1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
|
'''
This module contains all the functions related to the PETSc linear
system solver (KSP) interface for NGSolve
'''
from petsc4py import PETSc
from ngsolve import la, BilinearForm, FESpace, BitArray, Projector
from ngsPETSc import Matrix, VectorMapping, PETScPreconditioner, NullSpace
def createFromBilinearForm(a, freeDofs, solverParameters):
"""
This function creates a PETSc matrix from an NGSolve bilinear form
"""
a.Assemble()
#Setting deafult matrix type
if "ngs_mat_type" not in solverParameters:
solverParameters["ngs_mat_type"] = "aij"
#Assembling matrix if not of type Python
if solverParameters["ngs_mat_type"] not in ["python"]:
if hasattr(a.mat, "row_pardofs"):
dofs = a.mat.row_pardofs
else:
dofs = None
mat = Matrix(a.mat, (dofs, freeDofs, None), solverParameters["ngs_mat_type"])
return (a.mat, mat.mat)
raise ValueError("ngs_mat_type {} is not supported.".format(solverParameters["ngs_mat_type"]))
def createFromMatrix(a, freeDofs, solverParameters):
"""
This function creates a PETSc matrix from an NGSolve bilinear form
"""
#Setting deafult matrix type
if "ngs_mat_type" not in solverParameters:
solverParameters["ngs_mat_type"] = "aij"
#Assembling matrix if not of type Python
if solverParameters["ngs_mat_type"] not in ["python"]:
if hasattr(a, "row_pardofs"):
dofs = a.row_pardofs
else:
dofs = None
mat = Matrix(a, (dofs, freeDofs, None), solverParameters["ngs_mat_type"])
pscMat = mat.mat
return (a, pscMat)
if solverParameters["ngs_mat_type"] == "python":
_, pscMat = createFromAction(a, freeDofs, solverParameters)
return (a, pscMat)
raise ValueError("ngs_mat_type {} is not supported.".format(solverParameters["ngs_mat_type"]))
def createFromPC(a, freeDofs, solverParameters):
"""
This function creates a PETSc matrix from an ngsPETSc PETSc Preconditioner
"""
class Wrap(object):
"""
This class wraps a PETSc Preconditioner as PETSc Python matrix
"""
def __init__(self, a, dofs, freeDofs):
self.a = a
self.mapping = VectorMapping((dofs,freeDofs,{"bsize": [1]}))
self.ngX = a.CreateColVector()
self.ngY = a.CreateColVector()
if hasattr(a, "actingDofs"):
self.prj = Projector(mask=a.actingDofs, range=True)
else:
self.prj = Projector(mask=freeDofs, range=True)
def mult(self, mat, X, Y): #pylint: disable=W0613
"""
PETSc matrix-vector product
"""
self.mapping.ngsVec(X, (self.prj*self.ngX).Evaluate())
self.a.Mult(self.ngX, self.ngY)
self.mapping.petscVec((self.prj*self.ngY).Evaluate(), Y)
#Grabbing comm information
if hasattr(a, "row_pardofs"):
dofs = a.row_pardofs
comm = dofs.comm.mpi4py
elif "dofs" in solverParameters:
dofs = solverParameters["dofs"]
comm = dofs.comm.mpi4py
else:
dofs = None
comm = PETSc.COMM_SELF
pythonA = Wrap(a, dofs, freeDofs)
pscA = PETSc.Mat().create(comm=comm)
pscA.setSizes([sum(freeDofs), sum(freeDofs)])
pscA.setType("python")
pscA.setPythonContext(pythonA)
pscA.setUp()
return (a.ngsMat, pscA)
def createFromAction(a, freeDofs, solverParameters):
"""
This function creates a matrix free PETSc matrix from an NGSolve matrix
"""
class Wrap(object):
"""
This class wraps an NGSolve matrix as PETSc Python matrix
"""
def __init__(self, a, dofs, freeDofs, comm):
self.a = a
self.dofs = dofs
self.freeDofs = freeDofs
self.comm = comm
self.mapping = VectorMapping((dofs,freeDofs,{"bsize": (1,1)}))
self.ngX = a.CreateColVector()
self.ngY = a.CreateColVector()
def mult(self, mat, X, Y): #pylint: disable=W0613
"""
PETSc matrix-vector product
"""
self.mapping.ngsVec(X, self.ngX)
self.a.Mult(self.ngX, self.ngY)
self.mapping.petscVec(self.ngY, Y)
if hasattr(a, "row_pardofs"):
dofs = a.row_pardofs
comm = dofs.comm.mpi4py
entrysize = a.local_mat.entrysizes[0]
_, rnumberGlobal = dofs.EnumerateGlobally(freeDofs) #samrc
elif "dofs" in solverParameters:
dofs = solverParameters["dofs"]
comm = dofs.comm.mpi4py
entrysize = dofs.entrysize
_, rnumberGlobal = dofs.EnumerateGlobally(freeDofs) #samrc
else:
dofs = None
comm = PETSc.COMM_SELF
entrysize = 1
rnumberGlobal = sum(freeDofs)
pythonA = Wrap(a, dofs, freeDofs, comm)
pscA = PETSc.Mat().create(comm=comm)
pscA.setSizes(size=(rnumberGlobal*entrysize,
rnumberGlobal*entrysize), bsize=entrysize)
pscA.setType("python")
pscA.setPythonContext(pythonA)
pscA.setUp()
return (a, pscA)
parse = {BilinearForm: createFromBilinearForm,
la.SparseMatrixd: createFromMatrix,
la.ParallelMatrix: createFromMatrix,
PETScPreconditioner: createFromPC,
la.BaseMatrix: createFromAction}
class KrylovSolver():
"""
This class creates a PETSc Krylov Solver (KSP) for NGSolve.
Inspired by Firedrake linear solver class.
:arg a: either the bilinear form, ngs Matrix or a petsc4py matrix
:arg dofsDescr: either finite element space
:arg p: either the bilinear form, ngs Matrix or petsc4py matrix actin as a preconditioner
:arg nullspace: either a PETSc NullSpace or ngsPETSc PETSc Preconditioner
or touple of ngsPETSc PETSc Preconditioner.
:arg solverParameters: parameters to be passed to the KS P solver
:arg optionsPrefix: special solver options prefix for this specific Krylov solver
"""
def __init__(self, a, dofsDescr, p=None, nullspace=None, optionsPrefix="",
solverParameters={}):
# Grabbing dofs information
if isinstance(dofsDescr, FESpace):
freeDofs = dofsDescr.FreeDofs()
elif isinstance(dofsDescr, BitArray):
freeDofs = dofsDescr
else:
raise ValueError("dofsDescr must be either FESpace or BitArray")
#Construct operator
pscA = None
for key in parse: #pylint: disable=C0206
if isinstance(a, key):
ngsA, pscA = parse[key](a, freeDofs, solverParameters)
if pscA is None:
raise ValueError("a of type {} not supported.".format(type(a)))
if p is not None:
for key in parse: #pylint: disable=C0206
if isinstance(p, key):
if hasattr(ngsA, "row_pardofs"):
solverParameters["dofs"] = ngsA.row_pardofs
_, pscP = parse[key](p, freeDofs, solverParameters)
break
else:
pscP = pscA
#Construct vector mapping
if hasattr(ngsA, "row_pardofs"):
dofs = ngsA.row_pardofs
else:
dofs = None
if hasattr(ngsA.local_mat, "entrysizes"):
entrysize = ngsA.local_mat.entrysizes
else:
entrysize = [1]
self.mapping = VectorMapping((dofs,freeDofs,{"bsize":entrysize}))
#Fixing PETSc options
options_object = PETSc.Options()
for optName, optValue in solverParameters.items():
options_object[optName] = optValue
#Setting PETSc Options
pscA.setOptionsPrefix(optionsPrefix)
pscA.setFromOptions()
#Setting up nullspace
if nullspace is not None:
if isinstance(nullspace, (list, tuple)):
for ns in nullspace:
if isinstance(ns, PETSc.NullSpace):
pscA.setNullSpace(ns)
elif isinstance(ns, NullSpace):
if ns.near:
pscA.setNearNullSpace(ns.nullspace)
else:
pscA.setNullSpace(ns.nullspace)
else:
raise ValueError("nullspace must be either \
PETSc.NullSpace or NullSpace")
if isinstance(nullspace, PETSc.NullSpace):
pscA.setNullSpace(nullspace)
elif isinstance(nullspace, NullSpace):
if nullspace.near:
pscA.setNearNullSpace(nullspace.nullspace)
else:
pscA.setNullSpace(nullspace.nullspace)
else:
raise ValueError("nullspace must be either \
PETSc.NullSpace or NullSpace")
#Setting up KSP
self.ksp = PETSc.KSP().create(comm=pscA.getComm())
self.ksp.setOperators(A=pscA, P=pscP)
self.ksp.setOptionsPrefix(optionsPrefix)
self.ksp.setFromOptions()
self.pscX, self.pscB = pscA.createVecs()
#Attaching operator
self.ngsA = ngsA
def solve(self, b, x, mapping=None):
"""
This function solves the linear system
:arg b: right hand side of the linear system
:arg x: solution of the linear system
"""
if mapping is None:
mapping = self.mapping
mapping.petscVec(x, self.pscX)
mapping.petscVec(b, self.pscB)
self.ksp.solve(self.pscB, self.pscX)
mapping.ngsVec(self.pscX, x)
def operator(self):
"""
This function returns the operator of the KSP solver
"""
return KSPOpeator(self)
class KSPOpeator(la.BaseMatrix):
"""
This class wraps a PETSc KSP solver as an NGSolve matrix
"""
def __init__(self, ksp):
la.BaseMatrix.__init__(self)
self.ksp = ksp
def Shape(self):
'''
Shape of the BaseMatrix
'''
return self.ksp.ngsA.shape
def CreateVector(self,col):
'''
Create vector corresponding to the matrix
:arg col: True if one want a column vector
'''
return self.ksp.ngsA.CreateVector(not col)
def Mult(self, x, y):
"""
Matrix-vector product
"""
self.ksp.solve(x, y)
|