1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
|
'''
This module contains all the function and class needed to wrap a PETSc Preconditioner in NGSolve
'''
from petsc4py import PETSc
from ngsolve import BaseMatrix, comp
from ngsPETSc import Matrix, VectorMapping
class PETScPreconditioner(BaseMatrix):
'''
This class creates a Netgen/NGSolve BaseMatrix corresponding to a PETSc PC
:arg mat: NGSolve Matrix one would like to build the PETSc preconditioner for.
:arg freeDofs: not constrained degrees of freedom of the finite element space over
which the BilinearForm corresponding to the matrix is defined.
:arg solverParameters: parameters to be passed to the KSP solver
:arg optionsPrefix: special solver options prefix for this specific Krylov solver
:arg matType: type of sparse matrix, i.e. PETSc sparse: aij,
MKL sparse: mklaij or CUDA: aijcusparse
'''
def __init__(self, mat, freeDofs, solverParameters=None, optionsPrefix="", nullspace=None,
matType="aij"):
BaseMatrix.__init__(self)
if hasattr(solverParameters, "ToDict"):
solverParameters = solverParameters.ToDict()
self.ngsMat = mat
if hasattr(self.ngsMat, "row_pardofs"):
dofs = self.ngsMat.row_pardofs
else:
dofs = None
self.vecMap = VectorMapping((dofs,freeDofs,{"bsize":self.ngsMat.local_mat.entrysizes}))
petscMat = Matrix(self.ngsMat, (dofs, freeDofs, None), matType).mat
self.lgmap = petscMat.getLGMap()[0]
if nullspace is not None:
if nullspace.near:
petscMat.mat.setNearNullSpace(nullspace.nullspace)
self.petscPreconditioner = PETSc.PC().create(comm=petscMat.getComm())
self.petscPreconditioner.setOperators(petscMat)
options_object = PETSc.Options()
if solverParameters is not None:
for optName, optValue in solverParameters.items():
options_object[optName] = optValue
self.petscPreconditioner.setOptionsPrefix(optionsPrefix)
self.petscPreconditioner.setFromOptions()
self.petscPreconditioner.setUp()
self.petscVecX, self.petscVecY = petscMat.createVecs()
def Shape(self):
'''
Shape of the BaseMatrix
'''
return self.ngsMat.shape
def CreateVector(self,col):
'''
Create vector corresponding to the matrix
:arg col: True if one want a column vector
'''
return self.ngsMat.CreateVector(not col)
def Mult(self,x,y):
'''
BaseMatrix multiplication Ax = y
:arg x: vector we are multiplying
:arg y: vector we are storeing the result in
'''
self.vecMap.petscVec(x,self.petscVecX)
self.petscPreconditioner.apply(self.petscVecX, self.petscVecY)
self.vecMap.ngsVec(self.petscVecY, y)
def MultTrans(self,x,y):
'''
BaseMatrix multiplication A^T x = y
:arg x: vector we are multiplying
:arg y: vector we are storeing the result in
'''
self.vecMap.petscVec(x,self.petscVecX)
self.petscPreconditioner.applyTranspose(self.petscVecX, self.petscVecY)
self.vecMap.ngsVec(self.petscVecY, y)
def setActingDofs(self, dofs):
'''
Set the acting dofs of the preconditioner
:arg dofs: dofs that the preconditioner is acting on
'''
self.actingDofs = dofs
def createPETScPreconditioner(mat, freeDofs, solverParameters):
'''
Create PETSc PC that can be accessed by NGSolve.
:arg mat: NGSolve Matrix one would like to build the PETSc preconditioner for.
:arg freeDofs: not constrained degrees of freedom of the finite element space over
which the BilinearForm corresponding to the matrix is defined.
:arg solverParameters: parameters to be passed to the KSP solver
'''
return PETScPreconditioner(mat, freeDofs, solverParameters)
class ASMPreconditioner(PETScPreconditioner):
'''
This class creates a Netgen/NGSolve BaseMatrix corresponding to a PETSc ASM PC
'''
def __init__(self, mat, freeDofs, solverParameters=None, optionsPrefix="",
nullspace=None, matType="aij", blocks=None):
if "sub_pc_type" not in solverParameters:
solverParameters["sub_pc_type"] = "lu"
if "sub_pc_factor_mat_ordering_type" not in solverParameters:
solverParameters["sub_pc_factor_mat_ordering_type"] = "natural"
super().__init__(mat, freeDofs, solverParameters, optionsPrefix, nullspace, matType)
self.asmpc = None
if blocks is not None:
if len (blocks) == 0:
self.ises = [PETSc.IS().createGeneral([0], comm=PETSc.COMM_SELF)]
else:
if self.petscPreconditioner.getComm().size > 1:
self.ises = [self.lgmap.applyIS(PETSc.IS().createGeneral(list(block),
comm=PETSc.COMM_SELF)) for block in blocks]
else:
self.ises = [PETSc.IS().createGeneral(list(block),
comm=PETSc.COMM_SELF) for block in blocks]
self.asmpc = PETSc.PC().create(comm=self.petscPreconditioner.getComm())
self.asmpc.incrementTabLevel(1, parent=self.petscPreconditioner)
self.asmpc.setOptionsPrefix(optionsPrefix)
self.asmpc.setFromOptions()
self.asmpc.setOperators(*self.petscPreconditioner.getOperators())
self.asmpc.setType(self.asmpc.Type.ASM)
self.asmpc.setASMType(PETSc.PC.ASMType.BASIC)
self.asmpc.setASMLocalSubdomains(len(self.ises), self.ises)
self.asmpc.setUp()
def Mult(self,x,y):
'''
BaseMatrix multiplication Ax = y
:arg x: vector we are multiplying
:arg y: vector we are storeing the result in
'''
self.vecMap.petscVec(x,self.petscVecX)
if self.asmpc is not None:
self.asmpc.apply(self.petscVecX, self.petscVecY)
else:
self.petscPreconditioner.apply(self.petscVecX, self.petscVecY)
self.vecMap.ngsVec(self.petscVecY, y)
def MultTrans(self,x,y):
'''
BaseMatrix multiplication A^T x = y
:arg x: vector we are multiplying
:arg y: vector we are storeing the result in
'''
self.vecMap.petscVec(x,self.petscVecX)
if self.asmpc is not None:
self.asmpc.applyTranspose(self.petscVecX, self.petscVecY)
else:
self.petscPreconditioner.applyTranspose(self.petscVecX, self.petscVecY)
self.vecMap.ngsVec(self.petscVecY, y)
comp.RegisterPreconditioner ("PETScPC", createPETScPreconditioner)
|