File: trtree.nim

package info (click to toggle)
nim 0.19.4-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 462,356 kB
  • sloc: sh: 11,089; ansic: 4,699; makefile: 706; python: 309; sql: 297; asm: 141; xml: 13
file content (657 lines) | stat: -rw-r--r-- 20,385 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
discard """
  output: '''1 [2, 3, 4, 7]
[0, 0]'''
"""

# Nim RTree and R*Tree implementation
# S. Salewski, 06-JAN-2018

# http://www-db.deis.unibo.it/courses/SI-LS/papers/Gut84.pdf
# http://dbs.mathematik.uni-marburg.de/publications/myPapers/1990/BKSS90.pdf

# RT: range type like float, int
# D: Dimension
# M: Max entries in one node
# LT: leaf type

type
  Dim* = static[int]
  Ext[RT] = tuple[a, b: RT] # extend (range)
  Box*[D: Dim; RT] = array[D, Ext[RT]] # Rectangle for 2D
  BoxCenter*[D: Dim; RT] = array[D, RT]
  L*[D: Dim; RT, LT] = tuple[b: Box[D, RT]; l: LT] # called Index Entry or index record in the Guttman paper
  H[M, D: Dim; RT, LT] = ref object of RootRef
    parent: H[M, D, RT, LT]
    numEntries: int
    level: int
  N[M, D: Dim; RT, LT] = tuple[b: Box[D, RT]; n: H[M, D, RT, LT]]
  LA[M, D: Dim; RT, LT] = array[M, L[D, RT, LT]]
  NA[M, D: Dim; RT, LT] = array[M, N[M, D, RT, LT]]
  Leaf[M, D: Dim; RT, LT] = ref object of H[M, D, RT, LT]
    a: LA[M, D, RT, LT]
  Node[M, D: Dim; RT, LT] = ref object of H[M, D, RT, LT]
    a: NA[M, D, RT, LT]

  RTree*[M, D: Dim; RT, LT] = ref object of RootRef
    root: H[M, D, RT, LT]
    bigM: int
    m: int

  RStarTree*[M, D: Dim; RT, LT] = ref object of RTree[M, D, RT, LT]
    firstOverflow: array[32, bool]
    p: int

proc newLeaf[M, D: Dim; RT, LT](): Leaf[M, D, RT, LT] =
  new result

proc newNode[M, D: Dim; RT, LT](): Node[M, D, RT, LT] =
  new result

proc newRTree*[M, D: Dim; RT, LT](minFill: range[30 .. 50] = 40): RTree[M, D, RT, LT] =
  assert(M > 1 and M < 101)
  new result
  result.bigM = M
  result.m = M * minFill div 100
  result.root = newLeaf[M, D, RT, LT]()

proc newRStarTree*[M, D: Dim; RT, LT](minFill: range[30 .. 50] = 40): RStarTree[M, D, RT, LT] =
  assert(M > 1 and M < 101)
  new result
  result.bigM = M
  result.m = M * minFill div 100
  result.p = M * 30 div 100
  result.root = newLeaf[M, D, RT, LT]()

proc center(r: Box): auto =#BoxCenter[r.len, type(r[0].a)] =
  var result: BoxCenter[r.len, type(r[0].a)]
  for i in 0 .. r.high:
    when r[0].a is SomeInteger:
      result[i] = (r[i].a + r[i].b) div 2
    elif r[0].a is SomeFloat:
      result[i] = (r[i].a + r[i].b) / 2
    else: assert false
  return result

proc distance(c1, c2: BoxCenter): auto =
  var result: type(c1[0])
  for i in 0 .. c1.high:
    result += (c1[i] - c2[i]) * (c1[i] - c2[i])
  return result

proc overlap(r1, r2: Box): auto =
  result = type(r1[0].a)(1)
  for i in 0 .. r1.high:
    result *= (min(r1[i]. b, r2[i]. b) - max(r1[i]. a, r2[i]. a))
    if result <= 0: return 0

proc union(r1, r2: Box): Box =
  for i in 0 .. r1.high:
    result[i]. a = min(r1[i]. a, r2[i]. a)
    result[i]. b = max(r1[i]. b, r2[i]. b)

proc intersect(r1, r2: Box): bool =
  for i in 0 .. r1.high:
    if r1[i].b < r2[i].a or r1[i].a > r2[i].b:
      return false
  return true

proc area(r: Box): auto = #type(r[0].a) =
  result = type(r[0].a)(1)
  for i in 0 .. r.high:
    result *= r[i]. b - r[i]. a

proc margin(r: Box): auto = #type(r[0].a) =
  result = type(r[0].a)(0)
  for i in 0 .. r.high:
    result += r[i]. b - r[i]. a

# how much enlargement does r1 need to include r2
proc enlargement(r1, r2: Box): auto =
  area(union(r1, r2)) - area(r1)

proc search*[M, D: Dim; RT, LT](t: RTree[M, D, RT, LT]; b: Box[D, RT]): seq[LT] =
  proc s[M, D: Dim; RT, LT](n: H[M, D, RT, LT]; b: Box[D, RT]; res: var seq[LT]) =
    if n of Node[M, D, RT, LT]:
      let h = Node[M, D, RT, LT](n)
      for i in 0 ..< n.numEntries:
        if intersect(h.a[i].b, b):
          s(h.a[i].n, b, res)
    elif n of Leaf[M, D, RT, LT]:
      let h = Leaf[M, D, RT, LT](n)
      for i in 0 ..< n.numEntries:
        if intersect(h.a[i].b, b):
          res.add(h.a[i].l)
    else: assert false
  result = newSeq[LT]()
  s(t.root, b, result)

# Insertion
# a R*TREE proc
proc chooseSubtree[M, D: Dim; RT, LT](t: RTree[M, D, RT, LT]; b: Box[D, RT]; level: int): H[M, D, RT, LT] =
  assert level >= 0
  var n = t.root
  while n.level > level:
    let nn = Node[M, D, RT, LT](n)
    var i0 = 0 # selected index
    var minLoss = type(b[0].a).high
    if n.level == 1: # childreen are leaves -- determine the minimum overlap costs
      for i in 0 ..< n.numEntries:
        let nx = union(nn.a[i].b, b)
        var loss = 0
        for j in 0 ..< n.numEntries:
          if i == j: continue
          loss += (overlap(nx, nn.a[j].b) - overlap(nn.a[i].b, nn.a[j].b)) # overlap (i, j) == (j, i), so maybe cache that?
        var rep = loss < minLoss
        if loss == minLoss:
          let l2 = enlargement(nn.a[i].b, b) - enlargement(nn.a[i0].b, b)
          rep = l2 < 0
          if l2 == 0:
            let l3 = area(nn.a[i].b) - area(nn.a[i0].b)
            rep = l3 < 0
            if l3 == 0:
              rep = nn.a[i].n.numEntries < nn.a[i0].n.numEntries
        if rep:
          i0 = i
          minLoss = loss
    else:
      for i in 0 ..< n.numEntries:
        let loss = enlargement(nn.a[i].b, b)
        var rep = loss < minLoss
        if loss == minLoss:
          let l3 = area(nn.a[i].b) - area(nn.a[i0].b)
          rep = l3 < 0
          if l3 == 0:
            rep = nn.a[i].n.numEntries < nn.a[i0].n.numEntries
        if rep:
          i0 = i
          minLoss = loss
    n = nn.a[i0].n
  return n

proc chooseLeaf[M, D: Dim; RT, LT](t: RTree[M, D, RT, LT]; b: Box[D, RT]; level: int): H[M, D, RT, LT] =
  assert level >= 0
  var n = t.root
  while n.level > level:
    var j = -1 # selected index
    var x: type(b[0].a)
    let nn = Node[M, D, RT, LT](n)
    for i in 0 ..< n.numEntries:
      let h = enlargement(nn.a[i].b, b)
      if j < 0 or h < x or (x == h and area(nn.a[i].b) < area(nn.a[j].b)):
        x = h
        j = i
    n = nn.a[j].n
  return n

proc pickSeeds[M, D: Dim; RT, LT](t: RTree[M, D, RT, LT]; n: Node[M, D, RT, LT] | Leaf[M, D, RT, LT]; bx: Box[D, RT]): (int, int) =
  var i0, j0: int
  var bi, bj: type(bx)
  var largestWaste = type(bx[0].a).low
  for i in -1 .. n.a.high:
    for j in 0 .. n.a.high:
      if unlikely(i == j): continue
      if unlikely(i < 0):
        bi = bx
      else:
        bi = n.a[i].b
      bj = n.a[j].b
      let b = union(bi, bj)
      let h = area(b) - area(bi) - area(bj)
      if h > largestWaste:
        largestWaste = h
        i0 = i
        j0 = j
  return (i0, j0)

proc pickNext[M, D: Dim; RT, LT](t: RTree[M, D, RT, LT]; n0, n1, n2: Node[M, D, RT, LT] | Leaf[M, D, RT, LT]; b1, b2: Box[D, RT]): int =
  let a1 = area(b1)
  let a2 = area(b2)
  var d = type(a1).low
  for i in 0 ..< n0.numEntries:
    let d1 = area(union(b1, n0.a[i].b)) - a1
    let d2 = area(union(b2, n0.a[i].b)) - a2
    if (d1 - d2) * (d1 - d2) > d:
      result = i
      d = (d1 - d2) * (d1 - d2)

from algorithm import SortOrder, sort
proc sortPlus[T](a: var openArray[T], ax: var T, cmp: proc (x, y: T): int {.closure.}, order = algorithm.SortOrder.Ascending) =
  var j = 0
  let sign = if order == algorithm.SortOrder.Ascending: 1 else: -1
  for i in 1 .. a.high:
    if cmp(a[i], a[j]) * sign < 0:
      j = i
  if cmp(a[j], ax) * sign < 0:
    swap(ax, a[j])
  a.sort(cmp, order)

# R*TREE procs
proc rstarSplit[M, D: Dim; RT, LT](t: RStarTree[M, D, RT, LT]; n: var Node[M, D, RT, LT] | var Leaf[M, D, RT, LT]; lx: L[D, RT, LT] | N[M, D, RT, LT]): type(n) =
  type NL = type(lx)
  var nBest: type(n)
  new nBest
  var lx = lx
  when n is Node[M, D, RT, LT]:
    lx.n.parent = n
  var lxbest: type(lx)
  var m0 = lx.b[0].a.high
  for d2 in 0 ..< 2 * D:
    let d = d2 div 2
    if d2 mod 2 == 0:
      sortPlus(n.a, lx, proc (x, y: NL):  int = cmp(x.b[d].a, y.b[d].a))
    else:
      sortPlus(n.a, lx, proc (x, y: NL):  int = cmp(x.b[d].b, y.b[d].b))
    for i in t.m - 1 .. n.a.high - t.m + 1:
      var b = lx.b
      for j in 0 ..< i: # we can precalculate union() for range 0 .. t.m - 1, but that seems to give no real benefit. Maybe for very large M?
        #echo "x",j
        b = union(n.a[j].b, b)
      var m = margin(b)
      b = n.a[^1].b
      for j in i ..< n.a.high: # again, precalculation of tail would be possible
        #echo "y",j
        b = union(n.a[j].b, b)
      m += margin(b)
      if m < m0:
        nbest[] = n[]
        lxbest = lx
        m0 = m
  var i0 = -1
  var o0 = lx.b[0].a.high
  for i in t.m - 1 .. n.a.high - t.m + 1:
    var b1 = lxbest.b
    for j in 0 ..< i:
      b1 = union(nbest.a[j].b, b1)
    var b2 = nbest.a[^1].b
    for j in i ..< n.a.high:
      b2 = union(nbest.a[j].b, b2)
    let o = overlap(b1, b2)
    if o < o0:
      i0 = i
      o0 = o
  n.a[0] = lxbest
  for i in 0 ..< i0:
    n.a[i + 1] = nbest.a[i]
  new result
  result.level = n.level
  result.parent = n.parent
  for i in i0 .. n.a.high:
    result.a[i - i0] = nbest.a[i]
  n.numEntries = i0 + 1
  result.numEntries = M - i0
  when n is Node[M, D, RT, LT]:
    for i in 0 ..< result.numEntries:
      result.a[i].n.parent = result

proc quadraticSplit[M, D: Dim; RT, LT](t: RTree[M, D, RT, LT]; n: var Node[M, D, RT, LT] | var Leaf[M, D, RT, LT]; lx: L[D, RT, LT] | N[M, D, RT, LT]): type(n) =
  var n1, n2: type(n)
  var s1, s2: int
  new n1
  new n2
  n1.parent = n.parent
  n2.parent = n.parent
  n1.level = n.level
  n2.level = n.level
  var lx = lx
  when n is Node[M, D, RT, LT]:
    lx.n.parent = n
  (s1, s2) = pickSeeds(t, n, lx.b)
  assert s1 >= -1 and s2 >= 0
  if unlikely(s1 < 0):
    n1.a[0] = lx
  else:
    n1.a[0] = n.a[s1]
    dec(n.numEntries)
    if s2 == n.numEntries: # important fix
      s2 = s1
    n.a[s1] = n.a[n.numEntries]
  inc(n1.numEntries)
  var b1 = n1.a[0].b
  n2.a[0] = n.a[s2]
  dec(n.numEntries)
  n.a[s2] = n.a[n.numEntries]
  inc(n2.numEntries)
  var b2 = n2.a[0].b
  if s1 >= 0:
    n.a[n.numEntries] = lx
    inc(n.numEntries)
  while n.numEntries > 0 and n1.numEntries < (t.bigM + 1 - t.m) and n2.numEntries < (t.bigM + 1 - t.m):
    let next = pickNext(t, n, n1, n2, b1, b2)
    let d1 = area(union(b1, n.a[next].b)) - area(b1)
    let d2 = area(union(b2, n.a[next].b)) - area(b2)
    if (d1 < d2) or (d1 == d2 and ((area(b1) < area(b2)) or (area(b1) == area(b2) and n1.numEntries < n2.numEntries))):
      n1.a[n1.numEntries] = n.a[next]
      b1 = union(b1, n.a[next].b)
      inc(n1.numEntries)
    else:
      n2.a[n2.numEntries] = n.a[next]
      b2 = union(b2, n.a[next].b)
      inc(n2.numEntries)
    dec(n.numEntries)
    n.a[next] = n.a[n.numEntries]
  if n.numEntries == 0:
    discard
  elif n1.numEntries == (t.bigM + 1 - t.m):
    while n.numEntries > 0:
      dec(n.numEntries)
      n2.a[n2.numEntries] = n.a[n.numEntries]
      inc(n2.numEntries)
  elif n2.numEntries == (t.bigM + 1 - t.m):
    while n.numEntries > 0:
      dec(n.numEntries)
      n1.a[n1.numEntries] = n.a[n.numEntries]
      inc(n1.numEntries)
  when n is Node[M, D, RT, LT]:
    for i in 0 ..< n2.numEntries:
      n2.a[i].n.parent = n2
  n[] = n1[]
  return n2

proc overflowTreatment[M, D: Dim; RT, LT](t: RStarTree[M, D, RT, LT]; n: var Node[M, D, RT, LT] | var Leaf[M, D, RT, LT]; lx: L[D, RT, LT] | N[M, D, RT, LT]): type(n)

proc adjustTree[M, D: Dim; RT, LT](t: RTree[M, D, RT, LT]; l, ll: H[M, D, RT, LT]; hb: Box[D, RT]) =
  var n = l
  var nn = ll
  assert n != nil
  while true:
    if n == t.root:
      if nn == nil:
        break
      t.root = newNode[M, D, RT, LT]()
      t.root.level = n.level + 1
      Node[M, D, RT, LT](t.root).a[0].n = n
      n.parent = t.root
      nn.parent = t.root
      t.root.numEntries = 1
    let p = Node[M, D, RT, LT](n.parent)
    var i = 0
    while p.a[i].n != n:
      inc(i)
    var b: type(p.a[0].b)
    if n of Leaf[M, D, RT, LT]:
      when false:#if likely(nn.isNil): # no performance gain
        b = union(p.a[i].b, Leaf[M, D, RT, LT](n).a[n.numEntries - 1].b)
      else:
        b = Leaf[M, D, RT, LT](n).a[0].b
        for j in 1 ..< n.numEntries:
          b = trtree.union(b, Leaf[M, D, RT, LT](n).a[j].b)
    elif n of Node[M, D, RT, LT]:
      b = Node[M, D, RT, LT](n).a[0].b
      for j in 1 ..< n.numEntries:
        b = union(b, Node[M, D, RT, LT](n).a[j].b)
    else:
      assert false
    #if nn.isNil and p.a[i].b == b: break # no performance gain
    p.a[i].b = b
    n = H[M, D, RT, LT](p)
    if unlikely(nn != nil):
      if nn of Leaf[M, D, RT, LT]:
        b = Leaf[M, D, RT, LT](nn).a[0].b
        for j in 1 ..< nn.numEntries:
          b = union(b, Leaf[M, D, RT, LT](nn).a[j].b)
      elif nn of Node[M, D, RT, LT]:
        b = Node[M, D, RT, LT](nn).a[0].b
        for j in 1 ..< nn.numEntries:
          b = union(b, Node[M, D, RT, LT](nn).a[j].b)
      else:
        assert false
      if p.numEntries < p.a.len:
        p.a[p.numEntries].b = b
        p.a[p.numEntries].n = nn
        inc(p.numEntries)
        assert n != nil
        nn = nil
      else:
        let h: N[M, D, RT, LT] = (b, nn)
        if t of RStarTree[M, D, RT, LT]:
          nn = overflowTreatment(RStarTree[M, D, RT, LT](t), p, h)
        elif t of RTree[M, D, RT, LT]:
          nn = quadraticSplit(RTree[M, D, RT, LT](t), p, h)
        else:
          assert false
    assert n == H[M, D, RT, LT](p)
    assert n != nil
    assert t.root != nil

proc insert*[M, D: Dim; RT, LT](t: RTree[M, D, RT, LT]; leaf: N[M, D, RT, LT] | L[D, RT, LT]; level: int = 0) =
  when leaf is N[M, D, RT, LT]:
    assert level > 0
    type NodeLeaf = Node[M, D, RT, LT]
  else:
    assert level == 0
    type NodeLeaf = Leaf[M, D, RT, LT]
  for d in leaf.b:
    assert d.a <= d.b
  let l = NodeLeaf(chooseSubtree(t, leaf.b, level))
  if l.numEntries < l.a.len:
    l.a[l.numEntries] = leaf
    inc(l.numEntries)
    when leaf is N[M, D, RT, LT]:
      leaf.n.parent = l
    adjustTree(t, l, nil, leaf.b)
  else:
    let l2 = quadraticSplit(t, l, leaf)
    assert l2.level == l.level
    adjustTree(t, l, l2, leaf.b)

# R*Tree insert procs
proc rsinsert[M, D: Dim; RT, LT](t: RStarTree[M, D, RT, LT]; leaf: N[M, D, RT, LT] | L[D, RT, LT]; level: int)

proc reInsert[M, D: Dim; RT, LT](t: RStarTree[M, D, RT, LT]; n: var Node[M, D, RT, LT] | var Leaf[M, D, RT, LT]; lx: L[D, RT, LT] | N[M, D, RT, LT]) =
  type NL = type(lx)
  var lx = lx
  var buf: type(n.a)
  let p = Node[M, D, RT, LT](n.parent)
  var i = 0
  while p.a[i].n != n:
    inc(i)
  let c = center(p.a[i].b)
  sortPlus(n.a, lx, proc (x, y: NL):  int = cmp(distance(center(x.b), c), distance(center(y.b), c)))
  n.numEntries = M - t.p
  swap(n.a[n.numEntries], lx)
  inc n.numEntries
  var b = n.a[0].b
  for i in 1 ..< n.numEntries:
    b = union(b, n.a[i].b)
  p.a[i].b = b
  for i in M - t.p + 1 .. n.a.high:
    buf[i] = n.a[i]
  rsinsert(t, lx, n.level)
  for i in M - t.p + 1 .. n.a.high:
    rsinsert(t, buf[i], n.level)

proc overflowTreatment[M, D: Dim; RT, LT](t: RStarTree[M, D, RT, LT]; n: var Node[M, D, RT, LT] | var Leaf[M, D, RT, LT]; lx: L[D, RT, LT] | N[M, D, RT, LT]): type(n) =
  if n.level != t.root.level and t.firstOverflow[n.level]:
    t.firstOverflow[n.level] = false
    reInsert(t, n, lx)
    return nil
  else:
    let l2 = rstarSplit(t, n, lx)
    assert l2.level == n.level
    return l2

proc rsinsert[M, D: Dim; RT, LT](t: RStarTree[M, D, RT, LT]; leaf: N[M, D, RT, LT] | L[D, RT, LT]; level: int) =
  when leaf is N[M, D, RT, LT]:
    assert level > 0
    type NodeLeaf = Node[M, D, RT, LT]
  else:
    assert level == 0
    type NodeLeaf = Leaf[M, D, RT, LT]
  let l = NodeLeaf(chooseSubtree(t, leaf.b, level))
  if l.numEntries < l.a.len:
    l.a[l.numEntries] = leaf
    inc(l.numEntries)
    when leaf is N[M, D, RT, LT]:
      leaf.n.parent = l
    adjustTree(t, l, nil, leaf.b)
  else:
    when leaf is N[M, D, RT, LT]: # TODO do we need this?
      leaf.n.parent = l
    let l2 = overflowTreatment(t, l, leaf)
    if l2 != nil:
      assert l2.level == l.level
      adjustTree(t, l, l2, leaf.b)

proc insert*[M, D: Dim; RT, LT](t: RStarTree[M, D, RT, LT]; leaf: L[D, RT, LT]) =
  for d in leaf.b:
    assert d.a <= d.b
  for i in mitems(t.firstOverflow):
    i = true
  rsinsert(t, leaf, 0)

# delete
proc findLeaf[M, D: Dim; RT, LT](t: RTree[M, D, RT, LT]; leaf: L[D, RT, LT]): Leaf[M, D, RT, LT] =
  proc fl[M, D: Dim; RT, LT](h: H[M, D, RT, LT]; leaf: L[D, RT, LT]): Leaf[M, D, RT, LT] =
    var n = h
    if n of Node[M, D, RT, LT]:
      for i in 0 ..< n.numEntries:
        if intersect(Node[M, D, RT, LT](n).a[i].b, leaf.b):
          let l = fl(Node[M, D, RT, LT](n).a[i].n, leaf)
          if l != nil:
            return l
    elif n of Leaf[M, D, RT, LT]:
      for i in 0 ..< n.numEntries:
        if Leaf[M, D, RT, LT](n).a[i] == leaf:
          return Leaf[M, D, RT, LT](n)
    else:
      assert false
    return nil
  fl(t.root, leaf)

proc condenseTree[M, D: Dim; RT, LT](t: RTree[M, D, RT, LT]; leaf: Leaf[M, D, RT, LT]) =
  var n: H[M, D, RT, LT] = leaf
  var q = newSeq[H[M, D, RT, LT]]()
  var b: type(leaf.a[0].b)
  while n != t.root:
    let p = Node[M, D, RT, LT](n.parent)
    var i = 0
    while p.a[i].n != n:
      inc(i)
    if n.numEntries < t.m:
      dec(p.numEntries)
      p.a[i] = p.a[p.numEntries]
      q.add(n)
    else:
      if n of Leaf[M, D, RT, LT]:
        b = Leaf[M, D, RT, LT](n).a[0].b
        for j in 1 ..< n.numEntries:
          b = union(b, Leaf[M, D, RT, LT](n).a[j].b)
      elif n of Node[M, D, RT, LT]:
        b = Node[M, D, RT, LT](n).a[0].b
        for j in 1 ..< n.numEntries:
          b = union(b, Node[M, D, RT, LT](n).a[j].b)
      else:
        assert false
      p.a[i].b = b
    n = n.parent
  if t of RStarTree[M, D, RT, LT]:
    for n in q:
      if n of Leaf[M, D, RT, LT]:
        for i in 0 ..< n.numEntries:
          for i in mitems(RStarTree[M, D, RT, LT](t).firstOverflow):
            i = true
          rsinsert(RStarTree[M, D, RT, LT](t), Leaf[M, D, RT, LT](n).a[i], 0)
      elif n of Node[M, D, RT, LT]:
        for i in 0 ..< n.numEntries:
          for i in mitems(RStarTree[M, D, RT, LT](t).firstOverflow):
            i = true
          rsinsert(RStarTree[M, D, RT, LT](t), Node[M, D, RT, LT](n).a[i], n.level)
      else:
        assert false
  elif t of RTree[M, D, RT, LT]:
    for n in q:
      if n of Leaf[M, D, RT, LT]:
        for i in 0 ..< n.numEntries:
          insert(RTree[M, D, RT, LT](t), Leaf[M, D, RT, LT](n).a[i])
      elif n of Node[M, D, RT, LT]:
        for i in 0 ..< n.numEntries:
          insert(RTree[M, D, RT, LT](t), Node[M, D, RT, LT](n).a[i], n.level)
      else:
        assert false
  else:
    assert false

proc delete*[M, D: Dim; RT, LT](t: RTree[M, D, RT, LT]; leaf: L[D, RT, LT]): bool {.discardable.} =
  let l = findLeaf(t, leaf)
  if l.isNil:
    return false
  else:
    var i = 0
    while l.a[i] != leaf:
      inc(i)
    dec(l.numEntries)
    l.a[i] = l.a[l.numEntries]
    condenseTree(t, l)
    if t.root.numEntries == 1:
      if t.root of Node[M, D, RT, LT]:
        t.root = Node[M, D, RT, LT](t.root).a[0].n
      t.root.parent = nil
    return true

when isMainModule:

  var t = [4, 1, 3, 2]
  var xt = 7
  sortPlus(t, xt, system.cmp, SortOrder.Ascending)
  echo xt, " ", t

  type
    RSE = L[2, int, int]
    RSeq = seq[RSE]

  proc rseq_search(rs: RSeq; rse: RSE): seq[int] =
    result = newSeq[int]()
    for i in rs:
      if intersect(i.b, rse.b):
        result.add(i.l)

  proc rseq_delete(rs: var RSeq; rse: RSE): bool =
    for i in 0 .. rs.high:
      if rs[i] == rse:
        #rs.delete(i)
        rs[i] = rs[rs.high]
        rs.setLen(rs.len - 1)
        return true

  import random, algorithm

  proc test(n: int) =
    var b: Box[2, int]
    echo center(b)
    var x1, x2, y1, y2: int
    var t = newRStarTree[8, 2, int, int]()
    #var t = newRTree[8, 2, int, int]()
    var rs = newSeq[RSE]()
    for i in 0 .. 5:
      for i in 0 .. n - 1:
        x1 = rand(1000)
        y1 = rand(1000)
        x2 = x1 + rand(25)
        y2 = y1 + rand(25)
        b = [(x1, x2), (y1, y2)]
        let el: L[2, int, int] = (b, i + 7)
        t.insert(el)
        rs.add(el)

      for i in 0 .. (n div 4):
        let j = rand(rs.high)
        var el = rs[j]
        assert t.delete(el)
        assert rs.rseq_delete(el)

      for i in 0 .. n - 1:
        x1 = rand(1000)
        y1 = rand(1000)
        x2 = x1 + rand(100)
        y2 = y1 + rand(100)
        b = [(x1, x2), (y1, y2)]
        let el: L[2, int, int] = (b, i)
        let r = search(t, b)
        let r2 = rseq_search(rs, el)
        assert r.len == r2.len
        assert r.sorted(system.cmp) == r2.sorted(system.cmp)

  test(1500)

  # 651 lines