File: test_mat.py

package info (click to toggle)
ngspetsc 0.1.1-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 27,120 kB
  • sloc: python: 3,391; makefile: 42; sh: 29
file content (65 lines) | stat: -rw-r--r-- 1,843 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
'''
This module test the matrix class
'''
import pytest
pytest.importorskip("ngsolve")

from ngsolve import Mesh, H1, VectorH1, BilinearForm, grad, div, dx
from netgen.geom2d import unit_square
import netgen.meshing as ngm

from mpi4py.MPI import COMM_WORLD

from ngsPETSc import Matrix

def test_poisson_mat():
    '''
    Testing that the matrix for the Poisson problem is correctly exported.
    '''
    if COMM_WORLD.rank == 0:
        mesh = Mesh(unit_square.GenerateMesh(maxh=0.1).Distribute(COMM_WORLD))
    else:
        mesh = Mesh(ngm.Mesh.Receive(COMM_WORLD))
    fes = H1(mesh, order=1, dirichlet="left|right|top|bottom")
    u,v = fes.TnT()
    a = BilinearForm(grad(u)*grad(v)*dx).Assemble()
    Matrix(a.mat, fes)

def test_poisson_mat_filling():
    '''
    Testing that the matrix for the Poisson problem is correctly exported.
    '''
    if COMM_WORLD.rank == 0:
        mesh = Mesh(unit_square.GenerateMesh(maxh=0.1).Distribute(COMM_WORLD))
    else:
        mesh = Mesh(ngm.Mesh.Receive(COMM_WORLD))
    fes = H1(mesh, order=1, dirichlet="left|right|top|bottom")
    u,v = fes.TnT()
    a = BilinearForm(grad(u)*grad(v)*dx).Assemble()
    M = Matrix(a.mat, fes)
    Matrix(a.mat, fes, petscMat=M.mat)

def test_nonsquare_mat():
    '''
    Testing that a nonsquare matrix is correctly exported.
    '''
    if COMM_WORLD.rank == 0:
        mesh = Mesh(unit_square.GenerateMesh(maxh=0.1).Distribute(COMM_WORLD))
    else:
        mesh = Mesh(ngm.Mesh.Receive(COMM_WORLD))

    V = VectorH1(mesh, order=2, dirichlet="left|right|top|bottom")
    Q = H1(mesh, order=1)

    u,_ = V.TnT()
    _,q = Q.TnT()

    b = BilinearForm(trialspace=V, testspace=Q)
    b += div(u)*q*dx
    b.Assemble()
    Matrix(b.mat, (Q, V))

if __name__ == '__main__':
    test_poisson_mat()
    test_poisson_mat_filling()
    test_nonsquare_mat()