File: closureiters.nim

package info (click to toggle)
nim 0.19.4-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 462,356 kB
  • sloc: sh: 11,089; ansic: 4,699; makefile: 706; python: 309; sql: 297; asm: 141; xml: 13
file content (1332 lines) | stat: -rw-r--r-- 41,202 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
#
#
#           The Nim Compiler
#        (c) Copyright 2018 Nim Contributors
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

# This file implements closure iterator transformations.
# The main idea is to split the closure iterator body to top level statements.
# The body is split by yield statement.
#
# Example:
#  while a > 0:
#    echo "hi"
#    yield a
#    dec a
#
# Should be transformed to:
#  STATE0:
#    if a > 0:
#      echo "hi"
#      :state = 1 # Next state
#      return a # yield
#    else:
#      :state = 2 # Next state
#      break :stateLoop # Proceed to the next state
#  STATE1:
#    dec a
#    :state = 0 # Next state
#    break :stateLoop # Proceed to the next state
#  STATE2:
#    :state = -1 # End of execution

# The transformation should play well with lambdalifting, however depending
# on situation, it can be called either before or after lambdalifting
# transformation. As such we behave slightly differently, when accessing
# iterator state, or using temp variables. If lambdalifting did not happen,
# we just create local variables, so that they will be lifted further on.
# Otherwise, we utilize existing env, created by lambdalifting.

# Lambdalifting treats :state variable specially, it should always end up
# as the first field in env. Currently C codegen depends on this behavior.

# One special subtransformation is nkStmtListExpr lowering.
# Example:
#   template foo(): int =
#     yield 1
#     2
#
#   iterator it(): int {.closure.} =
#     if foo() == 2:
#       yield 3
#
# If a nkStmtListExpr has yield inside, it has first to be lowered to:
#   yield 1
#   :tmpSlLower = 2
#   if :tmpSlLower == 2:
#     yield 3

# nkTryStmt Transformations:
# If the iter has an nkTryStmt with a yield inside
#  - the closure iter is promoted to have exceptions (ctx.hasExceptions = true)
#  - exception table is created. This is a const array, where
#    `abs(exceptionTable[i])` is a state idx to which we should jump from state
#    `i` should exception be raised in state `i`. For all states in `try` block
#    the target state is `except` block. For all states in `except` block
#    the target state is `finally` block. For all other states there is no
#    target state (0, as the first block can never be neither except nor finally).
#    `exceptionTable[i]` is < 0 if `abs(exceptionTable[i])` is except block,
#    and > 0, for finally block.
#  - local variable :curExc is created
#  - the iter body is wrapped into a
#      try:
#       closureIterSetupExc(:curExc)
#       ...body...
#      catch:
#        :state = exceptionTable[:state]
#        if :state == 0: raise # No state that could handle exception
#        :unrollFinally = :state > 0 # Target state is finally
#        if :state < 0:
#           :state = -:state
#        :curExc = getCurrentException()
#
# nkReturnStmt within a try/except/finally now has to behave differently as we
# want the nearest finally block to be executed before the return, thus it is
# transformed to:
#  :tmpResult = returnValue (if return doesn't have a value, this is skipped)
#  :unrollFinally = true
#  goto nearestFinally (or -1 if not exists)
#
# Every finally block calls closureIterEndFinally() upon its successful
# completion.
#
# Example:
#
# try:
#  yield 0
#  raise ...
# except:
#  yield 1
#  return 3
# finally:
#  yield 2
#
# Is transformed to (yields are left in place for example simplicity,
#    in reality the code is subdivided even more, as described above):
#
# STATE0: # Try
#   yield 0
#   raise ...
#   :state = 2 # What would happen should we not raise
#   break :stateLoop
# STATE1: # Except
#   yield 1
#   :tmpResult = 3           # Return
#   :unrollFinally = true # Return
#   :state = 2 # Goto Finally
#   break :stateLoop
#   :state = 2 # What would happen should we not return
#   break :stateLoop
# STATE2: # Finally
#   yield 2
#   if :unrollFinally: # This node is created by `newEndFinallyNode`
#     if :curExc.isNil:
#       return :tmpResult
#     else:
#       raise
#   state = -1 # Goto next state. In this case we just exit
#   break :stateLoop

import
  intsets, strutils, options, ast, astalgo, trees, treetab, msgs, idents,
  renderer, types, magicsys, lowerings, lambdalifting, modulegraphs, lineinfos

type
  Ctx = object
    g: ModuleGraph
    fn: PSym
    stateVarSym: PSym # :state variable. nil if env already introduced by lambdalifting
    tmpResultSym: PSym # Used when we return, but finally has to interfere
    unrollFinallySym: PSym # Indicates that we're unrolling finally states (either exception happened or premature return)
    curExcSym: PSym # Current exception

    states: seq[PNode] # The resulting states. Every state is an nkState node.
    blockLevel: int # Temp used to transform break and continue stmts
    stateLoopLabel: PSym # Label to break on, when jumping between states.
    exitStateIdx: int # index of the last state
    tempVarId: int # unique name counter
    tempVars: PNode # Temp var decls, nkVarSection
    exceptionTable: seq[int] # For state `i` jump to state `exceptionTable[i]` if exception is raised
    hasExceptions: bool # Does closure have yield in try?
    curExcHandlingState: int # Negative for except, positive for finally
    nearestFinally: int # Index of the nearest finally block. For try/except it
                    # is their finally. For finally it is parent finally. Otherwise -1

const
  nkSkip = { nkEmpty..nkNilLit, nkTemplateDef, nkTypeSection, nkStaticStmt,
            nkCommentStmt } + procDefs

proc newStateAccess(ctx: var Ctx): PNode =
  if ctx.stateVarSym.isNil:
    result = rawIndirectAccess(newSymNode(getEnvParam(ctx.fn)),
        getStateField(ctx.g, ctx.fn), ctx.fn.info)
  else:
    result = newSymNode(ctx.stateVarSym)

proc newStateAssgn(ctx: var Ctx, toValue: PNode): PNode =
  # Creates state assignment:
  #   :state = toValue
  newTree(nkAsgn, ctx.newStateAccess(), toValue)

proc newStateAssgn(ctx: var Ctx, stateNo: int = -2): PNode =
  # Creates state assignment:
  #   :state = stateNo
  ctx.newStateAssgn(newIntTypeNode(nkIntLit, stateNo, ctx.g.getSysType(TLineInfo(), tyInt)))

proc newEnvVar(ctx: var Ctx, name: string, typ: PType): PSym =
  result = newSym(skVar, getIdent(ctx.g.cache, name), ctx.fn, ctx.fn.info)
  result.typ = typ
  assert(not typ.isNil)

  if not ctx.stateVarSym.isNil:
    # We haven't gone through labmda lifting yet, so just create a local var,
    # it will be lifted later
    if ctx.tempVars.isNil:
      ctx.tempVars = newNodeI(nkVarSection, ctx.fn.info)
      addVar(ctx.tempVars, newSymNode(result))
  else:
    let envParam = getEnvParam(ctx.fn)
    # let obj = envParam.typ.lastSon
    result = addUniqueField(envParam.typ.lastSon, result, ctx.g.cache)

proc newEnvVarAccess(ctx: Ctx, s: PSym): PNode =
  if ctx.stateVarSym.isNil:
    result = rawIndirectAccess(newSymNode(getEnvParam(ctx.fn)), s, ctx.fn.info)
  else:
    result = newSymNode(s)

proc newTmpResultAccess(ctx: var Ctx): PNode =
  if ctx.tmpResultSym.isNil:
    ctx.tmpResultSym = ctx.newEnvVar(":tmpResult", ctx.fn.typ[0])
  ctx.newEnvVarAccess(ctx.tmpResultSym)

proc newUnrollFinallyAccess(ctx: var Ctx, info: TLineInfo): PNode =
  if ctx.unrollFinallySym.isNil:
    ctx.unrollFinallySym = ctx.newEnvVar(":unrollFinally", ctx.g.getSysType(info, tyBool))
  ctx.newEnvVarAccess(ctx.unrollFinallySym)

proc newCurExcAccess(ctx: var Ctx): PNode =
  if ctx.curExcSym.isNil:
    ctx.curExcSym = ctx.newEnvVar(":curExc", ctx.g.callCodegenProc("getCurrentException", ctx.g.emptyNode).typ)
  ctx.newEnvVarAccess(ctx.curExcSym)

proc newState(ctx: var Ctx, n, gotoOut: PNode): int =
  # Creates a new state, adds it to the context fills out `gotoOut` so that it
  # will goto this state.
  # Returns index of the newly created state

  result = ctx.states.len
  let resLit = ctx.g.newIntLit(n.info, result)
  let s = newNodeI(nkState, n.info)
  s.add(resLit)
  s.add(n)
  ctx.states.add(s)
  ctx.exceptionTable.add(ctx.curExcHandlingState)

  if not gotoOut.isNil:
    assert(gotoOut.len == 0)
    gotoOut.add(ctx.g.newIntLit(gotoOut.info, result))

proc toStmtList(n: PNode): PNode =
  result = n
  if result.kind notin {nkStmtList, nkStmtListExpr}:
    result = newNodeI(nkStmtList, n.info)
    result.add(n)

proc addGotoOut(n: PNode, gotoOut: PNode): PNode =
  # Make sure `n` is a stmtlist, and ends with `gotoOut`
  result = toStmtList(n)
  if result.len == 0 or result.sons[^1].kind != nkGotoState:
    result.add(gotoOut)

proc newTempVar(ctx: var Ctx, typ: PType): PSym =
  result = ctx.newEnvVar(":tmpSlLower" & $ctx.tempVarId, typ)
  inc ctx.tempVarId

proc hasYields(n: PNode): bool =
  # TODO: This is very inefficient. It traverses the node, looking for nkYieldStmt.
  case n.kind
  of nkYieldStmt:
    result = true
  of nkSkip:
    discard
  else:
    for c in n:
      if c.hasYields:
        result = true
        break

proc transformBreaksAndContinuesInWhile(ctx: var Ctx, n: PNode, before, after: PNode): PNode =
  result = n
  case n.kind
  of nkSkip:
    discard
  of nkWhileStmt: discard # Do not recurse into nested whiles
  of nkContinueStmt:
    result = before
  of nkBlockStmt:
    inc ctx.blockLevel
    result[1] = ctx.transformBreaksAndContinuesInWhile(result[1], before, after)
    dec ctx.blockLevel
  of nkBreakStmt:
    if ctx.blockLevel == 0:
      result = after
  else:
    for i in 0 ..< n.len:
      n[i] = ctx.transformBreaksAndContinuesInWhile(n[i], before, after)

proc transformBreaksInBlock(ctx: var Ctx, n: PNode, label, after: PNode): PNode =
  result = n
  case n.kind
  of nkSkip:
    discard
  of nkBlockStmt, nkWhileStmt:
    inc ctx.blockLevel
    result[1] = ctx.transformBreaksInBlock(result[1], label, after)
    dec ctx.blockLevel
  of nkBreakStmt:
    if n[0].kind == nkEmpty:
      if ctx.blockLevel == 0:
        result = after
    else:
      if label.kind == nkSym and n[0].sym == label.sym:
        result = after
  else:
    for i in 0 ..< n.len:
      n[i] = ctx.transformBreaksInBlock(n[i], label, after)

proc newNullifyCurExc(ctx: var Ctx, info: TLineInfo): PNode =
  # :curEcx = nil
  let curExc = ctx.newCurExcAccess()
  curExc.info = info
  let nilnode = newNode(nkNilLit)
  nilnode.typ = curExc.typ
  result = newTree(nkAsgn, curExc, nilnode)

proc newOr(g: ModuleGraph, a, b: PNode): PNode {.inline.} =
  result = newTree(nkCall, newSymNode(g.getSysMagic(a.info, "or", mOr)), a, b)
  result.typ = g.getSysType(a.info, tyBool)
  result.info = a.info

proc collectExceptState(ctx: var Ctx, n: PNode): PNode {.inline.} =
  var ifStmt = newNodeI(nkIfStmt, n.info)
  let g = ctx.g
  for c in n:
    if c.kind == nkExceptBranch:
      var ifBranch: PNode

      if c.len > 1:
        var cond: PNode
        for i in 0 .. c.len - 2:
          assert(c[i].kind == nkType)
          let nextCond = newTree(nkCall,
            newSymNode(g.getSysMagic(c.info, "of", mOf)),
            g.callCodegenProc("getCurrentException", ctx.g.emptyNode),
            c[i])
          nextCond.typ = ctx.g.getSysType(c.info, tyBool)
          nextCond.info = c.info

          if cond.isNil:
            cond = nextCond
          else:
            cond = g.newOr(cond, nextCond)

        ifBranch = newNodeI(nkElifBranch, c.info)
        ifBranch.add(cond)
      else:
        if ifStmt.len == 0:
          ifStmt = newNodeI(nkStmtList, c.info)
          ifBranch = newNodeI(nkStmtList, c.info)
        else:
          ifBranch = newNodeI(nkElse, c.info)

      ifBranch.add(c[^1])
      ifStmt.add(ifBranch)

  if ifStmt.len != 0:
    result = newTree(nkStmtList, ctx.newNullifyCurExc(n.info), ifStmt)
  else:
    result = ctx.g.emptyNode

proc addElseToExcept(ctx: var Ctx, n: PNode) =
  if n.kind == nkStmtList and n[1].kind == nkIfStmt and n[1][^1].kind != nkElse:
    # Not all cases are covered
    let branchBody = newNodeI(nkStmtList, n.info)

    block: # :unrollFinally = true
      branchBody.add(newTree(nkAsgn,
        ctx.newUnrollFinallyAccess(n.info),
        newIntTypeNode(nkIntLit, 1, ctx.g.getSysType(n.info, tyBool))))

    block: # :curExc = getCurrentException()
      branchBody.add(newTree(nkAsgn,
        ctx.newCurExcAccess(),
        ctx.g.callCodegenProc("getCurrentException", ctx.g.emptyNode)))

    block: # goto nearestFinally
      branchBody.add(newTree(nkGotoState, ctx.g.newIntLit(n.info, ctx.nearestFinally)))

    let elseBranch = newTree(nkElse, branchBody)
    n[1].add(elseBranch)

proc getFinallyNode(ctx: var Ctx, n: PNode): PNode =
  result = n[^1]
  if result.kind == nkFinally:
    result = result[0]
  else:
    result = ctx.g.emptyNode

proc hasYieldsInExpressions(n: PNode): bool =
  case n.kind
  of nkSkip:
    discard
  of nkStmtListExpr:
    if isEmptyType(n.typ):
      for c in n:
        if c.hasYieldsInExpressions:
          return true
    else:
      result = n.hasYields
  else:
    for c in n:
      if c.hasYieldsInExpressions:
        return true

proc exprToStmtList(n: PNode): tuple[s, res: PNode] =
  assert(n.kind == nkStmtListExpr)
  result.s = newNodeI(nkStmtList, n.info)
  result.s.sons = @[]

  var n = n
  while n.kind == nkStmtListExpr:
    result.s.sons.add(n.sons)
    result.s.sons.setLen(result.s.sons.len - 1) # delete last son
    n = n[^1]

  result.res = n


proc newEnvVarAsgn(ctx: Ctx, s: PSym, v: PNode): PNode =
  result = newTree(nkFastAsgn, ctx.newEnvVarAccess(s), v)
  result.info = v.info

proc addExprAssgn(ctx: Ctx, output, input: PNode, sym: PSym) =
  if input.kind == nkStmtListExpr:
    let (st, res) = exprToStmtList(input)
    output.add(st)
    output.add(ctx.newEnvVarAsgn(sym, res))
  else:
    output.add(ctx.newEnvVarAsgn(sym, input))

proc convertExprBodyToAsgn(ctx: Ctx, exprBody: PNode, res: PSym): PNode =
  result = newNodeI(nkStmtList, exprBody.info)
  ctx.addExprAssgn(result, exprBody, res)

proc newNotCall(g: ModuleGraph; e: PNode): PNode =
  result = newTree(nkCall, newSymNode(g.getSysMagic(e.info, "not", mNot), e.info), e)
  result.typ = g.getSysType(e.info, tyBool)

proc lowerStmtListExprs(ctx: var Ctx, n: PNode, needsSplit: var bool): PNode =
  result = n
  case n.kind
  of nkSkip:
    discard

  of nkYieldStmt:
    var ns = false
    for i in 0 ..< n.len:
      n[i] = ctx.lowerStmtListExprs(n[i], ns)

    if ns:
      result = newNodeI(nkStmtList, n.info)
      let (st, ex) = exprToStmtList(n[0])
      result.add(st)
      n[0] = ex
      result.add(n)

    needsSplit = true

  of nkPar, nkObjConstr, nkTupleConstr, nkBracket:
    var ns = false
    for i in 0 ..< n.len:
      n[i] = ctx.lowerStmtListExprs(n[i], ns)

    if ns:
      needsSplit = true

      result = newNodeI(nkStmtListExpr, n.info)
      if n.typ.isNil: internalError(ctx.g.config, "lowerStmtListExprs: constr typ.isNil")
      result.typ = n.typ

      for i in 0 ..< n.len:
        case n[i].kind
        of nkExprColonExpr:
          if n[i][1].kind == nkStmtListExpr:
            let (st, ex) = exprToStmtList(n[i][1])
            result.add(st)
            n[i][1] = ex
        of nkStmtListExpr:
          let (st, ex) = exprToStmtList(n[i])
          result.add(st)
          n[i] = ex
        else: discard
      result.add(n)

  of nkIfStmt, nkIfExpr:
    var ns = false
    for i in 0 ..< n.len:
      n[i] = ctx.lowerStmtListExprs(n[i], ns)

    if ns:
      needsSplit = true
      var tmp: PSym
      var s: PNode
      let isExpr = not isEmptyType(n.typ)
      if isExpr:
        tmp = ctx.newTempVar(n.typ)
        result = newNodeI(nkStmtListExpr, n.info)
        result.typ = n.typ
      else:
        result = newNodeI(nkStmtList, n.info)

      var curS = result

      for branch in n:
        case branch.kind
        of nkElseExpr, nkElse:
          if isExpr:
            let branchBody = newNodeI(nkStmtList, branch.info)
            ctx.addExprAssgn(branchBody, branch[0], tmp)
            let newBranch = newTree(nkElse, branchBody)
            curS.add(newBranch)
          else:
            curS.add(branch)

        of nkElifExpr, nkElifBranch:
          var newBranch: PNode
          if branch[0].kind == nkStmtListExpr:
            let (st, res) = exprToStmtList(branch[0])
            let elseBody = newTree(nkStmtList, st)

            newBranch = newTree(nkElifBranch, res, branch[1])

            let newIf = newTree(nkIfStmt, newBranch)
            elseBody.add(newIf)
            if curS.kind == nkIfStmt:
              let newElse = newNodeI(nkElse, branch.info)
              newElse.add(elseBody)
              curS.add(newElse)
            else:
              curS.add(elseBody)
            curS = newIf
          else:
            newBranch = branch
            if curS.kind == nkIfStmt:
              curS.add(newBranch)
            else:
              let newIf = newTree(nkIfStmt, newBranch)
              curS.add(newIf)
              curS = newIf

          if isExpr:
            let branchBody = newNodeI(nkStmtList, branch[1].info)
            ctx.addExprAssgn(branchBody, branch[1], tmp)
            newBranch[1] = branchBody

        else:
          internalError(ctx.g.config, "lowerStmtListExpr(nkIf): " & $branch.kind)

      if isExpr: result.add(ctx.newEnvVarAccess(tmp))

  of nkTryStmt:
    var ns = false
    for i in 0 ..< n.len:
      n[i] = ctx.lowerStmtListExprs(n[i], ns)

    if ns:
      needsSplit = true
      let isExpr = not isEmptyType(n.typ)

      if isExpr:
        result = newNodeI(nkStmtListExpr, n.info)
        result.typ = n.typ
        let tmp = ctx.newTempVar(n.typ)

        n[0] = ctx.convertExprBodyToAsgn(n[0], tmp)
        for i in 1 ..< n.len:
          let branch = n[i]
          case branch.kind
          of nkExceptBranch:
            if branch[0].kind == nkType:
              branch[1] = ctx.convertExprBodyToAsgn(branch[1], tmp)
            else:
              branch[0] = ctx.convertExprBodyToAsgn(branch[0], tmp)
          of nkFinally:
            discard
          else:
            internalError(ctx.g.config, "lowerStmtListExpr(nkTryStmt): " & $branch.kind)
        result.add(n)
        result.add(ctx.newEnvVarAccess(tmp))

  of nkCaseStmt:
    var ns = false
    for i in 0 ..< n.len:
      n[i] = ctx.lowerStmtListExprs(n[i], ns)

    if ns:
      needsSplit = true

      let isExpr = not isEmptyType(n.typ)

      if isExpr:
        let tmp = ctx.newTempVar(n.typ)
        result = newNodeI(nkStmtListExpr, n.info)
        result.typ = n.typ

        if n[0].kind == nkStmtListExpr:
          let (st, ex) = exprToStmtList(n[0])
          result.add(st)
          n[0] = ex

        for i in 1 ..< n.len:
          let branch = n[i]
          case branch.kind
          of nkOfBranch:
            branch[^1] = ctx.convertExprBodyToAsgn(branch[^1], tmp)
          of nkElse:
            branch[0] = ctx.convertExprBodyToAsgn(branch[0], tmp)
          else:
            internalError(ctx.g.config, "lowerStmtListExpr(nkCaseStmt): " & $branch.kind)
        result.add(n)
        result.add(ctx.newEnvVarAccess(tmp))

  of nkCallKinds:
    var ns = false
    for i in 0 ..< n.len:
      n[i] = ctx.lowerStmtListExprs(n[i], ns)

    if ns:
      needsSplit = true
      let isExpr = not isEmptyType(n.typ)

      if isExpr:
        result = newNodeI(nkStmtListExpr, n.info)
        result.typ = n.typ
      else:
        result = newNodeI(nkStmtList, n.info)

      if n[0].kind == nkSym and n[0].sym.magic in {mAnd, mOr}: # `and`/`or` short cirquiting
        var cond = n[1]
        if cond.kind == nkStmtListExpr:
          let (st, ex) = exprToStmtList(cond)
          result.add(st)
          cond = ex

        let tmp = ctx.newTempVar(cond.typ)
        result.add(ctx.newEnvVarAsgn(tmp, cond))

        var check = ctx.newEnvVarAccess(tmp)
        if n[0].sym.magic == mOr:
          check = ctx.g.newNotCall(check)

        cond = n[2]
        let ifBody = newNodeI(nkStmtList, cond.info)
        if cond.kind == nkStmtListExpr:
          let (st, ex) = exprToStmtList(cond)
          ifBody.add(st)
          cond = ex
        ifBody.add(ctx.newEnvVarAsgn(tmp, cond))

        let ifBranch = newTree(nkElifBranch, check, ifBody)
        let ifNode = newTree(nkIfStmt, ifBranch)
        result.add(ifNode)
        result.add(ctx.newEnvVarAccess(tmp))
      else:
        for i in 0 ..< n.len:
          if n[i].kind == nkStmtListExpr:
            let (st, ex) = exprToStmtList(n[i])
            result.add(st)
            n[i] = ex

          if n[i].kind in nkCallKinds: # XXX: This should better be some sort of side effect tracking
            let tmp = ctx.newTempVar(n[i].typ)
            result.add(ctx.newEnvVarAsgn(tmp, n[i]))
            n[i] = ctx.newEnvVarAccess(tmp)

        result.add(n)

  of nkVarSection, nkLetSection:
    result = newNodeI(nkStmtList, n.info)
    for c in n:
      let varSect = newNodeI(n.kind, n.info)
      varSect.add(c)
      var ns = false
      c[^1] = ctx.lowerStmtListExprs(c[^1], ns)
      if ns:
        needsSplit = true
        let (st, ex) = exprToStmtList(c[^1])
        result.add(st)
        c[^1] = ex
      result.add(varSect)

  of nkDiscardStmt, nkReturnStmt, nkRaiseStmt:
    var ns = false
    for i in 0 ..< n.len:
      n[i] = ctx.lowerStmtListExprs(n[i], ns)

    if ns:
      needsSplit = true
      result = newNodeI(nkStmtList, n.info)
      let (st, ex) = exprToStmtList(n[0])
      result.add(st)
      n[0] = ex
      result.add(n)

  of nkCast, nkHiddenStdConv, nkHiddenSubConv, nkConv, nkObjDownConv:
    var ns = false
    for i in 0 ..< n.len:
      n[i] = ctx.lowerStmtListExprs(n[i], ns)

    if ns:
      needsSplit = true
      result = newNodeI(nkStmtListExpr, n.info)
      result.typ = n.typ
      let (st, ex) = exprToStmtList(n[^1])
      result.add(st)
      n[^1] = ex
      result.add(n)

  of nkAsgn, nkFastAsgn:
    var ns = false
    for i in 0 ..< n.len:
      n[i] = ctx.lowerStmtListExprs(n[i], ns)

    if ns:
      needsSplit = true
      result = newNodeI(nkStmtList, n.info)
      if n[0].kind == nkStmtListExpr:
        let (st, ex) = exprToStmtList(n[0])
        result.add(st)
        n[0] = ex

      if n[1].kind == nkStmtListExpr:
        let (st, ex) = exprToStmtList(n[1])
        result.add(st)
        n[1] = ex

      result.add(n)

  of nkBracketExpr:
    var lhsNeedsSplit = false
    var rhsNeedsSplit = false
    n[0] = ctx.lowerStmtListExprs(n[0], lhsNeedsSplit)
    n[1] = ctx.lowerStmtListExprs(n[1], rhsNeedsSplit)
    if lhsNeedsSplit or rhsNeedsSplit:
      needsSplit = true
      result = newNodeI(nkStmtListExpr, n.info)
      if lhsNeedsSplit:
        let (st, ex) = exprToStmtList(n[0])
        result.add(st)
        n[0] = ex

      if rhsNeedsSplit:
        let (st, ex) = exprToStmtList(n[1])
        result.add(st)
        n[1] = ex
      result.add(n)

  of nkWhileStmt:
    var ns = false

    var condNeedsSplit = false
    n[0] = ctx.lowerStmtListExprs(n[0], condNeedsSplit)
    var bodyNeedsSplit = false
    n[1] = ctx.lowerStmtListExprs(n[1], bodyNeedsSplit)

    if condNeedsSplit or bodyNeedsSplit:
      needsSplit = true

      if condNeedsSplit:
        let (st, ex) = exprToStmtList(n[0])
        let brk = newTree(nkBreakStmt, ctx.g.emptyNode)
        let branch = newTree(nkElifBranch, ctx.g.newNotCall(ex), brk)
        let check = newTree(nkIfStmt, branch)
        let newBody = newTree(nkStmtList, st, check, n[1])

        n[0] = newSymNode(ctx.g.getSysSym(n[0].info, "true"))
        n[1] = newBody

  of nkDotExpr:
    var ns = false
    n[0] = ctx.lowerStmtListExprs(n[0], ns)
    if ns:
      needsSplit = true
      result = newNodeI(nkStmtListExpr, n.info)
      result.typ = n.typ
      let (st, ex) = exprToStmtList(n[0])
      result.add(st)
      n[0] = ex
      result.add(n)

  of nkBlockExpr:
    var ns = false
    n[1] = ctx.lowerStmtListExprs(n[1], ns)
    if ns:
      needsSplit = true
      result = newNodeI(nkStmtListExpr, n.info)
      result.typ = n.typ
      let (st, ex) = exprToStmtList(n[1])
      n.kind = nkBlockStmt
      n.typ = nil
      n[1] = st
      result.add(n)
      result.add(ex)

  else:
    for i in 0 ..< n.len:
      n[i] = ctx.lowerStmtListExprs(n[i], needsSplit)

proc newEndFinallyNode(ctx: var Ctx, info: TLineInfo): PNode =
  # Generate the following code:
  #   if :unrollFinally:
  #       if :curExc.isNil:
  #         return :tmpResult
  #       else:
  #         raise
  let curExc = ctx.newCurExcAccess()
  let nilnode = newNode(nkNilLit)
  nilnode.typ = curExc.typ
  let cmp = newTree(nkCall, newSymNode(ctx.g.getSysMagic(info, "==", mEqRef), info), curExc, nilnode)
  cmp.typ = ctx.g.getSysType(info, tyBool)

  let asgn = newTree(nkFastAsgn,
    newSymNode(getClosureIterResult(ctx.g, ctx.fn), info),
    ctx.newTmpResultAccess())

  let retStmt = newTree(nkReturnStmt, asgn)
  let branch = newTree(nkElifBranch, cmp, retStmt)

  # The C++ backend requires `getCurrentException` here.
  let raiseStmt = newTree(nkRaiseStmt, ctx.g.callCodegenProc("getCurrentException", ctx.g.emptyNode))
  raiseStmt.info = info
  let elseBranch = newTree(nkElse, raiseStmt)

  let ifBody = newTree(nkIfStmt, branch, elseBranch)
  let elifBranch = newTree(nkElifBranch, ctx.newUnrollFinallyAccess(info), ifBody)
  elifBranch.info = info
  result = newTree(nkIfStmt, elifBranch)

proc transformReturnsInTry(ctx: var Ctx, n: PNode): PNode =
  result = n
  # TODO: This is very inefficient. It traverses the node, looking for nkYieldStmt.
  case n.kind
  of nkReturnStmt:
    # We're somewhere in try, transform to finally unrolling
    assert(ctx.nearestFinally != 0)

    result = newNodeI(nkStmtList, n.info)

    block: # :unrollFinally = true
      let asgn = newNodeI(nkAsgn, n.info)
      asgn.add(ctx.newUnrollFinallyAccess(n.info))
      asgn.add(newIntTypeNode(nkIntLit, 1, ctx.g.getSysType(n.info, tyBool)))
      result.add(asgn)

    if n[0].kind != nkEmpty:
      let asgnTmpResult = newNodeI(nkAsgn, n.info)
      asgnTmpResult.add(ctx.newTmpResultAccess())
      asgnTmpResult.add(n[0])
      result.add(asgnTmpResult)

    result.add(ctx.newNullifyCurExc(n.info))

    let goto = newTree(nkGotoState, ctx.g.newIntLit(n.info, ctx.nearestFinally))
    result.add(goto)

  of nkSkip:
    discard
  else:
    for i in 0 ..< n.len:
      n[i] = ctx.transformReturnsInTry(n[i])

proc transformClosureIteratorBody(ctx: var Ctx, n: PNode, gotoOut: PNode): PNode =
  result = n
  case n.kind:
    of nkSkip:
      discard

    of nkStmtList, nkStmtListExpr:
      result = addGotoOut(result, gotoOut)
      for i in 0 ..< n.len:
        if n[i].hasYields:
          # Create a new split
          let go = newNodeI(nkGotoState, n[i].info)
          n[i] = ctx.transformClosureIteratorBody(n[i], go)

          let s = newNodeI(nkStmtList, n[i + 1].info)
          for j in i + 1 ..< n.len:
            s.add(n[j])

          n.sons.setLen(i + 1)
          discard ctx.newState(s, go)
          if ctx.transformClosureIteratorBody(s, gotoOut) != s:
            internalError(ctx.g.config, "transformClosureIteratorBody != s")
          break

    of nkYieldStmt:
      result = newNodeI(nkStmtList, n.info)
      result.add(n)
      result.add(gotoOut)

    of nkElse, nkElseExpr:
      result[0] = addGotoOut(result[0], gotoOut)
      result[0] = ctx.transformClosureIteratorBody(result[0], gotoOut)

    of nkElifBranch, nkElifExpr, nkOfBranch:
      result[^1] = addGotoOut(result[^1], gotoOut)
      result[^1] = ctx.transformClosureIteratorBody(result[^1], gotoOut)

    of nkIfStmt, nkCaseStmt:
      for i in 0 ..< n.len:
        n[i] = ctx.transformClosureIteratorBody(n[i], gotoOut)
      if n[^1].kind != nkElse:
        # We don't have an else branch, but every possible branch has to end with
        # gotoOut, so add else here.
        let elseBranch = newTree(nkElse, gotoOut)
        n.add(elseBranch)

    of nkWhileStmt:
      # while e:
      #   s
      # ->
      # BEGIN_STATE:
      #   if e:
      #     s
      #     goto BEGIN_STATE
      #   else:
      #     goto OUT

      result = newNodeI(nkGotoState, n.info)

      let s = newNodeI(nkStmtList, n.info)
      discard ctx.newState(s, result)
      let ifNode = newNodeI(nkIfStmt, n.info)
      let elifBranch = newNodeI(nkElifBranch, n.info)
      elifBranch.add(n[0])

      var body = addGotoOut(n[1], result)

      body = ctx.transformBreaksAndContinuesInWhile(body, result, gotoOut)
      body = ctx.transformClosureIteratorBody(body, result)

      elifBranch.add(body)
      ifNode.add(elifBranch)

      let elseBranch = newTree(nkElse, gotoOut)
      ifNode.add(elseBranch)
      s.add(ifNode)

    of nkBlockStmt:
      result[1] = addGotoOut(result[1], gotoOut)
      result[1] = ctx.transformBreaksInBlock(result[1], result[0], gotoOut)
      result[1] = ctx.transformClosureIteratorBody(result[1], gotoOut)

    of nkTryStmt:
      # See explanation above about how this works
      ctx.hasExceptions = true

      result = newNodeI(nkGotoState, n.info)
      var tryBody = toStmtList(n[0])
      var exceptBody = ctx.collectExceptState(n)
      var finallyBody = newTree(nkStmtList, getFinallyNode(ctx, n))
      finallyBody = ctx.transformReturnsInTry(finallyBody)
      finallyBody.add(ctx.newEndFinallyNode(finallyBody.info))

      # The following index calculation is based on the knowledge how state
      # indexes are assigned
      let tryIdx = ctx.states.len
      var exceptIdx, finallyIdx: int
      if exceptBody.kind != nkEmpty:
        exceptIdx = -(tryIdx + 1)
        finallyIdx = tryIdx + 2
      else:
        exceptIdx = tryIdx + 1
        finallyIdx = tryIdx + 1

      let outToFinally = newNodeI(nkGotoState, finallyBody.info)

      block: # Create initial states.
        let oldExcHandlingState = ctx.curExcHandlingState
        ctx.curExcHandlingState = exceptIdx
        let realTryIdx = ctx.newState(tryBody, result)
        assert(realTryIdx == tryIdx)

        if exceptBody.kind != nkEmpty:
          ctx.curExcHandlingState = finallyIdx
          let realExceptIdx = ctx.newState(exceptBody, nil)
          assert(realExceptIdx == -exceptIdx)

        ctx.curExcHandlingState = oldExcHandlingState
        let realFinallyIdx = ctx.newState(finallyBody, outToFinally)
        assert(realFinallyIdx == finallyIdx)

      block: # Subdivide the states
        let oldNearestFinally = ctx.nearestFinally
        ctx.nearestFinally = finallyIdx

        let oldExcHandlingState = ctx.curExcHandlingState

        ctx.curExcHandlingState = exceptIdx

        if ctx.transformReturnsInTry(tryBody) != tryBody:
          internalError(ctx.g.config, "transformReturnsInTry != tryBody")
        if ctx.transformClosureIteratorBody(tryBody, outToFinally) != tryBody:
          internalError(ctx.g.config, "transformClosureIteratorBody != tryBody")

        ctx.curExcHandlingState = finallyIdx
        ctx.addElseToExcept(exceptBody)
        if ctx.transformReturnsInTry(exceptBody) != exceptBody:
          internalError(ctx.g.config, "transformReturnsInTry != exceptBody")
        if ctx.transformClosureIteratorBody(exceptBody, outToFinally) != exceptBody:
          internalError(ctx.g.config, "transformClosureIteratorBody != exceptBody")

        ctx.curExcHandlingState = oldExcHandlingState
        ctx.nearestFinally = oldNearestFinally
        if ctx.transformClosureIteratorBody(finallyBody, gotoOut) != finallyBody:
          internalError(ctx.g.config, "transformClosureIteratorBody != finallyBody")

    of nkGotoState, nkForStmt:
      internalError(ctx.g.config, "closure iter " & $n.kind)

    else:
      for i in 0 ..< n.len:
        n[i] = ctx.transformClosureIteratorBody(n[i], gotoOut)

proc stateFromGotoState(n: PNode): int =
  assert(n.kind == nkGotoState)
  result = n[0].intVal.int

proc transformStateAssignments(ctx: var Ctx, n: PNode): PNode =
  # This transforms 3 patterns:
  ########################## 1
  # yield e
  # goto STATE
  # ->
  # :state = STATE
  # return e
  ########################## 2
  # goto STATE
  # ->
  # :state = STATE
  # break :stateLoop
  ########################## 3
  # return e
  # ->
  # :state = -1
  # return e
  #
  result = n
  case n.kind
  of nkStmtList, nkStmtListExpr:
    if n.len != 0 and n[0].kind == nkYieldStmt:
      assert(n.len == 2)
      assert(n[1].kind == nkGotoState)

      result = newNodeI(nkStmtList, n.info)
      result.add(ctx.newStateAssgn(stateFromGotoState(n[1])))

      var retStmt = newNodeI(nkReturnStmt, n.info)
      if n[0].sons[0].kind != nkEmpty:
        var a = newNodeI(nkAsgn, n[0].sons[0].info)
        var retVal = n[0].sons[0] #liftCapturedVars(n.sons[0], owner, d, c)
        addSon(a, newSymNode(getClosureIterResult(ctx.g, ctx.fn)))
        addSon(a, retVal)
        retStmt.add(a)
      else:
        retStmt.add(ctx.g.emptyNode)

      result.add(retStmt)
    else:
      for i in 0 ..< n.len:
        n[i] = ctx.transformStateAssignments(n[i])

  of nkSkip:
    discard

  of nkReturnStmt:
    result = newNodeI(nkStmtList, n.info)
    result.add(ctx.newStateAssgn(-1))
    result.add(n)

  of nkGotoState:
    result = newNodeI(nkStmtList, n.info)
    result.add(ctx.newStateAssgn(stateFromGotoState(n)))

    let breakState = newNodeI(nkBreakStmt, n.info)
    breakState.add(newSymNode(ctx.stateLoopLabel))
    result.add(breakState)

  else:
    for i in 0 ..< n.len:
      n[i] = ctx.transformStateAssignments(n[i])

proc skipStmtList(ctx: Ctx; n: PNode): PNode =
  result = n
  while result.kind in {nkStmtList}:
    if result.len == 0: return ctx.g.emptyNode
    result = result[0]

proc skipEmptyStates(ctx: Ctx, stateIdx: int): int =
  # Returns first non-empty state idx for `stateIdx`. Returns `stateIdx` if
  # it is not empty
  var maxJumps = ctx.states.len # maxJumps used only for debugging purposes.
  var stateIdx = stateIdx
  while true:
    let label = stateIdx
    if label == ctx.exitStateIdx: break
    var newLabel = label
    if label == -1:
      newLabel = ctx.exitStateIdx
    else:
      let fs = skipStmtList(ctx, ctx.states[label][1])
      if fs.kind == nkGotoState:
        newLabel = fs[0].intVal.int
    if label == newLabel: break
    stateIdx = newLabel
    dec maxJumps
    if maxJumps == 0:
      assert(false, "Internal error")

  result = ctx.states[stateIdx][0].intVal.int

proc skipThroughEmptyStates(ctx: var Ctx, n: PNode): PNode =
  result = n
  case n.kind
  of nkSkip:
    discard
  of nkGotoState:
    result = copyTree(n)
    result[0].intVal = ctx.skipEmptyStates(result[0].intVal.int)
  else:
    for i in 0 ..< n.len:
      n[i] = ctx.skipThroughEmptyStates(n[i])

proc newArrayType(g: ModuleGraph; n: int, t: PType, owner: PSym): PType =
  result = newType(tyArray, owner)

  let rng = newType(tyRange, owner)
  rng.n = newTree(nkRange, g.newIntLit(owner.info, 0), g.newIntLit(owner.info, n))
  rng.rawAddSon(t)

  result.rawAddSon(rng)
  result.rawAddSon(t)

proc createExceptionTable(ctx: var Ctx): PNode {.inline.} =
  result = newNodeI(nkBracket, ctx.fn.info)
  result.typ = ctx.g.newArrayType(ctx.exceptionTable.len, ctx.g.getSysType(ctx.fn.info, tyInt16), ctx.fn)

  for i in ctx.exceptionTable:
    let elem = newIntNode(nkIntLit, i)
    elem.typ = ctx.g.getSysType(ctx.fn.info, tyInt16)
    result.add(elem)

proc newCatchBody(ctx: var Ctx, info: TLineInfo): PNode {.inline.} =
  # Generates the code:
  # :state = exceptionTable[:state]
  # if :state == 0: raise
  # :unrollFinally = :state > 0
  # if :state < 0:
  #   :state = -:state
  # :curExc = getCurrentException()

  result = newNodeI(nkStmtList, info)

  let intTyp = ctx.g.getSysType(info, tyInt)
  let boolTyp = ctx.g.getSysType(info, tyBool)

  # :state = exceptionTable[:state]
  block:

    # exceptionTable[:state]
    let getNextState = newTree(nkBracketExpr,
      ctx.createExceptionTable(),
      ctx.newStateAccess())
    getNextState.typ = intTyp

    # :state = exceptionTable[:state]
    result.add(ctx.newStateAssgn(getNextState))

  # if :state == 0: raise
  block:
    let cond = newTree(nkCall,
      ctx.g.getSysMagic(info, "==", mEqI).newSymNode(),
      ctx.newStateAccess(),
      newIntTypeNode(nkIntLit, 0, intTyp))
    cond.typ = boolTyp

    let raiseStmt = newTree(nkRaiseStmt, ctx.g.emptyNode)
    let ifBranch = newTree(nkElifBranch, cond, raiseStmt)
    let ifStmt = newTree(nkIfStmt, ifBranch)
    result.add(ifStmt)

  # :unrollFinally = :state > 0
  block:
    let cond = newTree(nkCall,
      ctx.g.getSysMagic(info, "<", mLtI).newSymNode,
      newIntTypeNode(nkIntLit, 0, intTyp),
      ctx.newStateAccess())
    cond.typ = boolTyp

    let asgn = newTree(nkAsgn, ctx.newUnrollFinallyAccess(info), cond)
    result.add(asgn)

  # if :state < 0: :state = -:state
  block:
    let cond = newTree(nkCall,
      ctx.g.getSysMagic(info, "<", mLtI).newSymNode,
      ctx.newStateAccess(),
      newIntTypeNode(nkIntLit, 0, intTyp))
    cond.typ = boolTyp

    let negateState = newTree(nkCall,
      ctx.g.getSysMagic(info, "-", mUnaryMinusI).newSymNode,
      ctx.newStateAccess())
    negateState.typ = intTyp

    let ifBranch = newTree(nkElifBranch, cond, ctx.newStateAssgn(negateState))
    let ifStmt = newTree(nkIfStmt, ifBranch)
    result.add(ifStmt)

  # :curExc = getCurrentException()
  block:
    result.add(newTree(nkAsgn,
      ctx.newCurExcAccess(),
      ctx.g.callCodegenProc("getCurrentException", ctx.g.emptyNode)))

proc wrapIntoTryExcept(ctx: var Ctx, n: PNode): PNode {.inline.} =
  let setupExc = newTree(nkCall,
    newSymNode(ctx.g.getCompilerProc("closureIterSetupExc")),
    ctx.newCurExcAccess())

  let tryBody = newTree(nkStmtList, setupExc, n)
  let exceptBranch = newTree(nkExceptBranch, ctx.newCatchBody(ctx.fn.info))

  result = newTree(nkTryStmt, tryBody, exceptBranch)

proc wrapIntoStateLoop(ctx: var Ctx, n: PNode): PNode =
  # while true:
  #   block :stateLoop:
  #     gotoState :state
  #     local vars decl (if needed)
  #     body # Might get wrapped in try-except
  let loopBody = newNodeI(nkStmtList, n.info)
  result = newTree(nkWhileStmt, newSymNode(ctx.g.getSysSym(n.info, "true")), loopBody)
  result.info = n.info

  let localVars = newNodeI(nkStmtList, n.info)
  if not ctx.stateVarSym.isNil:
    let varSect = newNodeI(nkVarSection, n.info)
    addVar(varSect, newSymNode(ctx.stateVarSym))
    localVars.add(varSect)

    if not ctx.tempVars.isNil:
      localVars.add(ctx.tempVars)

  let blockStmt = newNodeI(nkBlockStmt, n.info)
  blockStmt.add(newSymNode(ctx.stateLoopLabel))

  let gs = newNodeI(nkGotoState, n.info)
  gs.add(ctx.newStateAccess())
  gs.add(ctx.g.newIntLit(n.info, ctx.states.len - 1))

  var blockBody = newTree(nkStmtList, gs, localVars, n)
  if ctx.hasExceptions:
    blockBody = ctx.wrapIntoTryExcept(blockBody)

  blockStmt.add(blockBody)
  loopBody.add(blockStmt)

proc deleteEmptyStates(ctx: var Ctx) =
  let goOut = newTree(nkGotoState, ctx.g.newIntLit(TLineInfo(), -1))
  ctx.exitStateIdx = ctx.newState(goOut, nil)

  # Apply new state indexes and mark unused states with -1
  var iValid = 0
  for i, s in ctx.states:
    let body = skipStmtList(ctx, s[1])
    if body.kind == nkGotoState and i != ctx.states.len - 1 and i != 0:
      # This is an empty state. Mark with -1.
      s[0].intVal = -1
    else:
      s[0].intVal = iValid
      inc iValid

  for i, s in ctx.states:
    let body = skipStmtList(ctx, s[1])
    if body.kind != nkGotoState or i == 0:
      discard ctx.skipThroughEmptyStates(s)
      let excHandlState = ctx.exceptionTable[i]
      if excHandlState < 0:
        ctx.exceptionTable[i] = -ctx.skipEmptyStates(-excHandlState)
      elif excHandlState != 0:
        ctx.exceptionTable[i] = ctx.skipEmptyStates(excHandlState)

  var i = 0
  while i < ctx.states.len - 1:
    let fs = skipStmtList(ctx, ctx.states[i][1])
    if fs.kind == nkGotoState and i != 0:
      ctx.states.delete(i)
      ctx.exceptionTable.delete(i)
    else:
      inc i

proc transformClosureIterator*(g: ModuleGraph; fn: PSym, n: PNode): PNode =
  var ctx: Ctx
  ctx.g = g
  ctx.fn = fn

  if getEnvParam(fn).isNil:
    # Lambda lifting was not done yet. Use temporary :state sym, which
    # be handled specially by lambda lifting. Local temp vars (if needed)
    # should folllow the same logic.
    ctx.stateVarSym = newSym(skVar, getIdent(ctx.g.cache, ":state"), fn, fn.info)
    ctx.stateVarSym.typ = g.createClosureIterStateType(fn)
  ctx.stateLoopLabel = newSym(skLabel, getIdent(ctx.g.cache, ":stateLoop"), fn, fn.info)
  var n = n.toStmtList

  discard ctx.newState(n, nil)
  let gotoOut = newTree(nkGotoState, g.newIntLit(n.info, -1))

  var ns = false
  n = ctx.lowerStmtListExprs(n, ns)

  if n.hasYieldsInExpressions():
    internalError(ctx.g.config, "yield in expr not lowered")

  # Splitting transformation
  discard ctx.transformClosureIteratorBody(n, gotoOut)

  # Optimize empty states away
  ctx.deleteEmptyStates()

  # Make new body by concating the list of states
  result = newNodeI(nkStmtList, n.info)
  for s in ctx.states:
    assert(s.len == 2)
    let body = s[1]
    s.sons.del(1)
    result.add(s)
    result.add(body)

  result = ctx.transformStateAssignments(result)
  result = ctx.wrapIntoStateLoop(result)

  # echo "TRANSFORM TO STATES: "
  # echo renderTree(result)

  # echo "exception table:"
  # for i, e in ctx.exceptionTable:
  #   echo i, " -> ", e