1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
|
<?xml version="1.0" standalone="no"?>
<!DOCTYPE book PUBLIC '-//OASIS//DTD DocBook XML V4.1.2//EN'
'http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd' [
<!ENTITY nice "Nice">
<!ENTITY java "Java">
<!ENTITY NULL "<literal>null</literal>">
<!ENTITY LT "<literal><</literal>">
<!ENTITY GT "<literal>></literal>">
<!ENTITY LBRACE "<literal>{</literal>">
<!ENTITY RBRACE "<literal>}</literal>">
]>
<book>
<bookinfo>
<title>The Nice user's manual</title>
<author><firstname>Daniel</firstname><surname>Bonniot</surname></author>
<author><firstname>Bryn</firstname><surname>Keller</surname></author>
<author><firstname>Francis</firstname><surname>Barber</surname></author>
<copyright><year>2003</year><holder>Daniel Bonniot</holder></copyright>
</bookinfo>
<preface><title>Foreword</title>
<para>
This manual describes the Nice programming language.
It is currently under redaction, which means that many aspects of
the language are absent from it, or that some sections are mostly empty.
During this time, it is recommended to read also the
<ulink url="http://nice.sf.net/language.html">Nice tutorial</ulink>,
which contains lots of additional information.
Both documents currently assume some knowledge of Java, or at least
of an object oriented language.
</para>
<para>
The authors of this manual are Bryn Keller and Daniel Bonniot, with
contributions from Francis Barber.
</para>
</preface>
<chapter><title>Philosophy</title>
<para>
<blockquote>
<attribution>Alan J. Perlis</attribution>
<para>
A language that doesn't affect the way you think about programming,
is not worth knowing.
</para>
</blockquote>
<blockquote>
<attribution>Alfred North Whitehead</attribution>
<para>
The art of progress is to preserve order amid change
and to preserve change amid order.
</para>
</blockquote>
The Nice programming language is a new object-oriented programming
language based on Java.
It incorporates features from functional programming,
and puts into practice state-of-the-art results from academic research.
This results in more expressivity, modularity and safety.
</para>
<variablelist>
<varlistentry><term>Safety</term>
<listitem>
<para>
Nice detects more errors during compilation than existing
object-oriented languages (null pointer accesses,
cast exceptions).
This means that programs written in Nice never throw the infamous
<literal>NullPointerException</literal> nor
<literal>ClassCastException</literal>.
This aspect is developed in more detail in
<ulink url="http://nice.sf.net/safety.html">this article</ulink>.
</para>
</listitem>
</varlistentry>
<varlistentry><term>Modularity</term><listitem><para>
In object-oriented languages, it is possible to add a new class
to an existing class hierarchy.
In Nice, it is also possible to add <emphasis>methods</emphasis> to
existing classes without modifying their source file.
This is a special case of <emphasis>multi-methods</emphasis>.
</para>
</listitem>
</varlistentry>
<varlistentry><term>Expressivity</term><listitem><para>
Many repetitive programming tasks can be
avoided by using Nice's advanced features.
Ever got bored
of writing tons of loops, casts, overloaded methods with default
values, ... ?
</para>
</listitem>
</varlistentry>
</variablelist>
</chapter>
<chapter id = "packages" ><title>Packages</title>
<para>
A <firstterm>package</firstterm> is a group of related classes,
methods, and variables. You can declare that all the code in a particular
<literal>.nice</literal> file belongs to a certain package with the
declaration:
</para>
<para>
<literal>package <replaceable>package-name</replaceable>;</literal>
</para>
<para>
To make use of all the public entities from another Nice package,
use the <literal>import</literal> statement:
</para>
<para>
<literal>import <replaceable>package-name</replaceable>;</literal>
</para>
<para>
Note that this is somewhat different from Java packages.
In Java, a class can be used independently of its declaring package.
In Nice methods can be declared outside classes, so importing
the whole package is important to know the methods available for a
given class.
This probably implies that Nice projects should be designed with
smaller, self-contained packages that Java projects.
</para>
<para>
Therefore, only whole packages can be imported.
It is not possible to import a single class.
Likewise, there is no need to
include a <literal>.*</literal> after the package name as in Java.
In fact, using <literal>.*</literal> indicates that you wish to import
the contents of a Java package rather than a Nice package.
See the section on <link linkend="importJava">Java imports</link>
for details.
</para>
<section id="mainMethod"><title>The <literal>main</literal> method</title>
<para>
If a package contains a method whose name is <literal>main</literal>
and the method has a <literal>void</literal> return type and takes
a single <literal>String[]</literal> as its argument, this method
receives special treatment, in that when the program is run, execution
will begin with this <literal>main</literal> method. The runtime
system will pass the command line arguments used to invoke the program
as the argument to <literal>main</literal>.
</para>
<para>
Note that since the main unit of code in Nice is the package,
and not the class, the <literal>main</literal> method should
be implemented outside of any class declaration.
</para>
</section>
</chapter>
<chapter><title>Classes and Interfaces</title>
<section><title>Declaring a class</title>
<para>
</para>
</section>
<section><title>Fields</title>
<para>
The main component of a class is the list of its fields.
A field is a variable that is attached to each instance of
the class. It has a type, a name, and optionally a default
initial value.
The syntax for field declaration is:
<programlisting>
<type><replaceable>type</replaceable></type> <replaceable>field-name</replaceable><optional> = <replaceable>initial-value</replaceable></optional>;
</programlisting>
If no default value is given, then every call to the constructor
must specify the value for this field.
If it is given, a call to the constructor call still override
it with a different value, in which case the default value is
not computed (this fact is only important if it has side effects).
</para>
</section>
<section id="constructor"><title>Constructors</title>
<para>
Classes in Nice have a default (or "automatic") constructor
which is generated
automatically by the compiler. This constructor allows all the
fields of the class to be specified explicitly, though if the
field has a default value in the class definition, it can be
omitted from the constructor call and the default value will
be used. In many cases this default constructor is all that
is needed, and it saves the programmer from having to write
tedious code that simply accepts values and assigns them to
fields.
</para>
<example><title>Class definition and creations using the automatic constructor</title>
<programlisting lang="nice">
class Car
{
String brand;
String model;
int numberOfWheels = 4;
int numberOfDrivingWheels = 2;
}
void test()
{
Car renault5 = new Car(brand: "Renault", model: "Cinq");
Car jeep = new Car(brand: "Jeep", model: "Some jeep", numberOfDrivingWheels: 4);
}</programlisting>
</example>
<para>
It is required to include the names of the fields in the call
to the constructor.
This is important for two reasons.
First, it is easy to understand what the arguments represent, without looking at the
class definition.
Second, it does not require some arbitrary ordering of the fields
<footnote>
<para>
A problem happens in Java when the order of the parameters
of a constructor should be changed.
This requires modifying all the call sites, which is at best tedious
and error-prone, at worse impossible (when writing a library used by others).
When the order is changed and some caller are not modified,
the following happens:
if the exchanged parameters have incompatible types,
the compilation of the caller will fail;
otherwise the code might even compile and produce
wrong results at runtime.
There is no simple way to solve this issue in Java.
Using names in the call to the constructor in Nice is the solution.
</para>
</footnote>. Because the names of the fields are used, they can be given
in any order.
</para>
<para>
When more control over construction is desired, it is possible
to write new constructors that can be used in place of the
automatic constructor. These are written much like any other
method, but they use a slightly different declaration syntax:
<programlisting>
new <type><replaceable>class-name</replaceable></type>(<type><replaceable>param-type</replaceable></type><replaceable>param-name</replaceable><optional> = <replaceable>initial-value</replaceable></optional>, ...)
{
<replaceable>method-body</replaceable>;
this(<replaceable>argument</replaceable>, ...);
}
</programlisting>
This syntax requires that the last statement in any custom
constructor calls some other constructor for the same type.
In most cases, the automatic constructor will be called.
</para>
<example><title>Class definition and creations using custom constructors</title>
<programlisting lang="nice"><![CDATA[
/**
* Class which encapsulates a strategy for
* way of translating a character.
*/
class Translator
{
//The function that actually performs the translation
char->char transFunction;
//convenience method
char translate(char input)
{
return (this.transFunction)(input);
}
}
/**
* Constructor which takes a map of characters, and
* returns a Translator which looks up the input
* character in the map, or just returns the input
* character if it's not in the map.
*/
new Translator(Map<char,char> characters)
{
this(transFunction: char c => characters.get(c) || c);
}
//A translator which provides rot13 ciphering.
//Uses automatic constructor.
var Translator rot13 = new Translator(transFunction:
char c => char(int(c) + 13));
//A translator which just changes 's' or 'S' to '$'.
//Uses custom constructor.
var Translator sToDollar = new Translator(characters: listToMap([
('s', '$'),
('S', '$')
]));
]]></programlisting>
</example>
<para>
It is also possible to define <firstterm>initializers</firstterm>
for your classes. An initializer is simply a block of code that
executes after construction is finished. To define an initializer,
simply include code directly in the class definition, inside
a block:
<programlisting>
class <type><replaceable>class-name</replaceable></type>
{
{
<replaceable>initializer</replaceable>
}
<replaceable>fields-and-methods</replaceable>
}
</programlisting>
</para>
<para>
Here is an example. Notice that since the initializer runs
after any constructors, the hidden counter field will always
be set to zero, even if the caller had tried to set it to
some other value when the object was created.
<example><title>Class initializers</title>
<programlisting lang="nice"><![CDATA[
class Counter
{
{
this._internal_counter = 0;
}
int _internal_counter = 0;
}
]]></programlisting>
</example>
</para>
</section>
<section id = "parametricClasses" ><title>Parametric classes</title>
<para>
A powerful feature of Nice is the ability to define
<firstterm>parametric classes</firstterm>.
Parametric classes are like templates in C++, or similar constructs in
various functional languages. Programming with parametric classes is
sometimes called <firstterm>generic programming</firstterm>.
</para>
<para>
A parametric (or parameterized) class is simply a class which has a
parameter. In this case the parameter is a <emphasis>type</emphasis>
rather than a value. You can consider a parametric class as a family
of related classes, all of which have the same behavior and structure
except for the part that is parameterized. A common case where this
is useful is in data structures.
</para>
<example><title>Simple Java Collection</title>
<programlisting lang="java">
class Stack
{
List contents = new LinkedList();
void push(Object o)
{
contents.add(o);
}
//... omitted methods
public static void main(String[] args)
{
Stack st = new Stack();
st.push("Test");
Integer num = (Integer)st.pop(); // Runtime error
}
}
</programlisting>
</example>
<para>
There is a big type safety problem here.
We pushed a String on to the stack, and then tried to pop it off into
an Integer, resulting in an exception at runtime. Parametric classes
can solve this problem.
</para>
<example><title>Simple Nice Collection</title>
<programlisting lang="nice"><![CDATA[
class Stack<T>
{
List<T> contents = new LinkedList();
void push(T t)
{
contents.add(t);
}
//... omitted methods
}
void main(String[] args)
{
Stack<String> st = new Stack();
st.push("Test");
Integer num = st.pop(); // Compile time error!
}
]]></programlisting>
</example>
<para>
In the Nice version, we have parameterized <classname>Stack</classname> by
a type <type>T</type>. Essentially, <type>Stack<T></type>
is a recipe for the compiler that tells it how to create a
<classname>Stack</classname> that
works for any given type. So now the compiler knows that we only mean
for Strings to go into our stack, and it reports an error when we
write code that expects an <type>Integer</type> to come out of our
<type>Stack<String></type>.
</para>
</section>
<section><title>Declaring an Interface</title>
<para>
Nice has single inheritance, like Java or C#, which means that each
class can have at most one superclass which it extends. Sometimes,
it would be nice to have a class that "extends" two (or more) different
classes, taking some of its behavior and data from each.
In Nice, as in Java, this can be accomplished via
<firstterm>interfaces</firstterm>.
</para>
<para>
Interfaces are declared just like classes, except that they may
not contain data fields, only methods. Unlike in Java, they may
also contain default implementations of the methods, making
interfaces more convenient and useful than Java interfaces.
</para>
<para>
To say even this much is still to think of interfaces in Java terms,
however. In Nice, an interface
doesn't really "contain" anything at all, it's just a marker.
Just as <literal>java.io.Serializable</literal> is just a tag
to tell Java that it's okay to use serialization on instances of
a class, all Nice interfaces are really tags.
</para>
<para>
This is because Nice
has multi-methods, which are defined by themselves and not contained
in a class or interface. It is always possible to define new
methods for an interface, just as it is always possible to define
new methods for a class. Another consequence of the fact Nice is
based on multi-methods is that interface definitions can "contain"
not only method signatures, but also default implementations.
</para>
<para>
Nice does accept a style of interface definition similar to Java's,
as in the following example:
<example>
<title>Declaring an Interface</title>
<programlisting lang="nice">
interface Component
{
String getID();
(int,int) getPosition();
(int,int) getDimensions();
int getArea()
{
(int width, int height) = this.getDimensions();
return width * height;
}
}
</programlisting>
</example>
</para>
<para>
However, it's equally possible to define the same interface
in this style:
<example>
<title>Declaring an Interface with External Methods</title>
<programlisting lang="nice">
interface Component {}
String getID(Component comp);
(int,int) getPosition(Component comp);
(int,int) getDimensions(Component comp);
int getArea(Component comp)
{
(int width, int height) = comp.getDimensions();
return width * height;
}
</programlisting>
</example>
and in fact, it's fine to mix the two styles, declaring
some of the methods inside the <literal>interface</literal>
block, and some outside. One good practice might be to
declare those methods which have no default implementation
inside the <literal>interface</literal> block, and those
with default implementations outside of it. That way someone
reading the code will have a clear idea of which methods
must be implemented when implementing an interface. Of
course, the compiler will ensure that all necessary methods
are implemented, so this is only a suggestion.
</para>
</section>
<section id="enums"><title>Enumerations</title>
<para>
Enumerations or simply (<literal>enum</literal>s) are a group
of related constants. Many languages support defining simple
constants, and of course <link linkend="constants">Nice does
also</link>. Many programs are written to use certain numeric
constants with special meanings. For instance, one might
write a method for a vending machine:
<programlisting lang="nice">
let int NICKEL = 5;
let int DIME = 10;
let int QUARTER = 25;
class VendingMachine
{
int change = 0;
}
void addCoin(VendingMachine machine, int cents)
{
machine.change += cents;
}
</programlisting>
but this method isn't very safe! It will accept any amount of
change, including nonsensical amounts like 3, or 234320. One
way to address this problem would be to do runtime checks to
ensure that the value is acceptable, and throw an exception if
it is not. However, there is an easier solution in Nice: the enum.
<programlisting>
enum <type><replaceable>class-name</replaceable></type><optional>(<type><replaceable>parameter-type</replaceable></type> <replaceable>parameter-name</replaceable>, ...)</optional>
{
<replaceable>option,...</replaceable>
}
</programlisting>
Enums can be simple symbols like
<programlisting lang="nice">
enum Color { Red, Orange, Yellow, Blue, Indigo, Violet }
</programlisting>
or they can contain integer (or other) values:
<programlisting lang="nice">
enum VendingCoin(int value)
{
nickel(5), dime(10), quarter(25);
}
class VendingMachine
{
int change = 0;
}
void addCoin(VendingMachine machine, VendingCoin cents)
{
machine.change += cents.value;
}
</programlisting>
Of course, a realistic vending machine would have to keep track of
the actual number of each coin rather than a total value!
</para>
</section>
</chapter>
<chapter id="method"><title>Methods</title>
<section><title>Declaring methods</title>
<para>
Method declaration takes the following form:
</para>
<para>
<literal>
<optional><replaceable>type-parameters</replaceable></optional>
<replaceable>return-type</replaceable>
<replaceable>method-name</replaceable>
(<optional><replaceable>parameters</replaceable></optional>);
</literal>
</para>
<para>
Note that in Nice, methods can be defined within the
body of a class definition, or outside of it - both are identical
for the compiler's purposes.
</para>
<para>
It is also possible to define a default implementation at the same
time that the method signature is defined. This form looks like:
</para>
<para>
<literal>
<optional><replaceable>type-parameters</replaceable></optional>
<replaceable>return-type</replaceable>
<replaceable>method-name</replaceable>
(<optional><replaceable>parameters</replaceable></optional>)
{
<replaceable>code-body</replaceable>
}
</literal>
</para>
</section>
<section><title>Implementing methods</title>
<para>
In comparison to their declarations, method implementations can be
quite terse:
</para>
<para>
<literal>
<replaceable>method-name</replaceable>
(<optional><replaceable>arguments</replaceable></optional>)
&LBRACE; body &RBRACE;
</literal>
</para>
<para>There is also a special form for methods which consist of a single expression:</para>
<para>
<literal>
<replaceable>method-name</replaceable>
(<optional><replaceable>arguments</replaceable></optional>)
= <replaceable>expression</replaceable>;
</literal>
</para>
<para>
The <optional><replaceable>arguments</replaceable></optional>
consist of names, and optionally types, of the form
</para>
<para>
<literal><replaceable>name</replaceable></literal>
</para>
<para>or</para>
<para>
<literal><replaceable>class-name</replaceable> <replaceable>name</replaceable></literal>
</para>
<para>
The <literal><replaceable>class-name</replaceable></literal>
is used to specialize the method on that argument.
An example should make the difference clear. Also note the
use of both the block- and expression-style methods.
</para>
<example>
<title>Method Implementation</title>
<programlisting lang="nice">
class Vehicle {}
class Motorcycle extends Vehicle {}
class Car extends Vehicle {}
//Declare method
int numberOfWheels(Vehicle vehicle);
//Default implementation
numberOfWheels(vehicle)
{
throw new Exception("Unknown number of wheels!");
}
//Specialize for Cars
numberOfWheels(Car car)
{
return 4;
}
//Specialize for Motorcycles
numberOfWheels(Motorcycle mc) = 2;
</programlisting>
</example>
<para id="exactMatching">
It is also possible to specialize a method on the
<emphasis>exact</emphasis> class of the argument. Then the method will
apply to arguments which match the class exactly, and
<emphasis>not</emphasis> to an argument which is a subclass of the class
specified. The syntax for exact matching is:
</para>
<para>
<literal>#<replaceable>class-name</replaceable> <replaceable>name</replaceable></literal>
</para>
<para>
Specializing on the exact class of an argument is useful in situations
where an implementation is correct for a certain class, but you know
that each subclass will require a different implementation.
</para>
<para>
There is also an <link linkend="ex:copy">example</link> where
exact matching is required to
type-check a method with a precise polymorphic type.
</para>
<para>
When specializing a method with type parameters, it is not necessary
or possible to restate the type parameters in the method implementation.
However, if you need access to the type parameters as in the example
below, use the syntax:
</para>
<para>
<literal>
<<replaceable>type-parameters</replaceable>>
<replaceable>method-name</replaceable>
(<optional><replaceable>arguments</replaceable></optional>)
&LBRACE; body &RBRACE;
</literal>
</para>
<example>
<title>Using Type Parameters in Method Implementations</title>
<programlisting lang="nice"><![CDATA[
//Method definition
<T> T lastItem(Collection<T> coll);
/* This version is incorrect because the type parameter T is not in scope:
lastItem(coll)
{
Iterator<T> it = coll.iterator();
//...
}
*/
// This one will work correctly:
<T> lastItem(coll)
{
Iterator<T> = coll.iterator();
//...
}
]]></programlisting>
</example>
<para>
Note that it is not possible to dispatch a method call on an array
type, nor to specialize a method on the subtype of a type parameter.
This means that method implementations of the form:
</para>
<para>
<literal><![CDATA[foo(Collection<String> string){}]]></literal>
</para>
<para>or</para>
<para>
<literal><![CDATA[foo(String[] array){}]]></literal>
</para>
<para>
are not valid. You should use respectively the specializers
<literal>Collection</literal> and
<literal>Array</literal> instead.
</para>
</section>
<section><title>Value Dispatch</title>
<para>
In addition to choosing a method based on the classes of the
arguments, it's even possible to override a method based on the
actual values of the arguments. Currently this feature works
with integers, booleans, strings, characters, enums, and
class instances which are used as package level constants.
It is also possible to override a method for the special case
of null.
</para>
<para>
This feature makes it
convenient to code things that might otherwise have required
switch statements or nested if/else statements. Using value
dispatch can be more flexible than switch or if/else statements,
because you can always add new alternatives conveniently by
just adding a new method implementation.
</para>
<example>
<title>Value Dispatch</title>
<programlisting lang="nice"><![CDATA[
String digitToString(int digit, String language)
requires 0 <= digit < 10;
digitToString(digit, language)
{
throw new Exception("Couldn't convert "digit" to language "language);
}
digitToString(1, "english") = "one";
digitToString(2, "english") = "two";
digitToString(3, "english") = "three";
digitToString(1, "french") = "un";
digitToString(2, "french") = "deux";
digitToString(3, "french") = "trois";
String booleanToYesNo(boolean bool);
booleanToYesNo(true) = "yes";
booleanToYesNo(false) = "no";
enum Grade {
A, B, C, D, F
}
Grade charToGrade(char input);
charToGrade('a') = A;
charToGrade('b') = B;
charToGrade('c') = C;
charToGrade('d') = D;
charToGrade('f') = F;
charToGrade(input) {
throw new IllegalArgumentException("Not a grade letter: " + input);
}
char gradeToChar(Grade grade);
gradeToChar(A) = 'a';
gradeToChar(B) = 'b';
gradeToChar(C) = 'c';
gradeToChar(D) = 'd';
gradeToChar(F) = 'f';
class Person
{
}
let Person BOB = new Person();
void greet(Person p)
{
println("Hello, anonymous person!");
}
greet(BOB)
{
println("Hi Bob!");
}
<T> int containsHowMany(?List<T> list);
<T> containsHowMany(List list) = list.size();
containsHowMany(null) = 0;
]]></programlisting>
</example>
</section>
<section id="namedParameters"><title>Named parameters</title>
<para>
When <link linkend="call">calling</link> a method
it is possible to specify the name of a parameter, followed by
<literal>:</literal> before the value given to that parameter.
Named parameters can be given in any order.
This is useful when writing the call, because one does not
need to remember the order of the arguments, but only their names.
This makes the code much easier to understand
what each parameter represents, provided that parameter names are
chosen carefully.
<example>
<title>Using named parameters</title>
<programlisting lang="nice">
void copy(File from, File to) { ... }
...
copy(from: f1, to: f2);
copy(to: f3, from: f4);</programlisting>
</example>
It is of course still possible to omit the names of the parameters,
in which case the arguments must be given in the order of the
declaration.
</para>
</section>
<section id="optionalParameters"><title>Optional parameters</title>
<para>
Many methods have some parameters that are used most of the time
with the same value. In Nice, a parameter can be given a default
value. That argument can then be omitted when calling the method,
and the default value will be used.
<example>
<title>Using named and optional parameters</title>
<programlisting lang="nice">
void copy(File from, File to, int bufferSize = 1000) { ... }
...
copy(from: f1, to: f2); // with a buffer size of 1000
copy(from: f1, to: f2, bufferSize: 4000);</programlisting>
</example>
In the method definition, the optional parameters should be
listed after the required parameters. This is needed to allow
calls that do not name the arguments and want to use the default
values for the optional parameters.
</para>
<para>
Note that the optional values of parameters can be based on other
parameters, for example:
</para>
<para>
<literal> T[] slice(T[] array, int from = 0,
int to = array.length - 1);</literal>
</para>
<para>
Method implementations must still bind all parameters,
including the optional ones, and can dispatch on them.
</para>
</section>
</chapter>
<chapter id="contracts"><title>Assertions and contracts</title>
<section><title>Syntax</title>
<para>
The syntax for assertions is the same as in Java (since 1.4).
Assertions are statements of the following form:
<literal>assert <boolean expression> : <error message></literal>.
The <error message> is optional.
</para>
<para>
Preconditions are introduced with the <literal>requires</literal>
keyword, and postconditions with the <literal>ensures</literal>
keyword. If there are several conditions in either section,
they must be separated by commas.
For convenience, an optional trailing comma is accepted.
</para>
<para>
In a method returning a value, the special variable name
<literal>result</literal> can be used to refer to the result value
of the method in the postcondition.
The <literal>old</literal> to refer to values before the
execution of the method is not supported yet.
</para>
<para>
For example, we can define the contract of the add method
of a <type>Buffer</type> interface.
It is guaranteed that <literal>isEmpty</literal> returns
<literal>true</literal> if, and only if,
<literal>size</literal> returns <literal>0</literal>.
The <literal>add</literal> method can be called only when the buffer
is not full. It is guaranteed to make the buffer non-empty, and
to increase the size by one.
<example>
<title>Contracts</title>
<programlisting lang="nice"><![CDATA[
interface Buffer<Elem>
{
int size();
boolean isFull();
boolean isEmpty() ensures result == (size() == 0);
void add(Elem element)
requires
!isfull() : "buffer must not be not full" // A comma here is optional
ensures
!isEmpty() : "buffer must not be empty", // Note the comma
size() == old(size()) + 1 : "count inc";
}]]></programlisting>
</example>
</para>
</section>
<section id="enablingAssertions"><title>Enabling assertions and contract checking</title>
<para>
By default, assertions and contracts are not used at runtime.
They are discarded by the just-in-time compiler, and should
cause no slow-down.
They can be turned on when starting the JVM.
</para>
<section><title>JDK 1.4 and later</title>
<para>
The mechanism is the same as for Java assertions.
Checking can be enabled at runtime with
<userinput>java -ea ...</userinput>.
</para>
</section>
<section><title>JDK 1.1, 1.2 and 1.3</title>
<para>
Contrarily to Java, Nice produces programs with assertions that can
be run on earlier JDKs. Therefore there is no problem to distribute
Nice programs using assertions and contracts. Since java will not
know the <literal>-ea</literal> command line option, they are
disabled by default. You can enable them with
<userinput>java -Dassertions=true ...</userinput>.
</para>
</section>
</section>
</chapter>
<chapter><title>Statements</title>
<section id="localVars"><title>Local variables and constants</title>
<para>
Local variables may be defined with the <literal>var</literal> keyword.
Here is the syntax:
</para>
<para>
<literal>var <optional><replaceable>type</replaceable></optional>
<replaceable>variable-name</replaceable>
<optional>= <replaceable>initial-value</replaceable></optional>
;
</literal>
</para>
<para>
For local variables (not <link linkend = "packageVars">package
variables</link>), the Nice also accepts the Java style of
declaration:
</para>
<para>
<literal>
<replaceable>type</replaceable>
<replaceable>variable-name</replaceable>
<optional>= <replaceable>initial-value</replaceable></optional>
;
</literal>
</para>
<para id="constants">
Constants are declared with "let":
</para>
<para>
<literal>let <optional><replaceable>type</replaceable></optional>
<replaceable>variable-name</replaceable>
<optional>= <replaceable>initial-value</replaceable></optional>
;
</literal>
</para>
<para id="monomorphicLet">
If the variable or constant is of a simple type (i.e., not a
<link linkend="parametricClasses">parameterized type</link>), then it is
not necessary to specify the type yourself, the compiler can infer
the correct type automatically.
</para>
</section>
<section id="packageVars"><title>Package variables and constants</title>
<para>
Since Nice uses <link linkend="packages">packages</link> as its largest
conceptual unit, variable and constant declarations may appear
outside class definitions, and are useful in the same way that
static variables in Java are. Package variables are introduced
with <literal>var</literal>, and package constants with
<literal>let</literal>. The type must be specified, since it is
a useful documentation.
</para>
</section>
<section id="forStatements"><title>Extended <literal>for</literal> statement</title>
<para>
Nice supports the traditional <literal>for</literal> loop, with the same
syntax as in Java. In addition, it provides a form that allows iterating
over the items in a sequence like C#'s <literal>foreach</literal>.
Here is the syntax:
</para>
<para>
<literal>for (
<replaceable>item-type</replaceable>
<replaceable>variable-name</replaceable> :
<replaceable>container</replaceable> ) { <replaceable>body</replaceable> }
</literal>
</para>
<para>
Currently, this version of the <literal>for</literal> statement can be
used to iterate over <literal>Collection</literal>s, arrays,
<literal>Range</literal>s,
<literal>String</literal>s, and <literal>StringBuffer</literal>s.
</para>
<para>
<example><title>Extended <literal>for</literal> statement</title>
<programlisting lang="nice">
let String[] strings = ["one", "two", "three"];
for(String s : strings)
{
println(s);
}
</programlisting>
</example>
</para>
<para>
Since Nice also has syntax for generating ranges of numbers,
another convenient way to use the <literal>for</literal> statement
is as follows:
<example><title>Extended <literal>for</literal> with Ranges</title>
<programlisting lang="nice">
//Print numbers from 1 to 10, inclusive
for(int i : 1..10)
{
println(i);
}
</programlisting>
</example>
</para>
</section>
<section id="localMethods"><title>Local methods</title>
<para>
Local methods are similar to regular methods (defined
at the package or class level),
except that they are defined inside another method,
and therefore only usable in that scope.
They can refer to local variables from their context.
Like <link linkend = "anonymousMethods">anonymous methods</link>,
local methods cannot be overridden.
</para>
<example><title>Local method</title>
<programlisting lang="nice">
Window createMyWindow()
{
Window w = new Window();
void addMyButton(String text)
{
w.addButton(new Button(text));
}
addMyButton("One");
addMyButton("Two");
addMyButton("Three");
}</programlisting>
</example>
</section>
</chapter>
<chapter><title>Expressions</title>
<section id="call"><title>Method calls</title>
<para>
A call is usually of the form <literal>f(e1, ..., en)</literal>.
<literal>f</literal> can be a method name, or
more generally any expression which has a method type
(for instance, a local parameter).
<literal>e1, ..., en</literal> is the list of arguments to the
method. Arguments can optionally be
<link linkend="namedParameters">named</link>.
</para>
<para>
In many object-oriented languages, methods are called with the
syntax <literal>e1.f(e2, ..., en)</literal>. This syntax is also
accepted in Nice, and is completely equivalent to the previous one.
In particular, <literal>e.f</literal> can be used to retrieve the value
of the field <literal>f</literal> in the object <literal>e</literal>
<footnote>
<para>
A consequence of these rules is that if the field
<literal>f</literal> contains a method, it must be called with
<literal>(e.f)(e1, ..., en)</literal>.
</para>
</footnote>.
</para>
<para>
It is possible that a name refers to several unrelated methods.
In that case, the types (and if applicable names)
of the arguments are used to try to disambiguate which method
must be called. If only one method is applicable, it is called.
Moreover, if several methods are applicable, but one has a more
restricted domain than all the others, it is chosen
<footnote>
<para>
For instance, suppose two methods
<literal><![CDATA[<T> void foo(Collection<T>)]]></literal> and
<literal><![CDATA[<T> void foo(List<T>)]]></literal> are declared,
and <literal>aList</literal> is an expression of static type
<type>List</type>.
The expression <literal>foo(aList)</literal> will result in
calling the second <literal>foo</literal> method,
because <type>List</type>
is a subclass of <type>Collection</type>.
</para>
</footnote>.
Otherwise, the compiler reports an ambiguity error.
</para>
<section id="blockCall"><title>Block Syntax for Method Calls</title>
<para>
Nice supports an alternative syntax for method calls when one
of the arguments is a method of type <literal><type>void->
<replaceable>T</replaceable></type></literal>:
</para>
<programlisting lang="nice">
<replaceable>method-name</replaceable>(<replaceable>argument</replaceable>, ...)
{
<replaceable>argument-body</replaceable>
}
</programlisting>
<para>
If an <link linkend = "anonymousMethods">
anonymous method</link> would normally be used, it is permissible
to omit the arguments and <literal>=></literal> and instead write
the code for the anonymous method in a block following the call.
An example will be helpful:
</para>
<example id="blockSyntaxEx">
<title>Block syntax for method calls</title>
<programlisting lang="nice"><![CDATA[
//First define the method we're going to call:
//Like an 'if' statement
void when(boolean condition, void->void action)
{
if (condition)
action();
}
//Now exercise our method with block syntax:
void main(String[] args)
{
when(1 > 0)
{
println("Math is working correctly!");
}
}
]]></programlisting>
</example>
<para>
Note that we could just as easily have written:
<programlisting>
when(1 > 0, () => {
println("Math is working correctly!");
});
</programlisting>
but with the alternative block call syntax, the code becomes
less cluttered, and easier to read. It also helps to eliminate
the distinctions between built-in statements and user-defined
methods. For instance, the standard <literal>using</literal>
statement is actually just a method defined in the standard
library.
</para>
</section>
</section>
<section><title>Tuples</title>
<para>
A tuple is a grouping of several values in a single expression.
For instance, <literal>("Hello", 2*3, x.toString())</literal>
is a tuple whose elements are the string <literal>"Hello"</literal>,
the number <literal>6</literal> and the string representation of
<literal>x</literal>.
The type of a tuple is a <emphasis>tuple type</emphasis>,
whose elements are the types of the corresponding values.
The type of our example tuple is
<literal>(String, int, String)</literal>.
</para>
<para>
A tuple can be of any length. In english, a tuple of two elements
is called a couple. For an arbitrary number n, a tuple of n
elements is called a n-tuple.
</para>
<para>
Tuple types are covariant, so a couple of <type>int</type>s
can be used where a couple of <type>long</type>s is expected.
</para>
<para>
A funny feature is that swapping two variables can be done without a
temporary variable, using tuples: <literal>(x, y) = (y, x)</literal>.
An important use of tuples is to allow a method
to return several values. <xref linkend="tupleEx" /> defines
and uses the method <literal>minMax</literal>, which takes
two integers, and returns the smallest first, the biggest second.
</para>
<example id="tupleEx">
<title>Method returning several values using a tuple</title>
<programlisting lang="nice"><![CDATA[
(int, int) minMax(int x, int y) = x < y ? (x, y) : (y, x);
void printTuple((int x, int y))
{
println("(" + x + ", " + y + ")");
}
void main(String[] args)
{
printTuple(minMax(14, 17));
printTuple(minMax(42, 41));
}
]]></programlisting>
<para>
Note that <literal>printTuple</literal> has only one argument,
which is a tuple. We give the names <literal>x</literal> and
<literal>y</literal> to the two components of this tuple, so that
we can use them directly in the implementation of the method.
</para>
</example>
</section>
<section><title>Arrays</title>
<para>
An array can be created by simply enclosing the elements of the
new array in brackets.
</para>
<para>
<literal><replaceable>class-name</replaceable>[]
<replaceable>variable-name</replaceable> = [
<replaceable>element1</replaceable>,
<replaceable>element2</replaceable>, ...]</literal>
</para>
<para>
It is also possible to create an array
which is filled with nulls, or some single value, or a value
which is calculated on a cell-by-cell basis, by using the
<literal>fill</literal> method in the standard library.
<example>
<title>Initializing an array with a single value</title>
<programlisting lang="nice"><![CDATA[
//Fill every cell with the value 5000.
int[] points = new int[10];
fill(points, 5000);
]]></programlisting>
</example>
<example>
<title>Initializing an array with a calculated value</title>
<programlisting lang="nice"><![CDATA[
//build a little table of squares
int[] squares = fill(new int[10], int i => i * i);
]]></programlisting>
</example>
</para>
</section>
<section><title>String Literals</title>
<para>
Literal strings are surrounded with double quotes, for instance:
</para>
<para>
<literal>
String s = "Hello";
</literal>
</para>
<para>
The backslash character <literal>\</literal> is used for escaping,
as in Java.
</para>
<section id="multiLine"><title>Multi-line Strings</title>
<para>
Nice also allows multi-line string literals, using syntax borrowed
from the Python language. Multi-line strings begin and end with
three double quotes. Within multi-line strings, double quotes do
not need to be escaped, unless there are three in a row.
</para>
<example>
<title>Multi-line strings</title>
<programlisting lang="nice"><![CDATA[
let greeting = """
Hello, world.
You may be thinking, "Why was I called here today?"
Well, there was a good reason. Honest.
""";
]]></programlisting>
</example>
</section>
<section id="stringConcat"><title>String concatenation</title>
<para>
Just as in many other languages, strings can be concatenated
using the plus (<literal>+</literal>) operator.
</para>
<para>
Strings can also be combined by simple juxtaposition - that is, by
placing them side by side with some other expression. For
example:
</para>
<example>
<title>String concatenation</title>
<programlisting lang="nice"><![CDATA[
String name = "Nice";
int factor = 10;
println("My favorite language is " name ", which is " factor
" times better than what they make me use at work.");
]]>
</programlisting>
</example>
</section>
</section>
<section id="anonymousMethods"><title>Anonymous methods</title>
<para>
Since Nice allows methods to be passed as arguments, and
returned as results, it is convenient to allow small anonymous methods
to be defined at the same point in the program in which they are used,
similar to the use of anonymous classes in Java. Anonymous methods
cannot be overridden, and have exactly one implementation.
</para>
<para>
The syntax of anonymous methods is:
</para>
<para>
<literal>
(<optional><replaceable>parameters</replaceable></optional>)
=> &LBRACE; body &RBRACE;
</literal>
</para>
<para>
As with named methods, there is also a single-expression format:
</para>
<para>
<literal>
(<optional><replaceable>parameters</replaceable></optional>)
=> <replaceable>expression</replaceable>
</literal>
</para>
<para>
The parentheses around the parameters are optional if there is only one
parameter.
</para>
<para>
The return type of an anonymous method is automatically determined by
the compiler using a process called
<firstterm>type inference</firstterm>, so it is not necessary or possible
to specify it.
</para>
<example>
<title>Using Anonymous Methods</title>
<programlisting lang="nice"><![CDATA[
String concat(Collection<String> strings)
{
StringBuffer buff = new StringBuffer();
strings.foreach(String s => {
buff.append(s);
});
return buff.toString()
}
var String[] numberStrings = [1,2,3,4,5].map(int num => String.valueOf(num));
//Another way of defining "concat"
String concat2(Collection<String> strings)
{
return strings.foldLeft((String accum, String s) => accum + s, "");
}
]]></programlisting>
</example>
</section>
<section id="operators"><title>Operators</title>
<para>
Nice supports a wide range of operators which will be familiar to
most programmers. The table below lists the operators, ordered from
highest precedence to lowest precedence.
</para>
<table><title>Operators</title>
<tgroup cols='3'>
<thead>
<row>
<entry>Operator</entry>
<entry>Kind</entry>
<entry>Associativity</entry>
</row>
</thead>
<tbody>
<!-- Lifted from http://nice.sourceforge.net/cgi-bin/twiki/view/Doc/NiceExpressions -->
<row><entry> <literal> () </literal> </entry><entry> grouping </entry><entry> none </entry></row>
<row><entry> <literal> [], . </literal> </entry><entry> postfix </entry><entry> left </entry></row>
<row><entry> <literal> new </literal> </entry><entry> prefix </entry><entry> right </entry></row>
<row><entry> <literal> ++, -- </literal> </entry><entry> postfix </entry><entry> left </entry></row>
<row><entry> <literal> +, -, ++, --, ~, ! </literal> </entry><entry> prefix </entry><entry> right </entry></row>
<row><entry> <literal> ** </literal> </entry><entry> binary </entry><entry> right </entry></row>
<row><entry> <literal> *, /, % </literal> </entry><entry> binary </entry><entry> left </entry></row>
<row><entry> <literal> +, - </literal> </entry><entry> binary </entry><entry> left </entry></row>
<row><entry> <literal> <<, >>, >>> </literal> </entry><entry> binary </entry><entry> left </entry></row>
<row><entry> <literal> .. </literal> </entry><entry> binary </entry><entry> left </entry></row>
<row><entry> <literal> <, <=, >, >= </literal> </entry><entry> binary </entry><entry> both </entry></row>
<row><entry> <literal> instanceof </literal> </entry><entry> binary </entry><entry> left </entry></row>
<row><entry> <literal> =, ! </literal> </entry><entry> binary </entry><entry> left </entry></row>
<row><entry> <literal> & </literal> </entry><entry> binary </entry><entry> left </entry></row>
<row><entry> <literal> ^ </literal> </entry><entry> binary </entry><entry> left </entry></row>
<row><entry> <literal> | </literal> </entry><entry> binary </entry><entry> left </entry></row>
<row><entry> <literal> && </literal> </entry><entry> binary </entry><entry> left </entry></row>
<row><entry> <literal> || </literal> </entry><entry> binary </entry><entry> left </entry></row>
<row><entry> <literal> ?: </literal> </entry><entry> ternary </entry><entry> right </entry></row>
<row><entry> <literal> => </literal> </entry><entry> binary </entry><entry> right </entry></row>
<row><entry> <literal> *=, /=, %=, +=, -=, &=, ^=, _=, <<=, >>=, >>>=, = </literal> </entry><entry> binary </entry><entry> right </entry></row>
</tbody>
</tgroup>
</table>
</section>
<section id="conversion"><title>Conversion between primitive types</title>
<para>
The numeric primitive types are, from the largest to the smallest:
<type>double, float, long, int, short, byte</type>.
Conversion from a smaller to a larger type is automatic.
Conversion from a larger to a smaller type must be done explicitly,
since they can lose information about the magnitude of the value.
</para>
<para>
The explicit conversion is done by calling a special method,
whose name is the target type.
If <replaceable>e</replaceable> is a numeric expression,
and <replaceable>type</replaceable> one of the numeric types, then
<literal><replaceable>type</replaceable>(<replaceable>e</replaceable>)</literal>
will convert the value of the expression, so that it is
represented as a value in <replaceable>type</replaceable>.
This is equivalent to the
<literal>(<replaceable>type</replaceable>) e</literal>
syntax in &java;.
</para>
<para>
In most cases, characters should be treated as abstract entities
and not as the numbers that happen to encode them. Therefore,
the <literal>char</literal> type is not a numeric type in Nice.
Operations on characters can be performed using the methods of class
<literal>java.lang.Character</literal>.
Additionally, it is possible to convert a character
<literal>c</literal> to its integer value with
<literal>int(c)</literal>,
and to convert an integer to the character it encodes with
<literal>char(i)</literal>.
</para>
<para>
For instance, here is code to read
characters from a <type>Reader</type>, whose
<literal>read</literal> method returns an <type>int</type>
(<literal>-1</literal> meaning that the end of stream has been
reached):
<example><title>Converting a value of a primitive type</title>
<programlisting lang="nice">
let reader = new BufferedReader(new InputStreamReader(System.in));
int v;
while ((v = reader.read()) != -1) {
char c = char(v);
... // Do something with the character.
}</programlisting>
</example>
</para>
</section>
</chapter>
<chapter id="interfacingWithJava"><title>Interfacing with Java</title>
<section><title>Using Java from Nice</title>
<para>
The Java libraries are automatically imported as necessary.
Therefore it is straightforward to use existing Java code
in Nice programs.
In particular, it is possible to call Java methods, to
instantiate Java classes, to create a Nice subclass of a Java
class, overriding methods from the parent, ...
</para>
<para>
This section lists advanced features related to the use of Java code
in Nice.
</para>
<section id="subclassJavaInNice"><title>Subclassing a Java class</title>
<para>
A Nice class can extend a Java class, simply by naming it in
its <literal>extends</literal> clause. Similarly, it can
implement Java interfaces.
</para>
<para>
When instantiating a Nice class with a Java parent, the
<link linkend="constructor">automatic constructor</link>
comes in several versions, one for each constructor of the
parent class. The call must then provide the values for one
of the constructors of the parent, followed by the named
values for the fields defined in the Nice class.
</para>
</section>
<section id="importJava"><title>Importing packages</title>
<para>
When Java classes of some package are used frequently,
it is possible to make the package part of their name implicit.
For instance, after a declaration
<literal>import java.io.*;</literal> it is possible
to refer to class <type>java.io.File</type>
with the short name <type>File</type>. It is not possible to
import only a single name, such as
<literal>import java.io.File;</literal>, you must import the whole
package.
</para>
<para>
Classes defined in the current package always have priority
over imported packages. If a short name is used that refers
to two classes from imported packages, the compiler
will report an ambiguity, and the fully qualified name must be used.
</para>
</section>
<section id="optionTypesJava"><title>Option types</title>
<para>
Nice's advanced type system makes the distinction between normal
(e.g. <type>String</type>) and option
(e.g. <type>?String</type>) types, which allows to
prevent <literal>NullPointerExceptions</literal>
(see <link linkend="optionTypes">option types</link>).
This poses a problem when using
existing Java libraries. If my Nice program calls a Java method
that returns a <type>String</type> (the Java type),
does it mean <type>String</type> or
<type>?String</type> in Nice?
Since Java allows the value to be &NULL;,
the Nice compiler
currently supposes it's <type>?String</type> (it can only be
sure about primitive types like <type>int</type>).
</para>
<programlisting lang="java">
// Java code
public class MyJavaClass {
public String getName() {
return "foo";
}
} </programlisting>
<para>
In Nice, if <literal>myJavaClass</literal> is a variable of type
<type>MyJavaClass</type>, then
<literal>myJavaClass.getName()</literal> has type
<type>?String</type>.
</para>
<para>
If the Java code might indeed return &NULL;,
or you are not sure, this is all good. To use the value you will
have to test it against &NULL;. However there are
many cases where you know the value cannot be
&NULL;, for instance if this fact is specified in
the Javadoc comment of the method. In that cases there are currently
two possibilities. The first is to use the
<link linkend="notNull"><literal>notNull</literal>
method</link>.
So in our example <literal>notNull(myJavaClass.getName())</literal>
has type <type>String</type>. This solution is simple, but can
be annoying if you call the same method many times, or because it
makes your code less readable.
</para>
<para>
The second solution is to once and for all tell the compiler the
precise type of the method (this is also useful for methods with
parametric types):
</para>
<programlisting lang="nice">
String getName(MyJavaClass) = native String MyJavaClass.getName();</programlisting>
<para>
The Nice part (on the left of the <literal>=</literal> character)
is the header of a method definition. Note that return type is
<type>String</type> (without the optional type marker
<literal>?</literal>). On the other hand, the right part says that
the method is already defined in class
<type>MyJavaClass</type>, with name <literal>getName</literal>,
the one that takes no argument and returns a
<type>String</type>. With this declaration,
<literal>myJavaClass.getName()</literal> has type
<type>String</type>.
</para>
</section>
</section>
<section><title>Using Nice from Java</title>
<para>
It is possible to use libraries developed in Nice in a
Java program.
Before anything, make sure that the classes generated by nicec
can be found on your classpath when you compile the Java program
with javac.
</para>
<section id="compilationMethods"><title>Calling a method</title>
<para>
For <link linkend="method">methods</link> declared inside a
class, and for those declared at the package level and whose
first argument is a Nice class, you can simply use them as
usual in Java.
</para>
<para>
This is not possible for methods declared at the package
level and whose first argument is a Java class, a possibly
null type or a primitive type.
You can call a such a method <literal>m</literal>
declared in a nice package <literal>pkg</literal>
by naming it <literal>pkg.dispatch.m</literal> in the Java program.
It does not matter in what package(s) <literal>m</literal>
is implemented:
<literal>pkg</literal> must simply be the package where the method
was declared.
</para>
</section>
<section id="constructorFromJava"><title>Calling a constructor</title>
<para>
To instantiate in Java a class defined in Nice, do as usual:
call its constructor, using the <literal>new</literal> keyword.
Nice classes have one <link linkend="constructor">automatically
generated constructor</link>,
with one parameter for each field of the class,
including those inherited from Nice super-classes.
Additionally, if some fields have default values, then a
second constructor is generated. It only has parameters for
the fields without a default value, and assigns to the other
fields their default value.
</para>
</section>
<section><title>Complete example</title>
<para>
<example><title>Using Nice from Java</title>
<para>
Let's see an example that illustrates all these features.
Suppose your Nice library looks like this:
<programlisting lang="nice">
package my.nice.pkg;
class Person
{
String name;
// A method:
String display() = "Person: " + name;
}
class Worker extends Person
{
int salary;
display() = "Worker: " + name + " salary: " + salary;
boolean isRich() = salary > 500;
}
</programlisting>
Then your Java program can create new persons and workers:
<programlisting lang="java">
package main.java.pkg;
import my.nice.pkg.*;
public class Main
{
public static void main(String[] args)
{
Person p = new Person("John");
Worker w = new Worker("Julia", 1000);
System.out.println(p.display());
System.out.println(w.display());
if (w.isRich())
System.out.println("A well paid worker!");
}
}
</programlisting>
</para>
</example>
</para>
</section>
<section><title>Optional parameters</title>
<para>
Nice allows method and parameters to be
<link linkend="optionalParameters">optional</link>.
Since this feature is not available in Java, you have to
provide the value of all parameters, regardless of their
optionality.
The same applies for class fields with initializers:
they are ignored in the Java program, and must be given a value
in the call to the constructor.
</para>
</section>
<section><title>Other aspects</title>
<para>
Fields of Nice classes are accessed normally from Java programs.
It is possible to declare a Java subclass of a Nice class.
The constructor will need to call the
<link linkend="constructorFromJava">parent constructor</link>.
It is not fully possible to override a Nice multi-method in a Java
program. However, provided that the method is compiled as an
instance method, as specified <link
linkend="compilationMethods">above</link>, you can override
that method as usual for Java. That is, only the first
(implicit) argument can be used to perform the override.
</para>
</section>
</section>
</chapter>
<chapter><title>Types</title>
<section id="optionTypes"><title>Option types</title>
<para>
Nice (unlike Java) makes a distinction between a type that may be &NULL;,
and one that may not be. So, if you want to allow &NULL;
<classname>String</classname>s, you write <classname>?String</classname>
for the type. If &NULL;s should not be allowed, you just write
<classname>String</classname>. It is not possible to pass a
<classname>?String</classname> where a <classname>String</classname> is
expected, unless the compiler can prove it's not &NULL;. The easiest way
to prove that the variable is not &NULL; is to use an
<literal>if</literal> statement:
</para>
<example>
<title>Using option types</title>
<programlisting lang="nice">
void foo(String arg) {...}
void bar(?String arg) {
if (arg != null) {
//Here Nice knows arg is not null, so it can
// be passed to a method which takes a String.
foo(arg);
}
foo(arg); //Here arg may or may not be null,
//so Nice gives a compilation error.
}
</programlisting>
</example>
<para>
Therefore, you never have to check that all your arguments
aren't &NULL; again, unless you actually want to allow &NULL;s.
</para>
<para>
It's important to remember that nullness inference doesn't
work on fields of objects, only on local variables. There's
a good reason for this: the value of an instance variable may
have changed (updated by another thread, perhaps) between
the time the value was checked for nullness and the time it
is actually used. To avoid this problem, simply take a local
reference to the field first:
</para>
<example>
<title>Nullness inference with fields</title>
<programlisting lang="nice">
class Person
{
?String name
}
//Takes a String, not a ?String
void printName(String name)
{
println(name);
}
void main(String[] args)
{
Person p = loadPersonFromFile(args[0]);
let name = p.name;
if (name == null)
throw new Exception("Unknown person!");
else
//safe to call printName, we know name is a String.
printName(name);
}
</programlisting>
</example>
<para id="notNull">
Sometimes, you know that a value cannot be &NULL;,
although it has an option type.
You can then use the <literal>notNull</literal> method to
assert this fact.
If an expression <replaceable>e</replaceable> has type
<type>?<replaceable>type</replaceable></type>, then
<literal>notNull(<replaceable>e</replaceable>)</literal>
has type <type>!<replaceable>type</replaceable></type>.
Note that if <replaceable>type</replaceable> is not a type
variable, <type>!<replaceable>type</replaceable></type>
is the same as <type><replaceable>type</replaceable></type>.
</para>
<para>
The <literal>notNull</literal> method uses
<link linkend="contracts"><literal>assert</literal></link>
to check that the argument is not &NULL;.
This means that the check will only happen at runtime
if <link linkend="enablingAssertions">assertion checks are
enabled</link>.
Otherwise, execution will continue, but the JVM will probably
fail soon afterwards with a <literal>NullPointerException</literal>
if the value is &NULL;, and it is used as
if it was not &NULL;.
</para>
<para>
There are (rare) situations where it is necessary to allow a
&NULL; where one shouldn't normally go, for
instance if you need to declare a variable before entering a
loop, but don't have a value to initialize it with.
You should first try to think about an alternative way of
writing the code so that this is not needed. However, if there
is none, a solution is to use <literal>cast(null)</literal>.
This expression will be accepted in any context.
It is then your responsibility to make sure that this value is
not used.
</para>
<para>
Note that <literal>notNull</literal> and <literal>cast(null)</literal>
have completely different uses. <literal>notNull</literal> is
used to tell the compiler that you know a certain value is not
&NULL;, although the type system does not guarantee it.
On the other hand, <literal>cast(null)</literal>
is used to provide a non-null value which is never going to be
used. You could not use <literal>notNull(null)</literal> for
that purpose, because this would fail at runtime if assertion
checks are enabled.
</para>
<para>
Additional information is available on
<ulink url="http://nice.sourceforge.net/cgi-bin/twiki/view/Doc/OptionTypes">
the Wiki page about option types</ulink>.
</para>
<para>
There is related type, which is prefixed with an exclamation point
(<literal>!</literal>). This is used to specify a non-&NULL; type
when it is not known if the original type allowed &NULL; or not. This
is only needed for type parameters; for all other types,
<type>!<replaceable>type</replaceable></type> is
equivalent to <type><replaceable>type</replaceable></type>.
</para>
<para>
For instance, in the following method:
</para>
<para>
<literal><![CDATA[<T> T myMethod(Collection<T>);]]></literal>
</para>
<para>
the type parameter <type>T</type> can be
instantiated at <emphasis>any</emphasis> type, including option types
like <type>?String</type>. If it is necessary to exclude option types
from the domain of <type>T</type>, the type can be specified this way:
</para>
<para>
<literal><![CDATA[<!T> !T myMethod(Collection<!T>);]]></literal>
</para>
</section>
<section id="classCasting"><title>Class Casting</title>
<para>
Class casting is not used in Nice. Similar to <link
linkend="optionTypes">Option types</link> and nullness, if the compiler
can prove that the type of an object is compatible with the target
context, it will allow that object to be used. This can be done using
the <literal>instanceof</literal> operator and an <literal>if</literal>
statement:
</para>
<example>
<title>Proving the type of an object</title>
<programlisting lang="nice">
void foo(FileOutputStream arg) {...}
void bar(OutputStream arg) {
if (arg instanceof FileOutputStream) {
//Here Nice knows arg is a FileOutputStream, so it can
// be passed to a method which takes a FileOutputStream.
foo(arg);
}
foo(arg); //Here arg may or may not be a FileOutputStream,
//so Nice gives a compilation error.
}
</programlisting>
</example>
<para>
As with <link linkend="optionTypes">Option types</link>, type inference
doesn't work on fields of objects or on method calls, only on local
variables. There's a good reason for this: the value of an instance
variable may have changed (updated by another thread, perhaps) between
the time the value was checked for its type and the time it is actually
used. Similarly, method calls can return objects of different sub-types
every time they are called. To avoid this problem, simply assign the
value to a local variable first.
</para>
</section>
<section id = "typeParameters"><title>Type Parameters</title>
<para>
Classes and methods can be parameterized with type
variables in Nice as is demonstrated in each of their respective
chapters. In addition to the ability to introduce type variables,
Nice provides the ability to constrain those types in certain ways.
<link linkend="optionTypes">Option types</link> are one such constraint.
</para>
<para>
Simple type parameters of the form
</para>
<para>
<type><<replaceable>type-variable</replaceable></type>
<optional><type>, <replaceable>type-variable</replaceable> ...</type>
</optional><type>></type>
</para>
<para>
are commonly encountered in Nice, but are a simplified form of a more
general syntax. <type><T></type> is actually shorthand for
<type><Any T></type>, which says that <type>T</type> may be any
type at all. It is possible to constrain <type>T</type> so that it
must be a subtype of some other type. This example shows that
<literal>filter</literal> may be implemented for any type
<type>T</type>, but <type>C</type> must be a subclass of Collection.
</para>
<para>
<literal>
<![CDATA[<Collection C, T> C<T> filter(C<T>, T->boolean);]]>
</literal>
</para>
<para>
It's also possible to enforce some relation among the type parameters,
such that one must be a subtype of the other, as in this example from
the standard library, which can be read as "Any T and U, so long as U
is a subtype of T".
</para>
<para>
<literal>
<![CDATA[<T, U | U <: T> U[] fill(T[] array, int->U value)]]>
</literal>
</para>
<para>
Note the notation <literal><T | T <: SomeType ></literal> means the
same thing as <literal><SomeType T></literal>.
</para>
<para>
There is also a notation for the same class as the declaring class
of a method: <type>alike</type>.
For instance, the following class <type>Foo</type> declares
a method <literal>copy</literal>, such that
<literal>x.copy()</literal>
has the same type as <literal>x</literal>, <literal>x</literal>
being of any subclass of <type>Foo</type>.
</para>
<para>
<example id="ex:copy"><title>A copy method with an exact type</title>
<programlisting lang="nice">
class Foo
{
String value;
alike copy();
}
copy(#Foo f) = new Foo(value: f.value);
class Bar extends Foo
{
int id;
}
copy(#Bar b) = new Bar(value: b.value, id: generateNewId());
</programlisting>
</example>
</para>
<para>
Note that <link linkend="exactMatching">exact matching</link>
is required to implement the
<literal>copy</literal> method.
</para>
</section>
<section id = "abstractInterfaces">
<title>Abstract Interfaces</title>
<para>
Nice offers a powerful tool known as the <firstterm>abstract interface</firstterm>.
Abstract interfaces are similar in some respects to regular
Java- or Nice-style interfaces in that they define a set of methods that
a type must implement to be considered a member of the interface.
</para>
<para>
Two things make an abstract interface different from a regular interface.
First, a class can be made to implement an abstract interface <emphasis>after</emphasis>
it's been defined, and even the source code is unnecessary. You can make
the basic <literal>String</literal> class implement your new
abstract interface, if you like.
Second, an abstract interface is not actually a type, it's an annotation
which can be applied to types. This means that when you declare an abstract
interface, you're not creating a new type, you're saying "types which implement
this abstract interface will all have these methods", but those types are
not related in any other way. So it is not possible to make a <literal>
List<MyAbstractInterface></literal>, or to use an abstract interface
as a type declaration like <literal>var MyAbstractInterface absInter = ...
</literal>.
</para>
<para>
So what is an abstract interface <emphasis>for</emphasis>? Abstract interfaces
can appear in type parameters, so one can write methods for them:
</para>
<para>
<literal><MyAbstractInterface T> void doSomething(T thing);</literal>
</para>
<para>
and then apply these methods to any object whose class implements <literal>
MyAbstractInterface</literal>. It's especially useful for situations where
one wants to use a method on a group of unrelated types, as in the example
below. We have a <literal>log()</literal> method which is parameterized
for any class which implements the abstract interface <literal>LogEntry</literal>,
and we make a number of classes implement
<literal>LogEntry</literal>, so they can be passed to our log method.
</para>
<para>
<example id="ex:abstractInterface"><title>Abstract Interfaces</title>
<programlisting lang="nice"><![CDATA[
//Abstract interface for things which can be logged.
abstract interface LogEntry
{
String toLogString();
int severity();
}
//Some constants for severity levels
let int DEBUG = 1;
let int INFO = 2;
let int ERROR = 3;
<LogEntry E> void log(E entry, int severity = -1)
{
if (severity < 0)
severity = entry.severity();
someLogWriter.println(timeStamp() + " " + severity + " " + entry.toLogString());
}
//Make strings pass straight through as DEBUG info.
class java.lang.String implements LogEntry;
toLogString(String s) = s;
severity(String s) = DEBUG;
//Make throwables print a stack trace, plus a message
class nice.lang.Throwable implements LogEntry;
toLogString(Throwable t)
{
let writer = new StringWriter();
let printWriter = new PrintWriter(writer);
printWriter.println("ERROR: " + t.getClass().getName() + ": " + t.getMessage());
t.printStackTrace(printWriter);
printWriter.close();
return writer.toString();
}
severity(Throwable t) = ERROR;
//We like to log requests, too
class javax.servlet.http.HttpServletRequest implements LogEntry;
toLogString(HttpServletRequest r) = "Request from: " + r.getRemoteHost();
severity(HttpServletRequest r) = INFO;
]]>
</programlisting>
</example>
</para>
<para>
There are some interesting things to notice about this code. First,
we only had to write <literal>log()</literal> once, and we left it
up to the LogEntry to do the formatting. This could be done with a
regular interface as well, except that we also made String and
Throwable implement our abstract interface, which we couldn't have
done with a regular interface. So now we can write code like
</para>
<para>
<programlisting lang="nice">
log(request);
log("Beginning processing");
try
{
1/0;
}
catch (Exception e)
{
log(e);
}
</programlisting>
</para>
<para>
and our abstract interface implementations will take care of making
sure that we get the right formatting and severity levels. The most
interesting thing about this code is that if we write <literal>log(5)
</literal> then the compiler will catch the error, because <literal>
byte</literal> doesn't implement <literal>LogEntry</literal>. If
we had defined <literal>log</literal> with the signature <literal>
<E> void log(E entry, int severity = -1)</literal>, we could
have achieved all the same effects, but we would have lost the
type safety abstract interfaces gave us above - because
<literal><E></literal> means <emphasis>any</emphasis>
type is allowed, so we would have had to define some defaults:
</para>
<para>
<programlisting lang="nice">
toLogString(e)
{
throw new Exception("No toLogString method defined!");
}
severity(e)
{
throw new Exception("No severity method defined!");
}
</programlisting>
</para>
<para>
Then we'd be no better off than in a dynamically typed language -
we wouldn't find out that we'd tried to log an integer until we got an
exception at runtime. With abstract interfaces, we were able to
tell the compiler <emphasis>exactly</emphasis> which classes
should be allowed as arguments to <literal>log</literal>, and so
our program is safer as a result.
</para>
<para>
Daniel Bonniot, Nice's creator, invented abstract interfaces. You
can read more about them in the
<ulink url = "http://nice.sourceforge.net/research.html">Academic
Research</ulink> section of the Nice website.
</para>
</section>
</chapter>
</book>
<!--
Local Variables:
sgml-validate-command: "xmllint -noout -valid"
End:
-->
|