File: snes.py

package info (click to toggle)
ngspetsc 0.1.1-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 27,120 kB
  • sloc: python: 3,391; makefile: 42; sh: 29
file content (180 lines) | stat: -rw-r--r-- 6,916 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
'''
This module contains all the functions related to the PETSc SNES
'''
from petsc4py import PETSc

from ngsolve import GridFunction

from ngsPETSc import VectorMapping, Matrix


class NonLinearSolver:
    '''
    This class creates a PETSc Non-Linear Solver (SNES) from a callback to
    a NGSolve residual vector

    :arg fes: the finite element space over which the non-linear problem
              is defined

    :arg a: the variational form reppresenting the non-linear problem

    :arg residual: callback to the residual for the non-linear solver,
                   this fuction is used only if the argument a is None.

    :arg objective: callback to the objective for the non-linear solver,
                   this fuction is used only if the argument a is None,
                   if False the PETSSc default is norm 2.

    :arg jacobian: callback to the Jacobian for the non-linear solver,
                   this fuction is used only if the argument a is None.
    '''
    def __init__(self, fes, a=None, residual=None, objective=None, jacobian=None,
                 solverParameters={}, optionsPrefix=""):
        self.fes = fes
        dofs = fes.ParallelDofs()
        self.second_order = False
        if "ngs_jacobian_mat_type" not in solverParameters:
            solverParameters["ngs_jacobian_mat_type"] = "aij"
        jacobianMatType = solverParameters["ngs_jacobian_mat_type"]
        self.snes = PETSc.SNES().create(comm=dofs.comm.mpi4py)
        #Setting up the options
        options_object = PETSc.Options()
        for optName, optValue in solverParameters.items():
            options_object[optName] = optValue
        self.snes.setOptionsPrefix(optionsPrefix)
        self.snes.setFromOptions()
        #Setting up utility for mappings
        self.vectorMapping = VectorMapping(self.fes)
        if residual is not None: self.residual = residual
        elif a is not None:
            def residual(x):  #pylint: disable=E0102, E0213
                res = GridFunction(fes)
                a.Apply(x.vec, res.vec)
                return res
            self.residual = residual
        else:
            raise ValueError("Either evalFunction or a must be provided")
        if objective is not None: self.objective = objective
        elif a is not None:
            def objective(x):  #pylint: disable=E0102, E0213
                return a.Energy(x.vec)
            self.objective = objective
        if jacobian is not None:
            self.jacobian = jacobian
            self.jacobianMatType = jacobianMatType
            self.second_order = True
        elif a is not None:
            def jacobian(x): #pylint: disable=E0102,E0213
                a.AssembleLinearization(x.vec)
                return a.mat
            self.jacobian = jacobian
            self.second_order = True
            self.jacobianMatType = jacobianMatType
    def setup(self, x0):
        '''
        This is method is used to setup the PETSc SNES object

        :arg x0: NGSolve grid function reppresenting the initial guess
        '''
        ngsGridFucntion = GridFunction(self.fes)
        pVec = self.vectorMapping.petscVec(ngsGridFucntion.vec)
        self.snes.setFunction(self.petscResidual, pVec)
        if self.objective is not False: self.snes.setObjective(self.petscObjective)
        if self.second_order:
            J, P, _ = self.snes.getJacobian()
            self.snes.setJacobian(self.petscJacobian, J, P)
        self.pvec0 = self.vectorMapping.petscVec(x0.vec)
    def solve(self, x0):
        '''
        This is method solves the non-linear problem

        :arg x0: NGSolve grid function reppresenting the initial guess
        '''
        self.setup(x0)
        self.snes.solve(None,self.pvec0)
        self.solutionGridFucntion = GridFunction(self.fes)
        self.vectorMapping.ngsVec(self.pvec0,ngsVec=self.solutionGridFucntion.vec)
        return self.solutionGridFucntion
    def petscResidual(self,snes,x,f):
        '''
        This is method is used to wrap the callback to the resiudal in
        a PETSc compatible way

        :arg snes: PETSc SNES object reppresenting the non-linear solver
        
        :arg x: current guess of the solution as a PETSc Vec

        :arg f: residual function as PETSc Vec
        '''
        assert isinstance(snes,PETSc.SNES)
        ngsGridFuction = GridFunction(self.fes)
        self.vectorMapping.ngsVec(x,ngsVec=ngsGridFuction.vec)
        ngsGridFuction = self.residual(ngsGridFuction)
        self.vectorMapping.petscVec(ngsGridFuction.vec, petscVec=f)

    def residual(x): #pylint: disable=E0102,E0213,E0202
        '''
        Callback to the residual of the non-linear problem
        
        :arg x: current guess of the solution as a PETSc Vec

        :return: the residual as an NGSolve grid function
        '''
        raise NotImplementedError("No residual has been implemented yet.")

    def petscObjective(self, snes,x):
        '''
        This is method is used to wrap the callback to the objetcive in
        a PETSc compatible way

        :arg snes: PETSc SNES object reppresenting the non-linear solver
        
        :arg x: current guess of the solution as a PETSc Vec

        :arg energy: energy as a PETSc Scalar
        '''
        assert isinstance(snes,PETSc.SNES)
        ngsGridFuction = GridFunction(self.fes)
        self.vectorMapping.ngsVec(x,ngsVec=ngsGridFuction.vec)
        return self.objective(ngsGridFuction)

    def objective(x): #pylint: disable=E0102,E0213,E0202
        '''
        Callback to the objective of the non-linear problem
        
        :arg x: current guess of the solution as a PETSc Vec

        :return: the energy
        '''
        raise NotImplementedError("No residual has been implemented yet.")

    def petscJacobian(self,snes,x,J,P):
        '''
        This is method is used to wrap the callback to the Jacobian in
        a PETSc compatible way

        :arg snes: PETSc SNES object reppresenting the non-linear solver
        
        :arg x: current guess of the solution as a PETSc Vec

        :arg J: Jacobian computed at x as a PETSc Mat

        :arg P: preconditioner for the Jacobian computed at x
                as a PETSc Mat
        '''
        assert isinstance(snes,PETSc.SNES)
        ngsGridFuction = GridFunction(self.fes)
        self.vectorMapping.ngsVec(x, ngsVec=ngsGridFuction.vec)
        mat = self.jacobian(ngsGridFuction)
        Matrix(mat,self.fes, petscMat=P, matType=self.jacobianMatType)
        Matrix(mat,self.fes, petscMat=J, matType=self.jacobianMatType)

    def jacobian(x): #pylint: disable=E0102,E0213,E0202
        '''
        Callback to the Jacobian of the non-linear problem
        
        :arg x: current guess of the solution as a PETSc Vec

        :return: the Jacobian as an NGSolve matrix
        '''
        raise NotImplementedError("No Jacobian has been implemented yet.")