1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
|
'''
This module test the pc class
'''
import pytest
pytest.importorskip("ngsolve")
from math import sqrt
from ngsolve import VectorH1, H1, HDiv, HCurlDiv, TangentialFacetFESpace, L2
from ngsolve import Mesh, BilinearForm, LinearForm, Integrate
from ngsolve import x, y, dx, ds, grad, InnerProduct, CF, div, specialcf
from ngsolve import Sym, Grad
from ngsolve import Preconditioner, GridFunction, ConvertOperator
from ngsolve import COUPLING_TYPE, Compress, IntRange
from ngsolve.solvers import CG
from ngsolve.krylovspace import CGSolver
from ngsolve.la import EigenValues_Preconditioner #pylint: disable=E0401
import netgen.meshing as ngm
from mpi4py.MPI import COMM_WORLD
import pytest
from ngsPETSc.pc import PETScPreconditioner
def test_pc():
'''
Testing the pc has registered function to register preconditioners
'''
from ngsPETSc import pc
assert hasattr(pc,"createPETScPreconditioner")
def test_pc_gamg():
'''
Testing the PETSc GAMG solver
'''
from netgen.geom2d import unit_square
if COMM_WORLD.rank == 0:
mesh = Mesh(unit_square.GenerateMesh(maxh=0.1).Distribute(COMM_WORLD))
else:
mesh = Mesh(ngm.Mesh.Receive(COMM_WORLD))
fes = H1(mesh, order=4, dirichlet="left|right|top|bottom")
u,v = fes.TnT()
a = BilinearForm(grad(u)*grad(v)*dx)
a.Assemble()
pre = Preconditioner(a, "PETScPC", pc_type="gamg")
f = LinearForm(fes)
f += 32 * (y*(1-y)+x*(1-x)) * v * dx
f.Assemble()
gfu = GridFunction(fes)
gfu.vec.data = CG(a.mat, rhs=f.vec, pre=pre, printrates=mesh.comm.rank==0)
exact = 16*x*(1-x)*y*(1-y)
assert sqrt(Integrate((gfu-exact)**2, mesh))<1e-4
@pytest.mark.mpi_skip()
def test_pc_hiptmaier_xu_sor():
'''
Testing Hiptmaier Xu preconditioner with SOR smoother
This test doesn't work in parallel becasue SOR is not implemented has no
parallel implementation in PETSc.
'''
from netgen.geom2d import unit_square
if COMM_WORLD.rank == 0:
mesh = Mesh(unit_square.GenerateMesh(maxh=0.1).Distribute(COMM_WORLD))
else:
mesh = Mesh(ngm.Mesh.Receive(COMM_WORLD))
order=4
fesDG = L2(mesh, order=order, dgjumps=True)
u,v = fesDG.TnT()
aDG = BilinearForm(fesDG)
jump_u = u-u.Other()
jump_v = v-v.Other()
n = specialcf.normal(2)
mean_dudn = 0.5*n * (grad(u)+grad(u.Other()))
mean_dvdn = 0.5*n * (grad(v)+grad(v.Other()))
alpha = 4
h = specialcf.mesh_size
aDG = BilinearForm(fesDG)
aDG += grad(u)*grad(v) * dx
aDG += alpha*order**2/h*jump_u*jump_v * dx(skeleton=True)
aDG += alpha*order**2/h*u*v * ds(skeleton=True)
aDG += (-mean_dudn*jump_v -mean_dvdn*jump_u) * dx(skeleton=True)
aDG += (-n*grad(u)*v-n*grad(v)*u)* ds(skeleton=True)
aDG.Assemble()
fDG = LinearForm(fesDG)
fDG += 1*v * dx
fDG.Assemble()
gfuDG = GridFunction(fesDG)
fesH1 = H1(mesh, order=2, dirichlet=".*")
u,v = fesH1.TnT()
aH1 = BilinearForm(fesH1)
aH1 += grad(u)*grad(v)*dx
aH1.Assemble()
smoother = Preconditioner(aDG, "PETScPC", pc_type="sor", pc_sor_omega=1., pc_sor_symmetric="")
preH1 = PETScPreconditioner(aH1.mat, fesH1.FreeDofs(), matType="is",
solverParameters={"pc_type":"bddc"})
transform = fesH1.ConvertL2Operator(fesDG)
pre = transform @ preH1 @ transform.T + smoother.mat
CG(mat=aDG.mat, rhs=fDG.vec, sol=gfuDG.vec, pre=pre, printrates = True, maxsteps=200)
lam = EigenValues_Preconditioner(aDG.mat, pre)
assert (lam.NumPy()<3.0).all()
def test_pc_hiptmaier_xu_bjacobi():
'''
Testing Hiptmaier Xu preconditioner with bloack Jaocobi smoother
'''
from netgen.geom2d import unit_square
if COMM_WORLD.rank == 0:
mesh = Mesh(unit_square.GenerateMesh(maxh=0.1).Distribute(COMM_WORLD))
else:
mesh = Mesh(ngm.Mesh.Receive(COMM_WORLD))
order=4
fesDG = L2(mesh, order=order, dgjumps=True)
u,v = fesDG.TnT()
aDG = BilinearForm(fesDG)
jump_u = u-u.Other()
jump_v = v-v.Other()
n = specialcf.normal(2)
mean_dudn = 0.5*n * (grad(u)+grad(u.Other()))
mean_dvdn = 0.5*n * (grad(v)+grad(v.Other()))
alpha = 4
h = specialcf.mesh_size
aDG = BilinearForm(fesDG)
aDG += grad(u)*grad(v) * dx
aDG += alpha*order**2/h*jump_u*jump_v * dx(skeleton=True)
aDG += alpha*order**2/h*u*v * ds(skeleton=True)
aDG += (-mean_dudn*jump_v -mean_dvdn*jump_u) * dx(skeleton=True)
aDG += (-n*grad(u)*v-n*grad(v)*u)* ds(skeleton=True)
aDG.Assemble()
fDG = LinearForm(fesDG)
fDG += 1*v * dx
fDG.Assemble()
gfuDG = GridFunction(fesDG)
fesH1 = H1(mesh, order=2, dirichlet=".*")
u,v = fesH1.TnT()
aH1 = BilinearForm(fesH1)
aH1 += grad(u)*grad(v)*dx
aH1.Assemble()
smoother = Preconditioner(aDG, "PETScPC", pc_type="bjacobi")
preH1 = PETScPreconditioner(aH1.mat, fesH1.FreeDofs(), matType="is",
solverParameters={"pc_type":"bddc"})
transform = fesH1.ConvertL2Operator(fesDG)
pre = transform @ preH1 @ transform.T + smoother.mat
CG(mat=aDG.mat, rhs=fDG.vec, sol=gfuDG.vec, pre=pre, printrates = True, maxsteps=200)
lam = EigenValues_Preconditioner(aDG.mat, pre)
assert (lam.NumPy()<3.0).all()
@pytest.mark.skip()
def test_pc_auxiliary_mcs():
'''
Testing Hiptmaier Xu preconditioner for MCs
'''
from netgen.occ import X, Rectangle, OCCGeometry
shape = Rectangle(2,0.41).Circle(0.2,0.2,0.05).Reverse().Face()
shape.edges.name="wall"
shape.edges.Min(X).name="inlet"
shape.edges.Max(X).name="outlet"
mesh = OCCGeometry(shape, dim=2).GenerateMesh(maxh=0.1, comm=COMM_WORLD)
for _ in range(3):
mesh.Refine()
mesh = Mesh(mesh)
mesh.Curve(3)
order=2
nu=0.001
inflow="inlet"
outflow="outlet"
wall="wall"
V = HDiv(mesh, order=order, dirichlet=inflow+"|"+wall, RT=False)
Vhat = TangentialFacetFESpace(mesh, order=order-1, dirichlet=inflow+"|"+wall+"|"+outflow)
Sigma = HCurlDiv(mesh, order = order-1, orderinner=order, discontinuous=True)
S = L2(mesh, order=order-1)
Sigma.SetCouplingType(IntRange(0,Sigma.ndof), COUPLING_TYPE.HIDDEN_DOF)
Sigma = Compress(Sigma)
S.SetCouplingType(IntRange(0,S.ndof), COUPLING_TYPE.HIDDEN_DOF)
S = Compress(S)
X = V*Vhat*Sigma*S
for i in range(X.ndof):
if X.CouplingType(i) == COUPLING_TYPE.WIREBASKET_DOF:
X.SetCouplingType(i, COUPLING_TYPE.INTERFACE_DOF)
u, uhat, sigma, W = X.TrialFunction()
v, vhat, tau, R = X.TestFunction()
def Skew2Vec(m): return m[1,0]-m[0,1]
dS = dx(element_boundary=True)
n = specialcf.normal(mesh.dim)
def tang(u): return u-(u*n)*n
a = BilinearForm (X, eliminate_hidden = True)
a += -0.5/nu * InnerProduct(sigma,tau) * dx + \
(div(sigma)*v+div(tau)*u) * dx + \
(InnerProduct(W,Skew2Vec(tau)) + InnerProduct(R,Skew2Vec(sigma))) * dx + \
-(((sigma*n)*n) * (v*n) + ((tau*n)*n )* (u*n)) * dS + \
(-(sigma*n)*tang(vhat) - (tau*n)*tang(uhat)) * dS
a += 10*nu*div(u)*div(v) * dx
a.Assemble()
uin=CF( (1.5*4*y*(0.41-y)/(0.41*0.41), 0) )
gf0 = GridFunction(X)
gfu0,_,_,_ = gf0.components
gfu0.Set(uin, definedon=mesh.Boundaries(inflow))
gf0.components[0].vec.data = gfu0.vec
from ngsolve import Draw
gf = GridFunction(X)
gf.vec.data = gf0.vec
Xaux = VectorH1(mesh, order=order, dirichlet=inflow+"|"+wall)
uaux, vaux = Xaux.TnT()
aaux = BilinearForm(nu*InnerProduct(Sym(Grad(uaux)), Grad(vaux))*dx).Assemble()
preaux = Preconditioner(aaux, "PETScPC", pc_type="gamg")
convu = ConvertOperator(Xaux, X.components[0], localop=True)
convuhat = ConvertOperator(Xaux, X.components[1], localop=True)
embu, embuhat, _, _ = X.embeddings
conv = embu@convu+embuhat@convuhat
a.Assemble()
#Hiptmaier-Xu Preconditioner
localpre = Preconditioner(a, "PETScPC", pc_type="sor", pc_sor_omega=1., pc_sor_symmetric="")
pre = localpre + conv @ preaux @ conv.T
inv = CGSolver(mat=a.mat, pre=pre, printing=True, maxsteps=100)
gf.vec.data -= inv@a.mat * gf.vec
Draw(gf.components[0], mesh, "preauxu")
lam = EigenValues_Preconditioner(a.mat, pre)
print(lam)
#GAMG Preconditioner
pre = Preconditioner(a, "PETScPC", pc_type="gamg")
inv = CGSolver(mat=a.mat, pre=pre, printing=True, maxsteps=100)
gf.vec.data -= inv@a.mat * gf.vec
Draw(gf.components[0], mesh, "preu")
lam = EigenValues_Preconditioner(a.mat, pre)
print(lam)
if __name__ == '__main__':
test_pc()
test_pc_gamg()
test_pc_hiptmaier_xu_bjacobi()
if COMM_WORLD.size == 1:
test_pc_hiptmaier_xu_sor()
|