1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
|
#
#
# The Nim Compiler
# (c) Copyright 2017 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## Data flow analysis for Nim.
## We transform the AST into a linear list of instructions first to
## make this easier to handle: There are only 2 different branching
## instructions: 'goto X' is an unconditional goto, 'fork X'
## is a conditional goto (either the next instruction or 'X' can be
## taken). Exhaustive case statements are translated
## so that the last branch is transformed into an 'else' branch.
## ``return`` and ``break`` are all covered by 'goto'.
##
## Control flow through exception handling:
## Contrary to popular belief, exception handling doesn't cause
## many problems for this DFA representation, ``raise`` is a statement
## that ``goes to`` the outer ``finally`` or ``except`` if there is one,
## otherwise it is the same as ``return``. Every call is treated as
## a call that can potentially ``raise``. However, without a surrounding
## ``try`` we don't emit these ``fork ReturnLabel`` instructions in order
## to speed up the dataflow analysis passes.
##
## The data structures and algorithms used here are inspired by
## "A Graph–Free Approach to Data–Flow Analysis" by Markus Mohnen.
## https://link.springer.com/content/pdf/10.1007/3-540-45937-5_6.pdf
import ast, types, intsets, lineinfos, renderer, asciitables
from patterns import sameTrees
type
InstrKind* = enum
goto, fork, def, use
Instr* = object
n*: PNode # contains the def/use location.
case kind*: InstrKind
of goto, fork: dest*: int
else: discard
ControlFlowGraph* = seq[Instr]
TPosition = distinct int
TBlock = object
case isTryBlock: bool
of false:
label: PSym
breakFixups: seq[(TPosition, seq[PNode])] #Contains the gotos for the breaks along with their pending finales
of true:
finale: PNode
raiseFixups: seq[TPosition] #Contains the gotos for the raises
Con = object
code: ControlFlowGraph
inTryStmt: int
blocks: seq[TBlock]
owner: PSym
proc codeListing(c: ControlFlowGraph, start = 0; last = -1): string =
# for debugging purposes
# first iteration: compute all necessary labels:
var jumpTargets = initIntSet()
let last = if last < 0: c.len-1 else: min(last, c.len-1)
for i in start..last:
if c[i].kind in {goto, fork}:
jumpTargets.incl(i+c[i].dest)
var i = start
while i <= last:
if i in jumpTargets: result.add("L" & $i & ":\n")
result.add "\t"
result.add ($i & " " & $c[i].kind)
result.add "\t"
case c[i].kind
of def, use:
result.add renderTree(c[i].n)
of goto, fork:
result.add "L"
result.addInt c[i].dest+i
result.add("\t#")
result.add($c[i].n.info.line)
result.add("\n")
inc i
if i in jumpTargets: result.add("L" & $i & ": End\n")
proc echoCfg*(c: ControlFlowGraph; start = 0; last = -1) {.deprecated.} =
## echos the ControlFlowGraph for debugging purposes.
echo codeListing(c, start, last).alignTable
proc forkI(c: var Con; n: PNode): TPosition =
result = TPosition(c.code.len)
c.code.add Instr(n: n, kind: fork, dest: 0)
proc gotoI(c: var Con; n: PNode): TPosition =
result = TPosition(c.code.len)
c.code.add Instr(n: n, kind: goto, dest: 0)
#[
Join is no more
===============
Instead of generating join instructions we adapt our traversal of the CFG.
When encountering a fork we split into two paths, we follow the path
starting at "pc + 1" until it encounters the joinpoint: "pc + forkInstr.dest".
If we encounter gotos that would jump further than the current joinpoint,
as can happen with gotos generated by unstructured controlflow such as break, raise or return,
we simply suspend following the current path, and follow the other path until the new joinpoint
which is simply the instruction pointer returned to us by the now suspended path.
If the path we are following now, also encounters a goto that exceeds the joinpoint
we repeat the process; suspending the current path and evaluating the other one with a new joinpoint.
If we eventually reach a common joinpoint we join the two paths.
This new "ping-pong" approach has the obvious advantage of not requiring join instructions, as such
cutting down on the CFG size but is also mandatory for correctly handling complicated cases
of unstructured controlflow.
Design of join
==============
block:
if cond: break
def(x)
use(x)
Generates:
L0: fork lab1
join L0 # patched.
goto Louter
lab1:
def x
join L0
Louter:
use x
block outer:
while a:
while b:
if foo:
if bar:
break outer # --> we need to 'join' every pushed 'fork' here
This works and then our abstract interpretation needs to deal with 'fork'
differently. It really causes a split in execution. Two threads are
"spawned" and both need to reach the 'join L' instruction. Afterwards
the abstract interpretations are joined and execution resumes single
threaded.
Abstract Interpretation
-----------------------
proc interpret(pc, state, comesFrom): state =
result = state
# we need an explicit 'create' instruction (an explicit heap), in order
# to deal with 'var x = create(); var y = x; var z = y; destroy(z)'
while true:
case pc
of fork:
let a = interpret(pc+1, result, pc)
let b = interpret(forkTarget, result, pc)
result = a ++ b # ++ is a union operation
inc pc
of join:
if joinTarget == comesFrom: return result
else: inc pc
of use X:
if not result.contains(x):
error "variable not initialized " & x
inc pc
of def X:
if not result.contains(x):
result.incl X
else:
error "overwrite of variable causes memory leak " & x
inc pc
of destroy X:
result.excl X
This is correct but still can lead to false positives:
proc p(cond: bool) =
if cond:
new(x)
otherThings()
if cond:
destroy x
Is not a leak. We should find a way to model *data* flow, not just
control flow. One solution is to rewrite the 'if' without a fork
instruction. The unstructured aspect can now be easily dealt with
the 'goto' and 'join' instructions.
proc p(cond: bool) =
L0: fork Lend
new(x)
# do not 'join' here!
Lend:
otherThings()
join L0 # SKIP THIS FOR new(x) SOMEHOW
destroy x
join L0 # but here.
But if we follow 'goto Louter' we will never come to the join point.
We restore the bindings after popping pc from the stack then there
"no" problem?!
while cond:
prelude()
if not condB: break
postlude()
--->
var setFlag = true
while cond and not setFlag:
prelude()
if not condB:
setFlag = true # BUT: Dependency
if not setFlag: # HERE
postlude()
--->
var setFlag = true
while cond and not setFlag:
prelude()
if not condB:
postlude()
setFlag = true
-------------------------------------------------
while cond:
prelude()
if more:
if not condB: break
stuffHere()
postlude()
-->
var setFlag = true
while cond and not setFlag:
prelude()
if more:
if not condB:
setFlag = false
else:
stuffHere()
postlude()
else:
postlude()
This is getting complicated. Instead we keep the whole 'join' idea but
duplicate the 'join' instructions on breaks and return exits!
]#
proc genLabel(c: Con): TPosition = TPosition(c.code.len)
template checkedDistance(dist): int =
doAssert low(int) div 2 + 1 < dist and dist < high(int) div 2
dist
proc jmpBack(c: var Con, n: PNode, p = TPosition(0)) =
c.code.add Instr(n: n, kind: goto, dest: checkedDistance(p.int - c.code.len))
proc patch(c: var Con, p: TPosition) =
# patch with current index
c.code[p.int].dest = checkedDistance(c.code.len - p.int)
proc gen(c: var Con; n: PNode)
proc popBlock(c: var Con; oldLen: int) =
var exits: seq[TPosition]
exits.add c.gotoI(newNode(nkEmpty))
for f in c.blocks[oldLen].breakFixups:
c.patch(f[0])
for finale in f[1]:
c.gen(finale)
exits.add c.gotoI(newNode(nkEmpty))
for e in exits:
c.patch e
c.blocks.setLen(oldLen)
template withBlock(labl: PSym; body: untyped) =
let oldLen = c.blocks.len
c.blocks.add TBlock(isTryBlock: false, label: labl)
body
popBlock(c, oldLen)
proc isTrue(n: PNode): bool =
n.kind == nkSym and n.sym.kind == skEnumField and n.sym.position != 0 or
n.kind == nkIntLit and n.intVal != 0
when true:
proc genWhile(c: var Con; n: PNode) =
# We unroll every loop 3 times. We emulate 0, 1, 2 iterations
# through the loop. We need to prove this is correct for our
# purposes. But Herb Sutter claims it is. (Proof by authority.)
#[
while cond:
body
Becomes:
block:
if cond:
body
if cond:
body
if cond:
body
We still need to ensure 'break' resolves properly, so an AST to AST
translation is impossible.
So the code to generate is:
cond
fork L4 # F1
body
cond
fork L5 # F2
body
cond
fork L6 # F3
body
L6:
join F3
L5:
join F2
L4:
join F1
]#
if isTrue(n[0]):
# 'while true' is an idiom in Nim and so we produce
# better code for it:
withBlock(nil):
for i in 0..2:
c.gen(n[1])
else:
withBlock(nil):
var endings: array[3, TPosition]
for i in 0..2:
c.gen(n[0])
endings[i] = c.forkI(n)
c.gen(n[1])
for i in countdown(endings.high, 0):
c.patch(endings[i])
else:
proc genWhile(c: var Con; n: PNode) =
# lab1:
# cond, tmp
# fork tmp, lab2
# body
# jmp lab1
# lab2:
let lab1 = c.genLabel
withBlock(nil):
if isTrue(n[0]):
c.gen(n[1])
c.jmpBack(n, lab1)
else:
c.gen(n[0])
forkT(n):
c.gen(n[1])
c.jmpBack(n, lab1)
template forkT(n, body) =
let lab1 = c.forkI(n)
body
c.patch(lab1)
proc genIf(c: var Con, n: PNode) =
#[
if cond:
A
elif condB:
B
elif condC:
C
else:
D
cond
fork lab1
A
goto Lend
lab1:
condB
fork lab2
B
goto Lend2
lab2:
condC
fork L3
C
goto Lend3
L3:
D
goto Lend3 # not eliminated to simplify the join generation
Lend3:
join F3
Lend2:
join F2
Lend:
join F1
]#
var endings: seq[TPosition] = @[]
for i in 0..<n.len:
let it = n[i]
c.gen(it[0])
if it.len == 2:
forkT(it[1]):
c.gen(it[1])
endings.add c.gotoI(it[1])
for i in countdown(endings.high, 0):
c.patch(endings[i])
proc genAndOr(c: var Con; n: PNode) =
# asgn dest, a
# fork lab1
# asgn dest, b
# lab1:
# join F1
c.gen(n[1])
forkT(n):
c.gen(n[2])
proc genCase(c: var Con; n: PNode) =
# if (!expr1) goto lab1;
# thenPart
# goto LEnd
# lab1:
# if (!expr2) goto lab2;
# thenPart2
# goto LEnd
# lab2:
# elsePart
# Lend:
let isExhaustive = skipTypes(n[0].typ,
abstractVarRange-{tyTypeDesc}).kind notin {tyFloat..tyFloat128, tyString}
var endings: seq[TPosition] = @[]
c.gen(n[0])
for i in 1..<n.len:
let it = n[i]
if it.len == 1 or (i == n.len-1 and isExhaustive):
# treat the last branch as 'else' if this is an exhaustive case statement.
c.gen(it.lastSon)
else:
forkT(it.lastSon):
c.gen(it.lastSon)
endings.add c.gotoI(it.lastSon)
for i in countdown(endings.high, 0):
let endPos = endings[i]
c.patch(endPos)
proc genBlock(c: var Con; n: PNode) =
withBlock(n[0].sym):
c.gen(n[1])
proc genBreakOrRaiseAux(c: var Con, i: int, n: PNode) =
let lab1 = c.gotoI(n)
if c.blocks[i].isTryBlock:
c.blocks[i].raiseFixups.add lab1
else:
var trailingFinales: seq[PNode]
if c.inTryStmt > 0: #Ok, we are in a try, lets see which (if any) try's we break out from:
for b in countdown(c.blocks.high, i):
if c.blocks[b].isTryBlock:
trailingFinales.add c.blocks[b].finale
c.blocks[i].breakFixups.add (lab1, trailingFinales)
proc genBreak(c: var Con; n: PNode) =
if n[0].kind == nkSym:
for i in countdown(c.blocks.high, 0):
if not c.blocks[i].isTryBlock and c.blocks[i].label == n[0].sym:
genBreakOrRaiseAux(c, i, n)
return
#globalError(n.info, "VM problem: cannot find 'break' target")
else:
for i in countdown(c.blocks.high, 0):
if not c.blocks[i].isTryBlock:
genBreakOrRaiseAux(c, i, n)
return
proc genTry(c: var Con; n: PNode) =
var endings: seq[TPosition] = @[]
let oldLen = c.blocks.len
c.blocks.add TBlock(isTryBlock: true, finale: if n[^1].kind == nkFinally: n[^1] else: newNode(nkEmpty))
inc c.inTryStmt
c.gen(n[0])
dec c.inTryStmt
for f in c.blocks[oldLen].raiseFixups:
c.patch(f)
c.blocks.setLen oldLen
for i in 1..<n.len:
let it = n[i]
if it.kind != nkFinally:
forkT(it):
c.gen(it.lastSon)
endings.add c.gotoI(it)
for i in countdown(endings.high, 0):
c.patch(endings[i])
let fin = lastSon(n)
if fin.kind == nkFinally:
c.gen(fin[0])
template genNoReturn(c: var Con; n: PNode) =
# leave the graph
c.code.add Instr(n: n, kind: goto, dest: high(int) - c.code.len)
proc genRaise(c: var Con; n: PNode) =
gen(c, n[0])
if c.inTryStmt > 0:
for i in countdown(c.blocks.high, 0):
if c.blocks[i].isTryBlock:
genBreakOrRaiseAux(c, i, n)
return
assert false #Unreachable
else:
genNoReturn(c, n)
proc genImplicitReturn(c: var Con) =
if c.owner.kind in {skProc, skFunc, skMethod, skIterator, skConverter} and resultPos < c.owner.ast.len:
gen(c, c.owner.ast[resultPos])
proc genReturn(c: var Con; n: PNode) =
if n[0].kind != nkEmpty:
gen(c, n[0])
else:
genImplicitReturn(c)
genBreakOrRaiseAux(c, 0, n)
const
InterestingSyms = {skVar, skResult, skLet, skParam, skForVar, skTemp}
PathKinds0 = {nkDotExpr, nkCheckedFieldExpr,
nkBracketExpr, nkDerefExpr, nkHiddenDeref,
nkAddr, nkHiddenAddr,
nkObjDownConv, nkObjUpConv}
PathKinds1 = {nkHiddenStdConv, nkHiddenSubConv}
proc skipConvDfa*(n: PNode): PNode =
result = n
while true:
case result.kind
of nkObjDownConv, nkObjUpConv:
result = result[0]
of PathKinds1:
result = result[1]
else: break
proc aliases*(obj, field: PNode): bool =
var n = field
var obj = obj
while true:
case obj.kind
of {nkObjDownConv, nkObjUpConv, nkAddr, nkHiddenAddr, nkDerefExpr, nkHiddenDeref}:
obj = obj[0]
of PathKinds1:
obj = obj[1]
else: break
while true:
if sameTrees(obj, n): return true
case n.kind
of PathKinds0:
n = n[0]
of PathKinds1:
n = n[1]
else: break
type InstrTargetKind* = enum
None, Full, Partial
proc instrTargets*(insloc, loc: PNode): InstrTargetKind =
if sameTrees(insloc, loc) or insloc.aliases(loc):
Full # x -> x; x -> x.f
elif loc.aliases(insloc):
Partial # x.f -> x
else: None
proc isAnalysableFieldAccess*(orig: PNode; owner: PSym): bool =
var n = orig
while true:
case n.kind
of PathKinds0 - {nkBracketExpr, nkHiddenDeref, nkDerefExpr}:
n = n[0]
of PathKinds1:
n = n[1]
of nkBracketExpr:
# in a[i] the 'i' must be known
if n.len > 1 and n[1].kind in {nkCharLit..nkUInt64Lit}:
n = n[0]
else:
return false
of nkHiddenDeref, nkDerefExpr:
# We "own" sinkparam[].loc but not ourVar[].location as it is a nasty
# pointer indirection.
# bug #14159, we cannot reason about sinkParam[].location as it can
# still be shared for tyRef.
n = n[0]
return n.kind == nkSym and n.sym.owner == owner and
(n.sym.typ.skipTypes(abstractInst-{tyOwned}).kind in {tyOwned})
else: break
# XXX Allow closure deref operations here if we know
# the owner controlled the closure allocation?
result = n.kind == nkSym and n.sym.owner == owner and
{sfGlobal, sfThread, sfCursor} * n.sym.flags == {} and
(n.sym.kind != skParam or isSinkParam(n.sym)) # or n.sym.typ.kind == tyVar)
# Note: There is a different move analyzer possible that checks for
# consume(param.key); param.key = newValue for all paths. Then code like
#
# let splited = split(move self.root, x)
# self.root = merge(splited.lower, splited.greater)
#
# could be written without the ``move self.root``. However, this would be
# wrong! Then the write barrier for the ``self.root`` assignment would
# free the old data and all is lost! Lesson: Don't be too smart, trust the
# lower level C++ optimizer to specialize this code.
proc skipTrivials(c: var Con, n: PNode): PNode =
result = n
while true:
case result.kind
of PathKinds0 - {nkBracketExpr}:
result = result[0]
of nkBracketExpr:
gen(c, result[1])
result = result[0]
of PathKinds1:
result = result[1]
else: break
proc genUse(c: var Con; orig: PNode) =
let n = c.skipTrivials(orig)
if n.kind == nkSym and n.sym.kind in InterestingSyms:
c.code.add Instr(n: orig, kind: use)
elif n.kind in nkCallKinds:
gen(c, n)
proc genDef(c: var Con; orig: PNode) =
let n = c.skipTrivials(orig)
if n.kind == nkSym and n.sym.kind in InterestingSyms:
c.code.add Instr(n: orig, kind: def)
proc genCall(c: var Con; n: PNode) =
gen(c, n[0])
var t = n[0].typ
if t != nil: t = t.skipTypes(abstractInst)
for i in 1..<n.len:
gen(c, n[i])
when false:
if t != nil and i < t.len and t[i].kind == tyOut:
# Pass by 'out' is a 'must def'. Good enough for a move optimizer.
genDef(c, n[i])
# every call can potentially raise:
if c.inTryStmt > 0 and canRaiseConservative(n[0]):
# we generate the instruction sequence:
# fork lab1
# goto exceptionHandler (except or finally)
# lab1:
# join F1
forkT(n):
for i in countdown(c.blocks.high, 0):
if c.blocks[i].isTryBlock:
genBreakOrRaiseAux(c, i, n)
break
proc genMagic(c: var Con; n: PNode; m: TMagic) =
case m
of mAnd, mOr: c.genAndOr(n)
of mNew, mNewFinalize:
genDef(c, n[1])
for i in 2..<n.len: gen(c, n[i])
else:
genCall(c, n)
proc genVarSection(c: var Con; n: PNode) =
for a in n:
if a.kind == nkCommentStmt:
discard
elif a.kind == nkVarTuple:
gen(c, a.lastSon)
for i in 0..<a.len-2: genDef(c, a[i])
else:
gen(c, a.lastSon)
if a.lastSon.kind != nkEmpty:
genDef(c, a[0])
proc gen(c: var Con; n: PNode) =
case n.kind
of nkSym: genUse(c, n)
of nkCallKinds:
if n[0].kind == nkSym:
let s = n[0].sym
if s.magic != mNone:
genMagic(c, n, s.magic)
else:
genCall(c, n)
if sfNoReturn in n[0].sym.flags:
genNoReturn(c, n)
else:
genCall(c, n)
of nkCharLit..nkNilLit: discard
of nkAsgn, nkFastAsgn:
gen(c, n[1])
# watch out: 'obj[i].f2 = value' sets 'f2' but
# "uses" 'i'. But we are only talking about builtin array indexing so
# it doesn't matter and 'x = 34' is NOT a usage of 'x'.
genDef(c, n[0])
of PathKinds0 - {nkObjDownConv, nkObjUpConv}:
genUse(c, n)
of nkIfStmt, nkIfExpr: genIf(c, n)
of nkWhenStmt:
# This is "when nimvm" node. Chose the first branch.
gen(c, n[0][1])
of nkCaseStmt: genCase(c, n)
of nkWhileStmt: genWhile(c, n)
of nkBlockExpr, nkBlockStmt: genBlock(c, n)
of nkReturnStmt: genReturn(c, n)
of nkRaiseStmt: genRaise(c, n)
of nkBreakStmt: genBreak(c, n)
of nkTryStmt, nkHiddenTryStmt: genTry(c, n)
of nkStmtList, nkStmtListExpr, nkChckRangeF, nkChckRange64, nkChckRange,
nkBracket, nkCurly, nkPar, nkTupleConstr, nkClosure, nkObjConstr, nkYieldStmt:
for x in n: gen(c, x)
of nkPragmaBlock: gen(c, n.lastSon)
of nkDiscardStmt, nkObjDownConv, nkObjUpConv, nkStringToCString, nkCStringToString:
gen(c, n[0])
of nkConv, nkExprColonExpr, nkExprEqExpr, nkCast, PathKinds1:
gen(c, n[1])
of nkVarSection, nkLetSection: genVarSection(c, n)
of nkDefer: doAssert false, "dfa construction pass requires the elimination of 'defer'"
else: discard
proc constructCfg*(s: PSym; body: PNode): ControlFlowGraph =
## constructs a control flow graph for ``body``.
var c = Con(code: @[], blocks: @[], owner: s)
withBlock(s):
gen(c, body)
genImplicitReturn(c)
when defined(gcArc) or defined(gcOrc):
result = c.code # will move
else:
shallowCopy(result, c.code)
|