordinates by a vector \f$(r,\vartheta,\varphi)^{\mathrm{T}}\f$ with the
* radius \f$r \in \mathbb{R}^{+}\f$ and two angles \f$\vartheta \in [0,\pi]\f$,
* \f$\varphi \in [-\pi,\pi)\f$.
* We denote by \f$\mathbb{S}^2\f$ the two-dimensional unit sphere embedded
* into \f$\mathbb{R}^3\f$, i.e.
* \f[
* \mathbb{S}^2 := \left\{\mathbf{x} \in \mathbb{R}^{3}:\;
* \|\mathbf{x}\|_2=1\right\}
* \f]
* and identify a point from \f$\mathbb{S}^2\f$ with the corresponding vector
* \f$(\vartheta,\varphi)^{\mathrm{T}}\f$. The
* spherical coordinate system is illustrated in the following figure:
*
* <center>
* \image html sphere.png ""
* \image latex sphere.pdf "" width=0.45\textwidth
* </center>
*
* For consistency with the other modules and the conventions used there, we
* also use \e swapped \e scaled \e spherical \e coordinates \f$x_1 :=
* \frac{\varphi}{2\pi}\f$, \f$x_2 := \frac{\vartheta}{2\pi}\f$ and identify a
* point from \f$\mathbb{S}^2\f$ with the vector
* \f$\mathbf{x} := \left(x_1,x_2\right) \in
* [-\frac{1}{2}, \frac{1}{2}) \times [0,\frac{1}{2}]\f$.
*
* \subsection lp Legendre Polynomials
* The \e Legendre \e polynomials \f$P_k : [-1,1]
* \rightarrow \mathbb{R}$, $k \in \mathbb{N}_{0}\f$ as \e classical \e
* orthogonal \e polynomials are given by their corresponding \e Rodrigues \e
* formula
* \f[
* P_k(t) := \frac{1}{2^k k!} \frac{\text{d}^k}{\text{d} t^k}
* \left(t^2-1\right)^k.
* \f]
* The corresponding three-term recurrence relation is
* \f[
* (k+1)P_{k+1}(t) = (2k+1) x P_{k}(t) - k P_{k-1}(t) \quad (k \in
* \mathbb{N}_0).
* \f]
* With
* \f[
* \left< f,g \right>_{\text{L}^2\left([-1,1]\right)} :=
* \int_{-1}^{1} f(t) g(t) \text{d} t
* \f]
* being the usual \f$\text{L}^2\left([-1,1]\right)\f$ inner product,
* the Legendre polynomials obey the orthogonality condition
* \f[
* \left< P_k,P_l \right>_{\text{L}^2\left([-1,1]\right)} = \frac{2}{2k+1}
* \delta_{k,l}.
* \f]
*
* \remark The normalisation constant \f$ c_k := \sqrt{\frac{2k+1}{2}}\f$
* renders the scaled Legendre polynomials \f$c_k P_k\f$ orthonormal with
* respect to the induced \f$\text{L}^2\left([-1,1]\right)\f$ norm
* \f[
* \|f\|_{\text{L}^2\left([-1,1]\right)} :=
* \left(<f,f>_{\text{L}^2\left([-1,1]\right)}\right)^{1/2} =
* \left(\int_{-1}^{1} |f(t)|^2 \; \text{d} t\right)^{1/2}.
* \f]
*
* \subsection alf Associated Legendre Functions
* The \a associated \a Legendre \a functions \f$P_k^n : [-1,1] \rightarrow
* \mathbb{R} \f$, \f$n \in \mathbb{N}_0\f$, \f$k \ge n\f$ are defined by
* \f[
* P_k^n(t) := \left(\frac{(k-n)!}{(k+n)!}\right)^{1/2}
* \left(1-t^2\right)^{n/2} \frac{\text{d}^n}{\text{d} t^n} P_k(t).
* \f]
* For \f$n = 0\f$, they coincide with the Legendre polynomials, i.e.
* \f$P_k^0 = P_k\f$.
* The associated Legendre functions obey the three-term recurrence relation
* \f[
* P_{k+1}^n(t) = v_{k}^n t P_k^n(t) + w_{k}^n P_{k-1}^n(t) \quad (k \ge n),
* \f]
* with \f$P_{n-1}^n(t) := 0\f$, \f$P_{n}^n(t) := \frac{\sqrt{(2n)!}}{2^n n!}
* \left(1-t^2\right)^{n/2}\f$, and
* \f[
* v_{k}^n := \frac{2k+1}{((k-n+1)(k+n+1))^{1/2}}\; ,\qquad
* w_{k}^n := - \frac{((k-n)(k+n))^{1/2}}{((k-n+1)(k+n+1))^{1/2}}.
* \f]
* For fixed \f$n\f$, the set \f$\left\{P_k^n:\: k
* \ge n\right\}\f$ forms a complete set of orthogonal functions in
* \f$\text{L}^2\left([-1,1]\right)\f$
* with
* \f[
* \left< P_k^n,P_l^n \right>_{\text{L}^2\left([-1,1]\right)} = \frac{2}{2k+1}
* \delta_{k,l} \quad (0 \le n \le k,l).
* \f]
*
* \remark The normalisation constant \f$ c_k = \sqrt{\frac{2k+1}{2}}\f$
* renders the scaled associated Legendre functions \f$c_k P_k^n\f$ orthonormal
* with respect to the induced \f$\text{L}^2\left([-1,1]\right)\f$ norm
* \f[
* \|f\|_{\text{L}^2\left([-1,1]\right)} :=
* \left(<f,f>_{\text{L}^2\left([-1,1]\right)}\right)^{1/2} =
* \left(\int_{-1}^{1} |f(t)|^2 \; \text{d} t\right)^{1/2}.
* \f]
*
* \subsection sh Spherical Harmonics
* The standard orthogonal basis of spherical harmonics for \f$\text{L}^2
* \left(\mathbb{S}^2\right)\f$ with yet unnormalised basis functions
* \f$\tilde{Y}_k^n : \mathbb{S}^2 \rightarrow \mathbb{C}\f$ is given by
* \f[
* \tilde{Y}_k^n(\vartheta,\varphi) := P_k^{|n|}(\cos\vartheta)
* \mathrm{e}^{\mathrm{i} n \varphi}
* \f]
* with the usual \f$\text{L}^2\left(\mathbb{S}^2\right)\f$ inner product
* \f[
* \left< f,g \right>_{\mathrm{L}^2\left(\mathbb{S}^2\right)} :=
* \int_{\mathbb{S}^2} f(\vartheta,\varphi) \overline{g(\vartheta,\varphi)}
* \: \mathrm{d} \mathbf{\xi} := \int_{-\pi}^{\pi} \int_{0}^{\pi}
* f(\vartheta,\varphi) \overline{g(\vartheta,\varphi)} \sin \vartheta
* \; \mathrm{d} \vartheta \; \mathrm{d} \varphi.
* \f]
* The normalisation constant \f$c_k^n := \sqrt{\frac{2k+1}{4\pi}}\f$ renders
* the scaled basis functions
* \f[
* Y_k^n(\vartheta,\varphi) := c_k^n P_k^{|n|}(\cos\vartheta)
* \mathrm{e}^{\mathrm{i} n \varphi}
* \f]
* orthonormal with respect to the induced \f$\text{L}^2\left(\mathbb{S}^2
* \right)\f$ norm
* \f[
* \|f\|_{\text{L}^2\left(\mathbb{S}^2\right)} =
* \left(<f,f>_{\text{L}^2\left(\mathbb{S}^2\right)}\right)^{1/2} =
* \left(\int_{-\pi}^{\pi} \int_{0}^{\pi} |f(\vartheta,\varphi)|^2 \sin
* \vartheta \; \mathrm{d} \vartheta \; \mathrm{d} \varphi\right)^{1/2}.
* \f]
* A function \f$f \in \mathrm{L}^2\left(\mathbb{S}^2\right)\f$ has the
* orthogonal expansion
* \f[
* f = \sum_{k=0}^{\infty} \sum_{n=-k}^{k} \hat{f}(k,n) Y_k^n,
* \f]
* where the coefficients \f$\hat{f}(k,n) := \left< f, Y_k^{n}
* \right>_{\mathrm{L}^2\left(\mathbb{S}^2\right)}\f$ are the \e spherical
* \e Fourier \e coefficients and the equivalence is understood in the
* \f$\mathrm{L}^2\f$-sense.
*
*
* \section nfsfts Nonuniform Fast Spherical Fourier Transforms
*
* This section describes the input and output relation of the spherical
* Fourier transform algorithms and the layout of the corresponding plan
* structure.
*
* \subsection ndsft Nonuniform Discrete Spherical Fourier Transform
* The \e nonuniform \e discrete \e spherical \e Fourier \e transform (\e NDSFT)
* is defined as follows:
* \f[
* \begin{array}{rcl}
* \text{\textbf{Input}} & : & \text{coefficients }
* \hat{f}(k,n) \in \mathbb{C} \text{ for } k=0,\ldots,N,\;n=-k,
* \ldots,k,\; N \in \mathbb{N}_0,\\[1ex]
* & & \text{arbitrary nodes } \mathbf{x}(m) \in
* [-\frac{1}{2},\frac{1}{2}] \times [0,\frac{1}{2}]
* \text{ for } m=0,\ldots,M-1, M \in \mathbb{N}. \\[1ex]
* \text{\textbf{Task}} & : & \text{evaluate } f(m) := f\left(
* \mathbf{x}(m)\right) = \sum_{k=0}^N \sum_{n=-k}^k \hat{f}_k^n
* Y_k^n\left(\mathbf{x}(m)\right) \text{ for } m=0,\ldots,M-1.
* \\[1ex]
* \text{\textbf{Output}} & : & \text{coefficients } f(m) \in
* \mathbb{C} \text{ for } m=0,\ldots,M-1.\\
* \end{array}
* \f]
*
* \subsection andsft Adjoint Nonuniform Discrete Spherical Fourier Transform
* The \e adjoint \e nonuniform \e discrete \e spherical \e Fourier \e transform
* (\e adjoint \e NDSFT)
* is defined as follows:
* \f[
* \begin{array}{rcl}
* \text{\textbf{Input}} & : & \text{coefficients } f(m) \in
* \mathbb{C} \text{ for } m=0,\ldots,M-1, M \in \mathbb{N},\\
* & & \text{arbitrary nodes } \mathbf{x}(m) \in
* [-\frac{1}{2},\frac{1}{2}] \times [0,\frac{1}{2}] \text{ for }
* m=0,\ldots,M-1, N \in \mathbb{N}_0.\\[1ex]
* \text{\textbf{Task}} & : & \text{evaluate } \hat{f}(k,n)
* := \sum_{m=0}^{M-1} f(m) \overline{Y_k^n\left(\mathbf{x}(m)\right)}cd Do
* \text{ for } k=0,\ldots,N,\;n=-k,\ldots,k.\\[1ex]
* \text{\textbf{Output}} & : & \text{coefficients }
* \hat{f}(k,n) \in \mathbb{C} \text{ for }
* k=0,\ldots,N,\;n=-k,\ldots,k.\\[1ex]
* \end{array}
* \f]
*
* \subsection dl Data Layout
* This section describes the public layout of the \ref nfsft_plan structure
* which
* contains all data for the computation of the aforementioned spherical Fourier
* transforms. The structure contains private (no read or write allowed), public
* read-only (only
* read access permitted), and public read-write (read and write access allowed)
* members. In the following, we indicate read and write access by \c read and
* \c write. The public members are structured as follows:
* \li \c N_total (\c read)
* The total number of components in \c f_hat. If the bandwidth is
* \f$N \in \mathbb{N}_0\f$, the total number of components in \c f_hat
* is \c N_total \f$ = (2N+2)^2\f$.
* \li \c M_total (\c read)
* the total number of samples \f$M\f$
* \li \c f_hat (\c read-write)
* The flattened array of spherical Fourier coefficents. The array
* has length \f$(2N+2)^2\f$ such that valid indices \f$i \in
* \mathbb{N}_0\f$ for array access \c f_hat \c[ \f$i\f$ \c] are
* \f$i=0,1,\ldots,(2N+2)^2-1\f$.
* However, only read and write access to indices corresponding to
* spherical Fourier coefficients \f$\hat{f}(k,n)\f$ is defined. The index
* \f$i\f$ corresponding to the spherical Fourier coefficient
* \f$\hat{f}(k,n)\f$ with \f$0 \le k \le M\f$, \f$-k \le n \le k\f$ is
* \f$i = (N+2)(N-n+1)+N+k+1\f$. For convenience, the helper macro
* \ref NFSFT_INDEX(k,n) provides the necessary index calculations such
* that
* one can write \c f_hat[ \c NFSFT_INDEX(\f$k,n\f$\c)] \c =
* \c ... to access
* the component corresponding to \f$\hat{f}(k,n)\f$.
* The data layout is due to implementation details.
* \li \c f (\c read-write)
* the array of coefficients \f$f(m)\f$ for \f$m=0,\ldots,M-1\f$ such
* that \c f[\f$m\f$\c] = \f$f(m)\f$
* \li \c N (\c read)
* the bandwidth \f$N \in \mathbb{N}_0\f$
* \li \c x
* the array of nodes \f$\mathbf{x}(m) \in
* [-\frac{1}{2},\frac{1}{2}] \times [0,\frac{1}{2}]\f$ for \f$m = 0,
* \ldots,M-1\f$ such that \c x[\f$2m\f$\c] = \f$x_1\f$ and
* \c x[\f$2m+1\f$\c] = \f$x_2\f$
*
* \subsection gtn Good to know...
* When using the routines of this module you should bear in mind the following:
* \li The bandwidth \f$N_{\text{max}}\f$ up to which precomputation is
* performed is always chosen as the next power of two with respect to the
* specified maximum bandwidth.
* \li By default, the NDSFT transforms (see \ref nfsft_direct_trafo, \ref nfsft_trafo)
* are allowed to destroy the input \c f_hat while the input \c x is
* preserved. On the contrary, the adjoint NDSFT transforms
* (see \ref nfsft_direct_adjoint, \ref nfsft_adjoint) do not destroy the input
* \c f and \c x by default. The desired behaviour can be assured by using the
* \ref NFSFT_PRESERVE_F_HAT, \ref NFSFT_PRESERVE_X, \ref NFSFT_PRESERVE_F and
* \ref NFSFT_DESTROY_F_HAT, \ref NFSFT_DESTROY_X, \ref NFSFT_DESTROY_F
* flags.
*/
/*! \struct nfsft_plan
* NFSFT transform plan
*/
/*! \fn void nfsft_init(nfsft_plan *plan, int N, int M)
* Creates a transform plan.
*
* \arg plan a pointer to a \ref nfsft_plan structure
* \arg N the bandwidth \f$N \in \mathbb{N}_0\f$
* \arg M the number of nodes \f$M \in \mathbb{N}\f$
*
* \author Jens Keiner
*/
/*! \fn void nfsft_init_advanced(nfsft_plan* plan, int N, int M, unsigned int nfsft_flags)
* Creates a transform plan.
*
* \arg plan a pointer to a \verbatim nfsft_plan \endverbatim structure
* \arg N the bandwidth \f$N \in \mathbb{N}_0\f$
* \arg M the number of nodes \f$M \in \mathbb{N}\f$
* \arg nfsft_flags the NFSFT flags
*
* \author Jens Keiner
*/
/*! \fn void nfsft_init_guru(nfsft_plan *plan, int N, int M, unsigned int nfsft_flags, nsigned int nfft_flags, int nfft_cutoff)
* Creates a transform plan.
*
* \arg plan a pointer to a \verbatim nfsft_plan \endverbatim structure
* \arg N the bandwidth \f$N \in \mathbb{N}_0\f$
* \arg M the number of nodes \f$M \in \mathbb{N}\f$
* \arg nfsft_flags the NFSFT flags
* \arg nfft_cutoff the NFFT cutoff parameter
*
* \author Jens Keiner
*/
/*! \fn void nfsft_precompute(int N, R kappa, unsigned int nfsft_flags, unsigned int fpt_flags)
* Performes precomputation up to the next power of two with respect to a given
* bandwidth \f$N \in \mathbb{N}_2\f$. The threshold parameter \f$\kappa \in
* \mathbb{R}^{+}\f$ determines the number of stabilization steps computed in
* the discrete polynomial transform and thereby its accuracy.
*
* \arg N the bandwidth \f$N \in \mathbb{N}_0\f$
* \arg threshold the threshold \f$\kappa \in \mathbb{R}^{+}\f$
* \arg nfsft_precomputation_flags the NFSFT precomputation flags
* \arg fpt_precomputation_flags the FPT precomputation flags
*
* \author Jens Keiner
*/
/*! \fn void nfsft_forget(void)
* Forgets all precomputed data.
*
* \author Jens Keiner
*/
/*! \fn void nfsft_direct_trafo(nfsft_plan* plan)
* Executes a direct NDSFT, i.e. computes for \f$m = 0,\ldots,M-1\f$
* \f[
* f(m) = \sum_{k=0}^N \sum_{n=-k}^k \hat{f}(k,n) Y_k^n\left(2\pi x_1(m),
* 2\pi x_2(m)\right).
* \f]
*
* \arg plan the plan
*
* \author Jens Keiner
*/
/*! \fn void nfsft_direct_adjoint(nfsft_plan* plan)
* Executes a direct adjoint NDSFT, i.e. computes for \f$k=0,\ldots,N;
* n=-k,\ldots,k\f$
* \f[
* \hat{f}(k,n) = \sum_{m = 0}^{M-1} f(m) Y_k^n\left(2\pi x_1(m),
* 2\pi x_2(m)\right).
* \f]
*
* \arg plan the plan
*
* \author Jens Keiner
*/
/*! \fn void nfsft_trafo(nfsft_plan* plan)
* Executes a NFSFT, i.e. computes for \f$m = 0,\ldots,M-1\f$
* \f[
* f(m) = \sum_{k=0}^N \sum_{n=-k}^k \hat{f}(k,n) Y_k^n\left(2\pi x_1(m),
* 2\pi x_2(m)\right).
* \f]
*
* \arg plan the plan
*
* \author Jens Keiner
*/
/*! \fn void nfsft_adjoint(nfsft_plan* plan)
* Executes an adjoint NFSFT, i.e. computes for \f$k=0,\ldots,N;
* n=-k,\ldots,k\f$
* \f[
* \hat{f}(k,n) = \sum_{m = 0}^{M-1} f(m) Y_k^n\left(2\pi x_1(m),
* 2\pi x_2(m)\right).
* \f]
*
* \arg plan the plan
*
* \author Jens Keiner
*/
/*! \fn void nfsft_finalize(nfsft_plan *plan)
* Destroys a plan.
*
* \arg plan the plan to be destroyed
*
* \author Jens Keiner
*/
/*! \def NFSFT_NORMALIZED
* By default, all computations are performed with respect to the
* unnormalized basis functions
* \f[
* \tilde{Y}_k^n(\vartheta,\varphi) = P_k^{|n|}(\cos\vartheta)
* \mathrm{e}^{\mathrm{i} n \varphi}.
* \f]
* If this flag is set, all computations are carried out using the \f$L_2\f$-
* normalized basis functions
* \f[
* Y_k^n(\vartheta,\varphi) = \sqrt{\frac{2k+1}{4\pi}} P_k^{|n|}(\cos\vartheta)
* \mathrm{e}^{\mathrm{i} n \varphi}.
* \f]
*
* \see nfsft_init
* \see nfsft_init_advanced
* \see nfsft_init_guru
* \author Jens Keiner
*/
/*! \def NFSFT_USE_NDFT
* If this flag is set, the fast NFSFT algorithms (see \ref nfsft_trafo,
* \ref nfsft_adjoint) will use internally the exact but usually slower direct
* NDFT algorithm in favor of fast but approximative NFFT algorithm.
*
* \see nfsft_init
* \see nfsft_init_advanced
* \see nfsft_init_guru
* \author Jens Keiner
*/
/*! \def NFSFT_USE_DPT
* If this flag is set, the fast NFSFT algorithms (see \ref nfsft_trafo,
* \ref nfsft_adjoint) will use internally the usually slower direct
* DPT algorithm in favor of the fast FPT algorithm.
*
* \see nfsft_init
* \see nfsft_init_advanced
* \see nfsft_init_guru
* \author Jens Keiner
*/
/*! \def NFSFT_MALLOC_X
* If this flag is set, the init methods (see \ref nfsft_init , \ref
* nfsft_init_advanced , and \ref nfsft_init_guru) will allocate memory and the
* method \ref nfsft_finalize will free the array \c x for you. Otherwise,
* you have to assure by yourself that \c x points to an array of
* proper size before excuting a transform and you are responsible for freeing
* the corresponding memory before program termination.
*
* \see nfsft_init
* \see nfsft_init_advanced
* \see nfsft_init_guru
* \author Jens Keiner
*/
/*! \def NFSFT_MALLOC_F_HAT
* If this flag is set, the init methods (see \ref nfsft_init , \ref
* nfsft_init_advanced , and \ref nfsft_init_guru) will allocate memory and the
* method \ref nfsft_finalize will free the array \c f_hat for you. Otherwise,
* you have to assure by yourself that \c f_hat points to an array of
* proper size before excuting a transform and you are responsible for freeing
* the corresponding memory before program termination.
*
* \see nfsft_init
* \see nfsft_init_advanced
* \see nfsft_init_guru
* \author Jens Keiner
*/
/*! \def NFSFT_MALLOC_F
* If this flag is set, the init methods (see \ref nfsft_init , \ref
* nfsft_init_advanced , and \ref nfsft_init_guru) will allocate memory and the
* method \ref nfsft_finalize will free the array \c f for you. Otherwise,
* you have to assure by yourself that \c f points to an array of
* proper size before excuting a transform and you are responsible for freeing
* the corresponding memory before program termination.
*
* \see nfsft_init
* \see nfsft_init_advanced
* \see nfsft_init_guru
* \author Jens Keiner
*/
/*! \def NFSFT_PRESERVE_F_HAT
* If this flag is set, it is guaranteed that during an execution of
* \ref nfsft_direct_trafo or \ref nfsft_trafo the content of \c f_hat remains
* unchanged.
*
* \see nfsft_init
* \see nfsft_init_advanced
* \see nfsft_init_guru
* \author Jens Keiner
*/
/*! \def NFSFT_PRESERVE_X
* If this flag is set, it is guaranteed that during an execution of
* \ref nfsft_direct_trafo, \ref nfsft_trafo or \ref nfsft_direct_adjoint, \ref nfsft_adjoint
* the content of \c x remains
* unchanged.
*
* \see nfsft_init
* \see nfsft_init_advanced
* \see nfsft_init_guru
* \author Jens Keiner
*/
/*! \def NFSFT_PRESERVE_F
* If this flag is set, it is guaranteed that during an execution of
* \ref nfsft_direct_adjoint or \ref nfsft_adjoint the content of \c f remains
* unchanged.
*
* \see nfsft_init
* \see nfsft_init_advanced
* \see nfsft_init_guru
* \author Jens Keiner
*/
/*! \def NFSFT_DESTROY_F_HAT
* If this flag is set, it is explicitely allowed that during an execution of
* \ref nfsft_direct_trafo or \ref nfsft_trafo the content of \c f_hat may be changed.
*
* \see nfsft_init
* \see nfsft_init_advanced
* \see nfsft_init_guru
* \author Jens Keiner
*/
/*! \def NFSFT_DESTROY_X
* If this flag is set, it is explicitely allowed that during an execution of
* \ref nfsft_direct_trafo, \ref nfsft_trafo or \ref nfsft_direct_adjoint, \ref nfsft_adjoint
* the content of \c x may be changed.
*
* \see nfsft_init
* \see nfsft_init_advanced
* \see nfsft_init_guru
* \author Jens Keiner
*/
/*! \def NFSFT_DESTROY_F
* If this flag is set, it is explicitely allowed that during an execution of
* \ref nfsft_direct_adjoint or \ref nfsft_adjoint the content of \c f may be changed.
*
* \see nfsft_init
* \see nfsft_init_advanced
* \see nfsft_init_guru
* \author Jens Keiner
*/
/*! \def NFSFT_NO_DIRECT_ALGORITHM
* If this flag is set, the transforms \ref nfsft_direct_trafo and \ref nfsft_direct_adjoint
* do not work. Setting this flag saves some memory for precomputed data.
*
* \see nfsft_precompute
* \see nfsft_direct_trafo
* \see nfsft_direct_adjoint
* \author Jens Keiner
*/
/*! \def NFSFT_NO_FAST_ALGORITHM
* If this flag is set, the transforms \ref nfsft_trafo and \ref nfsft_adjoint
* do not work. Setting this flag saves memory for precomputed data.
*
* \see nfsft_precompute
* \see nfsft_trafo
* \see nfsft_adjoint
* \author Jens Keiner
*/
/*! \def NFSFT_ZERO_F_HAT
* If this flag is set, the transforms \ref nfsft_adjoint and
* \ref nfsft_direct_adjoint set all unused entries in \c f_hat not corresponding to
* spherical Fourier coefficients to zero.
*
* \author Jens Keiner
*/
/*! \def NFSFT_EQUISPACED
* If this flag is set, we use the equispaced FFT instead of the NFFT.
* This implies that the nodes are fixed to
* \f[ \varphi_i = 2\pi \frac{i}{2N+2}, \qquad i=-N-1,\dots,N, \f]
* \f[ \vartheta_j = 2\pi \frac{j}{2N+2}, \qquad j=0,\dots,N+1. \f]
*
* \author Michael Quellmalz
*/
/*! \def NFSFT_INDEX(k,n,plan)
* This helper macro expands to the index \f$i\f$
* corresponding to the spherical Fourier coefficient
* \f$\mathtt{f\_hat}(k,n)\f$ for \f$0 \le k \le N\f$, \f$-k \le n \le k\f$ with
* \f[
* (N+2)(N-n+1)+N+k+1
* \f]
*/
/*! \def NFSFT_F_HAT_SIZE(N)
* This helper macro expands to the logical size of a spherical Fourier coefficients
* array for a bandwidth N.
*/
/** @}
*/
|