File: math.5c

package info (click to toggle)
nickle 2.107
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 3,756 kB
  • sloc: ansic: 27,954; yacc: 1,874; lex: 954; sh: 204; makefile: 13; lisp: 1
file content (1161 lines) | stat: -rw-r--r-- 25,716 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
extend namespace Math {
    public real pi = imprecise
    (3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679,
    256);

    public real π = pi;

    protected real e = imprecise
    (2.7182818284590452353602874713526624977572470936999595749669676277240766303535475945713821785251664274,
     256);

    public real sqrt (real v)
	/*
	 * Returns square root of v to the same precision as 'v'.
	 * If v is precise and has a precise square root, returns that.
	 */
    {
	if (v < 0)
	    raise invalid_argument ("sqrt of negative number", 0, v);
	real real_sqrt(real v)
	{
	    real	err;
	    real	prev, cur;

	    v = imprecise (v);
	    int prec = precision(v);
	    int iprec = prec + 5 * bit_width(prec) + 10;
	    real vi = imprecise(v, iprec);
	    /* Initial estimate is 1/2 ** log2(v)/2 */
	    cur = imprecise(0.5 * (2**(exponent(v) ⫽ 2)), iprec);
	    int iter = iprec + 100;
	    do {
		/*
		 * Newton's method iteration
		 *
		 * f(y)  = y² - x
		 * f'(y) = 2y
		 *
		 * y'    = y - f(y)/f'(y)
		 *       = y - (y² - x) / 2y
		 *       = y - y/2 + x/2y
		 *       = y/2 + x/2y
		 */
		prev = cur;
		cur = prev/2 + vi/(2*prev);
		/* bail if we take too long */
		if (--iter <= 0)
		    break;
	    } while (imprecise(cur, prec+2) != imprecise(prev, prec+2));
	    return abs(imprecise(cur, prec));
	}

	if (v == 0)
		return 0;

	if (is_rational (v))
	{
	    int	num, den;
	    real	num_s, den_s;

	    num = numerator (v);
	    den = denominator (v);
	    num_s = real_sqrt (imprecise (num, bit_width(num) + 128));
	    den_s = real_sqrt (imprecise (den, bit_width(den) + 128));
	    num = floor (num_s + 0.5);
	    den = floor (den_s + 0.5);
	    if (num * num == numerator (v) && den * den == denominator (v))
		return num/den;
	}
	return real_sqrt (v);
    }

    public real cbrt (real v)
	/*
	 * Returns cube root of v to the same precision as 'v'.
	 * If v is precise and has a precise cube root, returns that.
	 */
    {
	real real_cbrt(real v)
	{
	    real	prev, cur;

	    int s = sign (v);
	    v = imprecise (abs (v));
	    int prec = precision (v);
	    /*
	     * Estimate about log2(prec) iterations, add 5 bits
	     * of precision for each one (for the 5 operations)
	     */
	    int iprec = prec + 5 * bit_width(prec) + 10;
	    v = imprecise (v, iprec);
	    /* Initial estimate is 3/4 ** log2(v)/3 */
	    cur = imprecise (0.75 * 2**(exponent(v) ⫽ 3), iprec);
	    int iter = iprec + 100;
	    do {
		prev = cur;
		/*
		 * Newton's method iteration
		 *
		 * f(y)  = y³ - x
		 * f'(y) = 3y²
		 *
		 * y'    = y - f(y)/f'(y)
		 *       = y - (y³ - x) / 3y²
		 *       = y - y/3 + x/3y²
		 *       = 2y/3 + x/3y²
		 */
		cur = 0.{6} * prev + 0.{3} * v / (prev*prev);
		/* bail if we take too long */
		if (--iter <= 0)
		    break;
	    } while (imprecise(cur, prec+2) != imprecise(prev, prec+2));
	    return s * imprecise (abs (cur), prec);
	}

        if (v == 0)
	    return 0;

	if (is_rational (v))
	{
	    int	num, den;
	    real	num_s, den_s;

	    num = numerator (v);
	    den = denominator (v);
	    num_s = real_cbrt (imprecise (num, bit_width(num) + 128));
	    den_s = real_cbrt (imprecise (den, bit_width(den) + 128));
	    num = floor (num_s + 0.5);
	    den = floor (den_s + 0.5);
	    if (num ** 3 == numerator (v) && den ** 3 == denominator (v))
		return num/den;
	}
	return real_cbrt (v);
    }

    /*
     * Fast integer logarithm via binary search from below (no division).
     * Returns floor(log(n)/log(base)) with no rounding error
     */
    public int ilog(int base, int n)
	/*
	 * Fast integer logarithm via binary search from below (no division).
	 * Returns floor(log(n)/log(base)) with no rounding error
	 */
    {
	if (base <= 1)
	    raise invalid_argument("ilog of bad base", 0, base);
	if (n <= 0)
	    raise invalid_argument("ilog of bad value", 1, n);
	int below = 0;
	int above = 1;
	int k = base;
	while (k <= n) {
	    k *= k;
	    below = above;
	    above *= 2;
	}
	while (true) {
	    int q = base ** below;
	    k = base;
	    int nbelow = 0;
	    int nabove = 1;
	    while (q * k <= n) {
		k *= k;
		nbelow = nabove;
		nabove *= 2;
	    }
	    if (nbelow == 0)
		break;
	    below += nbelow;
	}
	return below;
    }

    real calculate_e (int prec)
    /*
     * Calculate e recursively
     */
    {
	typedef struct {
	    int	p;
	    int	q;
	} split_t;

	split_t make_split(int p, int q) = (split_t) { .p = p, .q = q };

	/* Compute e-1 recursively */

	split_t binary_splitting_e(int n0, int n1)
	{
	    if (n1 - n0 == 1)
		return make_split(1, n1);

	    int nmid = (n0 + n1) >> 1;

	    split_t r0 = binary_splitting_e(n0, nmid);

	    split_t r1 = binary_splitting_e(nmid, n1);

	    return make_split(r0.p * r1.q + r1.p, r0.q * r1.q);
	}

	int log_factorial = 0;
	int log_max = prec;
	int series_size = 1;

	while (log_factorial < log_max) {
	    log_factorial += ilog(2, series_size);
	    series_size++;
	}

	split_t pq = binary_splitting_e(0, series_size);

	return imprecise(1 + pq.p / pq.q, prec);
    }

    public real e_value (int prec)
	/*
	 * return e at least as precise as 'prec'
	 */
    {
	static real local_e = e;

	if (precision (local_e) < prec)
	    local_e = calculate_e (prec);
	return imprecise(local_e, prec);
    }

    public real exp (real v)
	/*
	 * Return e ** v;
	 */
    {
	if (v < 0)
	    return 1/exp(-v);
	if (v == 0)
	    return 1;
	v = imprecise (v);

	/*
	 * Emperically determined scale factor.  This
	 * reduces the computation to working on values
	 * near zero so that the power series converges
	 * rapidly.  Increasing this further makes the
	 * power series converge more rapidly, but
	 * makes the expansion step more expensive.
	 */
	int prec = precision (v);
	int expo = exponent (v);
	int scale;
	if (prec > 50)
	    scale = 27;
	else
	    scale = 12;
	if (expo + scale < 0)
	    scale = -expo;
	expo += scale;
	int div = (1 << scale);

	int iter = prec + 1;
	int iprec = prec + iter;

	real mant = imprecise (mantissa(v), iprec) / div;

	real e = imprecise (0, iprec);
	real num = imprecise (1, iprec);
	real den = imprecise (1, iprec);
	real loop = imprecise (0, iprec);

	/*
	 * Traditional power series
	 *
	 *  exp(n) = 1 + n/1 + n**2/2! + n**3/3!
	 */
	while (iter-- > 0)
	{
	    real term = num/den;
	    e = e + term;
    	    if (exponent (e) > exponent(term) + iprec)
		break;
	    num *= mant;
	    loop++;
	    den *= loop;
	}

	e = e ** (1 << expo);

	return imprecise (e, prec);
    }

    public real log (real a)
	/*
	 * Return natural logarithm of 'a'
	 */
    {
	/*
	 * Copyright (c) 1985 Regents of the University of California.
	 * All rights reserved.
	 *
	 * Redistribution and use in source and binary forms, with or without
	 * modification, are permitted provided that the following conditions
	 * are met:
	 * 1. Redistributions of source code must retain the above copyright
	 *    notice, this list of conditions and the following disclaimer.
	 * 2. Redistributions in binary form must reproduce the above copyright
	 *    notice, this list of conditions and the following disclaimer in the
	 *    documentation and/or other materials provided with the distribution.
	 * 3. All advertising materials mentioning features or use of this software
	 *    must display the following acknowledgement:
	 *	This product includes software developed by the University of
	 *	California, Berkeley and its contributors.
	 * 4. Neither the name of the University nor the names of its contributors
	 *    may be used to endorse or promote products derived from this software
	 *    without specific prior written permission.
	 *
	 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
	 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
	 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
	 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
	 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
	 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
		    * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
	 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
	 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
	 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
	 * SUCH DAMAGE.
	 */

	/* log__L(Z)
	 *		LOG(1+X) - 2S			       X
	 * RETURN      ---------------  WHERE Z = S*S,  S = ------- , 0 <= Z <= .0294...
	 *		      S				     2 + X
	 *
	 * DOUBLE PRECISION (VAX D FORMAT 56 bits or IEEE DOUBLE 53 BITS)
	 * KERNEL FUNCTION FOR LOG; TO BE USED IN LOG1P, LOG, AND POW FUNCTIONS
	 * CODED IN C BY K.C. NG, 1/19/85;
	 * REVISED BY K.C. Ng, 2/3/85, 4/16/85.
	 *
	 * Method :
	 *	1. Polynomial approximation: let s = x/(2+x).
	 *	   Based on log(1+x) = log(1+s) - log(1-s)
	 *		 = 2s + 2/3 s**3 + 2/5 s**5 + .....,
	 *
	 *	   (log(1+x) - 2s)/s is computed by
	 *
	 *	       z*(L1 + z*(L2 + z*(... (L7 + z*L8)...)))
	 *
	 *	   where z=s*s. (See the listing below for Lk's values.) The
	 *	   coefficients are obtained by a special Remez algorithm.
	 *
	 * Accuracy:
	 *	Assuming no rounding error, the maximum magnitude of the approximation
	 *	error (absolute) is 2**(-58.49) for IEEE double, and 2**(-63.63)
	 *	for VAX D format.
	 *
	 * Constants:
	 * The hexadecimal values are the intended ones for the following constants.
	 * The decimal values may be used, provided that the compiler will convert
	 * from decimal to binary accurately enough to produce the hexadecimal values
	 * shown.
	 */

	real log__L (real z)
	{
	    global real L1 = imprecise (6.6666666666667340202E-1, 64);
	    global real L2 = imprecise (3.9999999999416702146E-1, 64);
	    global real L3 = imprecise (2.8571428742008753154E-1, 64);
	    global real L4 = imprecise (2.2222198607186277597E-1, 64);
	    global real L5 = imprecise (1.8183562745289935658E-1, 64);
	    global real L6 = imprecise (1.5314087275331442206E-1, 64);
	    global real L7 = imprecise (1.4795612545334174692E-1, 64);

	    return(z*(L1+z*(L2+z*(L3+z*(L4+z*(L5+z*(L6+z*L7)))))));
	}

	/* LOG(X)
	 * RETURN THE LOGARITHM OF x
	 * DOUBLE PRECISION (VAX D FORMAT 56 bits or IEEE DOUBLE 53 BITS)
	 * CODED IN C BY K.C. NG, 1/19/85;
	 * REVISED BY K.C. NG on 2/7/85, 3/7/85, 3/24/85, 4/16/85.
	 *
	 * Required system supported functions:
	 *	scalb(x,n)
	 *	copysign(x,y)
	 *	logb(x)
	 *	finite(x)
	 *
	 * Required kernel function:
	 *	log__L(z)
	 *
	 * Method :
	 *	1. Argument Reduction: find k and f such that
	 *			x = 2^k * (1+f),
	 *	   where  sqrt(2)/2 < 1+f < sqrt(2) .
	 *
	 *	2. Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
	 *		 = 2s + 2/3 s**3 + 2/5 s**5 + .....,
	 *	   log(1+f) is computed by
	 *
	 *	     		log(1+f) = 2s + s*log__L(s*s)
	 *	   where
	 *		log__L(z) = z*(L1 + z*(L2 + z*(... (L6 + z*L7)...)))
	 *
	 *	   See log__L() for the values of the coefficients.
	 *
	 *	3. Finally,  log(x) = k*ln2 + log(1+f).  (Here n*ln2 will be stored
	 *	   in two floating point number: n*ln2hi + n*ln2lo, n*ln2hi is exact
	 *	   since the last 20 bits of ln2hi is 0.)
	 *
	 * Special cases:
	 *	log(x) is NaN with signal if x < 0 (including -INF) ;
	 *	log(+INF) is +INF; log(0) is -INF with signal;
	 *	log(NaN) is that NaN with no signal.
	 *
	 * Accuracy:
	 *	log(x) returns the exact log(x) nearly rounded. In a test run with
	 *	1,536,000 random arguments on a VAX, the maximum observed error was
	 *	.826 ulps (units in the last place).
	 *
	 * Constants:
	 * The hexadecimal values are the intended ones for the following constants.
	 * The decimal values may be used, provided that the compiler will convert
	 * from decimal to binary accurately enough to produce the hexadecimal values
	 * shown.
	 */

	real bsd_log (real x)
	{
	    global real ln2hi = imprecise (6.9314718036912381649E-1, 64);
	    global real ln2lo = imprecise (1.9082149292705877000E-10, 64);
	    global real sqrt2 = imprecise (1.4142135623730951455E0, 64);

	    global real negone = imprecise (-1.0, 64);
	    global real half   = imprecise (0.5, 64);
	    global real two    = imprecise (2, 64);
	    real s,z,t;
	    int k,n;

	    /* argument reduction */
	    k=exponent(x);   x=mantissa(x);
	    if(x >= sqrt2 ) {k += 1; x *= half;}
	    x += negone ;

	    /* compute log(1+x)  */
	    s = x/(two + x);
	    t = x*x*half;
	    z = k*ln2lo + s*(t+log__L(s*s));
	    x += (z - t);

	    return (k*ln2hi+x);
	}

	/*
	 * Bounds checking
	 */

	if (a <= 0)
	    raise invalid_argument ("log: must be positive", 0, a);

	/*
	 * Checks to bring a into range
	 */
	if (a == 1)
	    return 0;
	if (a < 1)
	    return -log(1/a);

	a = imprecise (a);

	int	prec = precision(a);

	int	e = 0;

	/*
	 * Bring all values within the range of 1 <= a <= 2.
	 */
	if (a > 2) {
	    e = exponent(a) - 1;
	    a = mantissa(a) * 2;
	}

	/*
	 * estimate = bsd_log (a).  This gives 53 bits
	 */

	real v = bsd_log (imprecise (a, 64));

	/*
	 * Precision doubles every time around, start
	 * with 50 bits and compute how many doublings are
	 * needed to get the desired precision
	 */
	int	maxiter = 0;
	int	rprec = 50;

	while (rprec <= prec)
	{
	    rprec *= 2;
	    maxiter++;
	}

	if (maxiter > 0)
	{
	    int	iprec = prec + maxiter * 16;

	    v = imprecise (v, iprec);
	    a = imprecise (a, iprec);

	    /*
	     * Newton's method
	     *
	     * v = log(a)
	     *
	     * exp(v) = a
	     *
	     * exp(v) - a = 0
	     *
	     * v' = v - (exp(v) - a) / exp(v)
	     *
	     * v' = v - 1 + a/exp(v)
	     *
	     *  v' = v - 1 + a * exp(-v);
	     */
	    real one = imprecise (1, iprec);

	    while (maxiter-- > 0)
		v = (v - one) + a / exp(v);
	}

	/* Mix in the log of the exponent */
	if (e != 0) {
	    int eprec = prec + 16;
	    static real log2 = 0;
	    if (log2 == 0 || precision(log2) < eprec)
		log2 = log(imprecise(2, eprec));
	    v += imprecise(e, eprec) * log2;
	}

	return imprecise (v, prec);
    }

    /*
     * log10(x) = log10(e) * log(x)
     *
     * log10(e) = log(e) / log(10) = 1/log(10)
     */
    public real log10 (real a)
	/*
	 * Return base-10 log of 'a'
	 */
    {
	static real	loge = 0;

	a = imprecise (a);
	if (loge == 0 || precision (loge) < precision (a))
	    loge = 1/log(imprecise (10, precision (a)));
	return loge * log(a);
    }

    /*
     * log2(x) = log2(e) * log(x)
     *
     * log2(e) = log(e) / log(2) = 1/log(2)
     */
    public real log2 (real a)
	/*
	 * Return base-2 log of 'a'
	 */
    {
	static real	loge = 0;

	a = imprecise (a);
	if (loge == 0 || precision (loge) < precision (a))
	    loge = 1/log(imprecise (2, precision (a)));
	return loge * log(a);
    }

    real calculate_pi (int prec)
	/*
	 * Calculate pi using the formula:
	 *
	 *  PI = 24*atan (1/8) + 8*atan (1/57) + 4*atan (1/239);
	 */
    {
	/*
	 * Estimate the number of digits available for
	 * the specified value (v) after a certain number of
	 * loops (p)
	 */
	real avail_prec (real v, int p)
	{
	    real	ret;

	    ret = bit_width (p) - p * exponent (imprecise (v));
	    /* printf ("v %g p %g avail %g\n", v, p, ret); */
	    return ret;
	}

	/*
	 * Compute the number of loops needed to get
	 * the desired precision
	 */
	int loops (real v, int prec)
	{
	    int p, low, high;

	    for (high = 1; ; high *= 2)
	    {
		if (avail_prec (v, high) > prec)
		    break;
	    }
	    low = 1;
	    while (high - low > 1)
	    {
		p = (high + low) ⫽ 2;
		if (avail_prec (v, p) > prec)
		    high = p;
		else
		    low = p;
	    }
	    return high;
	}

	/*
	 * Compute atan near zero
	 *
	 * atan(x) = x - x**3/3 + x**5/5 - ...
	 */
	real atan (rational den, int digits)
	{
	    int	    p, q;
	    int	    l;
	    int	    prec, mult;
	    real    partial, result;
	    real    pv, qv, mden;

	    p = 3;
	    q = 5;
	    mden = imprecise (den, digits * 4) ** 4;
	    l = loops (1 / den, digits) ⫽ 2;
	    /*
	     * Need at least digits + log10(loops) for all intermediate
	     * computations
	     */
	    /* printf ("loops %d\n", l); File.flush (stdout); */
	    result = 1 / den;
	    pv = 1 / (den ** p);
	    qv = 1 / (den ** q);
	    while (l-- > 0)
	    {
		partial = pv / p - qv / q;
		if (partial == 0)
		    break;
		result = result - partial;
		/* if (l % 10 == 0) { printf ("."); File.flush (stdout); } */
		p += 4;
		q += 4;
		pv = pv / mden;
		qv = qv / mden;
	    }
	    /* printf ("\n"); */
	    return result;
	}

	real	value;
	real	part1, part2, part3;

	part1 = 24 *atan (8, prec + 30);
	part2 = 8 * atan (57, prec + 30);
	part3 = 4 * atan (239, prec + 30);
	value = part1 + part2 + part3;
	return imprecise (value, prec);
    }

    public real pi_value (int prec)
	/*
	 * Return pi at least as precise as 'prec'
	 */
    {
	static real local_pi = pi;

	if (precision (local_pi) < prec)
	    local_pi = calculate_pi (prec);
	return imprecise (local_pi, prec);
    }

    /* Normalize angle to -π < aa <= π */
    real limit_angle_to_pi (real aa)
    {
	real	my_pi;

	aa = imprecise (aa);
	my_pi = pi_value (precision (aa));
	if (aa + my_pi == aa)
		raise invalid_argument ("argument not precise enough", 0, aa);
	aa %= 2 * my_pi;
	if (aa > my_pi)
		aa -= 2 * my_pi;
	return aa;
    }

    public real sin (real a)
	/*
	 * return sine (a)
	 */
    {
	/*
	 * sin(x) = x - x**3/3! + x**5/5! ...
	 */
	real raw_sin (real a)
	{
	    real    err;
	    real    v, term;
	    real    a4, aj, ai;
	    int	    i, j;
	    int	    iter;
	    int	    prec;

	    prec = precision(a);
	    int iprec = prec * 2;
	    a = imprecise(a,iprec);
	    i = 1;
	    j = 3;
	    a4 = a**4;
	    ai = a**i;
	    aj = a**j;
	    iter = prec + 8;
	    v = 0;
	    while (iter-- > 0)
	    {
		term = ai/i! - aj/j!;
		/* printf ("sin iter %d term %d\n", iter, term);*/
		v += term;
		if (exponent (v) > exponent (term) + iprec)
		    break;
		ai *= a4;
		aj *= a4;
		i += 4;
		j += 4;
	    }
	    return imprecise (v + term, prec);
	}

	/* sin(5x) = 16 * sin**5(x) - 20 * sin**3(x) + 5 * sin(x) */
	real do_5x (real a)
	{
	    return 16 * a**5 - 20 * a**3 + 5 * a;
	}

	real big_sin (real a)
	{
	    if (a > 0.01)
		return do_5x (big_sin (a/5));
	    return raw_sin (a);
	}

	a = limit_angle_to_pi (a);
	if (a == 0)
	    return 0;

	return big_sin (a);
    }

    public real cos (real a)
	/*
	 * return cosine (a)
	 */
    {
	/*
	 * cos(x) = 1 - x**2/2! + x**4/4! - x**6/6! ...
	 */

	real raw_cos (real a)
	{
	    real    v, term;
	    real    ai, aj, a4;
	    int	    i, j;
	    int	    iter;
	    int	    prec = precision(a);
	    int	    iprec = prec * 2;

	    a = imprecise(a, iprec);
	    i = 0;
	    j = 2;
	    ai = 1;
	    aj = a**2;
	    a4 = a**4;
	    iter = prec + 8;
	    v = 0;
	    while (iter-- > 0)
	    {
		term = ai/i! - aj/j!;
		v += term;
		if (exponent (v) > exponent (term) + iprec)
		    break;
		ai *= a4;
		aj *= a4;
		i += 4;
		j += 4;
	    }
	    return imprecise (v + term);
	}

	/* cos(4x) = 8 * (cos**4(x) - cos**2(x)) + 1 */
	real do_4x (real c)
	{
	    return 8 * (c**4 - c**2) + 1;
	}

	real big_cos (real a)
	{
	    if (a > .01)
		return do_4x (big_cos (a/4));
	    return raw_cos (a);
	}

	a = limit_angle_to_pi (a);
	if (a == 0)
	    return 1;
	return big_cos (limit_angle_to_pi (a));
    }

    real cos_to_sin (real v)
    {
	return sqrt (1 - v**2);
    }

    public void sin_cos (real a, *real sinp, *real cosp)
	/*
	 * Compute sine and cosine of 'a' simultaneously
	 */
    {
	real	c, s;

	a = limit_angle_to_pi (a);
	c = cos (a);
	s = sign(a) * cos_to_sin(c);
        *cosp = c;
        *sinp = s;
    }

    public real tan (real a)
	/*
	 * return tangent (a)
	 */
    {
	real	c, s;

	a = imprecise(a);
	sin_cos (a, &s, &c);
	return s/c;
    }

    public real atan (real v)
	/*
	 * return arctangent (v)
	 */
    {
	/*
	 * atan(x) = x - x**3/3 + x**5/5 - ...
	 */
	real raw_atan (real v)
	{
	    real    a, term;
	    real    vi, vj, v4;
	    int	    i, j;
	    int	    iter;
	    int	    prec = precision(v);
	    int	    iprec = prec * 2;

	    v = imprecise (v, iprec);
	    i = 1;
	    j = 3;
	    vi = v**i;
	    vj = v**j;
	    v4 = v**4;
	    a = 0;
	    iter = prec + 8;
	    while (iter-- > 0)
	    {
		term = vi/i - vj/j;
		a += term;
		if (exponent (a) > exponent (term) + iprec)
		    break;
		vi *= v4;
		vj *= v4;
		i += 4;
		j += 4;
	    }
	    return imprecise (a, prec);
	}

	real	sqrt3;

	v = imprecise (v);
	/*
	 * atan(v) = -atan(-v)
	 */
	if (v < 0)
	    return -atan (-v);
	/*
	 * atan(v) = pi/2 - atan(1/v)
	 */
	if (v > 1)
	    return pi_value (precision(v))/2 - atan (1/v);
	/*
	 * atan(v) = pi/6 + atan((v*sqrt(3) - 1) / (sqrt(3) + v))
	 */
	if (v > .268)
	{
	    sqrt3 = sqrt (imprecise (3,precision(v)));
	    return (pi_value (precision(v)) / 6 +
		    raw_atan ((v * sqrt3 - 1) / (sqrt3 + v)));
	}
	return raw_atan (v);
    }

    /*
     * atan (y/x)
     */
    public real atan2 (real y, real x)
	/*
	 * return atan (y/x), but adjust for quadrant correctly
	 */
    {
	y = imprecise (y);
	x = imprecise (x);

	if (x == 0) {
		if (y == 0)
			return 0;
		if (y >= 0)
			return pi_value(precision(y))/2;
		else
			return -pi_value(precision(y))/2;
	}
	real a = atan(y/x);
	if (x < 0) {
		real p = pi_value(precision(y));
		if (y >= 0)
			a += p;
		else
			a -= p;
	}
	return a;
    }

    /*
     *	atan(v) = asin(v/sqrt(1+v**2))
     *
     *	q = v/sqrt(1+v**2)
     *	q*sqrt(1+v**2) = v
     *  q**2*(1+v**2) = v**2
     *  q**2 + q**2v**2 = v**2
     *	q**2 = v**2 - q**2v**2
     *  q**2 = v**2 * (1 - q**2)
     *  v**2 = q**2/(1-q**2)
     *  v = q/sqrt(1-q**2)
     *
     *  asin(q) = atan2(q, sqrt(1-q**2))
     */

    public real asin (real v)
	/*
	 * return arcsine (v)
	 */
    {
	v = imprecise (v);
	if (abs (v) > 1)
	    raise invalid_argument ("asin argument out of range", 0, v);
	if (v == 1)
	    return pi_value (precision (v))/2;
	if (v == -1)
	    return -pi_value (precision (v))/2;
	return atan2(v, sqrt(1-v**2));
    }

    /*
     * acos(v) = asin (sqrt (1 - v**2))
     *		= atan (sqrt(1-v**2) / sqrt (1-(sqrt (1-v**2))**2))
     *		= atan (sqrt(1-v**2) / sqrt (1-(1-v**2)))
     *		= atan2 (sqrt(1-v**2), v)
     */
    public real acos (real v)
	/*
	 * return arccosine (v)
	 */
    {
	v = imprecise(v);
	if (abs (v) > 1)
	    raise invalid_argument ("acos argument out of range", 0, v);
	if (v == 1)
	    return 0;
	if (v == -1)
	    return pi_value(precision(v));
	if (v == 0)
	    return pi_value(precision(v))/2;
	return atan2 (sqrt (1-v**2), v);
    }

    /*
     * These two are used for the '**' and '**=' operators
     */
    public real pow (real a, real b)
	/*
	 * return a ** b;
	 */
    {
	real    result;
	if (a == 0) {
	    if (b == 0)
		return 1;
	    return 0;
	}

	if (is_int (b))
	{
	    if (!is_int (a) && is_rational (a))
		return pow (numerator(a), b) / pow (denominator (a), b);
	    bool flip = false;

	    if (b < 0)
	    {
		flip = true;
		b = -b;
	    }
	    result = 1;

	    int prec = precision(a);
	    /* Increase precision to avoid dropping bits */
	    if (prec != 0 && b > 0)
		a = imprecise(a, prec + (ilog(2, b) + 1) * 4 + 5);

	    while (b > 0)
	    {
		if ((b & 1) != 0)
		    result *= a;
		b >>= 1;
		if (b != 0)
		    a *= a;
	    }
	    if (flip)
		result = 1/result;
	    if (prec != 0)
		result = imprecise(result, prec);
	}
	else switch (b) {
	case .5:
	    result = sqrt (a);
	    break;
	case .{3}:
	    result = cbrt (a);
	    break;
	default:
	    result = exp (b * log(a));
	    break;
	}
	return result;
    }

    public real assign_pow (*real a, real b)
	/*
	 * return *a = *a ** b;
	 */
    {
	return *a = pow (*a, b);
    }

    public real max(real arg, real args ...)
	/*
	 * Return maximum of all arguments
	 */
    {
	for (int i = 0; i < dim(args); i++)
	    if (arg < args[i])
		arg = args[i];
	return arg;
    }

    public real min(real arg, real args ...)
	/*
	 * Return minimum of all arguments
	 */
    {
	for (int i = 0; i < dim(args); i++)
	    if (arg > args[i])
		arg = args[i];
	return arg;
    }


    public exception lsb_0();

    public int lsb(int b)
	/*
	 * return the bit position of
	 * the least significant bit of the int argument
	 * via binary search
	 */
    {
	global bool mask(int b, int ul) {
	    return (b & ((1 << (ul + 1)) - 1)) != 0;
	}

	if (b == 0)
	    raise lsb_0();
	if (b == -1)
	    return 0;
	/* doubling phase */
	int ul = 1;
	for (!mask(b, ul); ul *= 2)
	    /* do nothing */;
	/* binary search phase */
	int ll = 0;
	while (ul > ll + 1) {
	    int step = (ul - ll) ⫽ 2;
	    if (mask(b, ul - step)) {
		ul -= step;
		continue;
	    }
	    if (!mask(b, ll + step)) {
		ll += step;
		continue;
	    }
	    abort("error in binary search");
	}
	if (mask(b, ll))
	    return ll;
	return ul;
    }

    public int choose(int n, int k)
        /* Number of ways of choosing k items from a set of
           n distinct items. */
    {
        /* This keeps the size of the intermediate terms
           smaller below, and also makes the bounds check
           slightly easier. */
        if (k > (n + 1) ⫽ 2)
            k = n - k;
        if (n < 0 || k < 0)
            return 0;
        int c = 1;
        /* This keeps the size of the intermediate terms
           down a bit compared to the traditional
           computation.  It probably doesn't matter, but oh
           well. */
        for (int i = n - k + 1; i <= n; i++)
            c *= i;
        return c / k!;
    }

    real(real) _abs = abs;
    public real(real) abs = _abs;
    int(real) _precision = precision;
    public int(real) precision = _precision;
}

/* XXX these shouldn't be here, but it was *convenient* */
&int(string, int ...) atoi = &string_to_integer;
&rational(string) atof = &string_to_real;