1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907
|
#
#
# The Nim Compiler
# (c) Copyright 2013 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
# this module does the semantic checking for expressions
# included from sem.nim
when defined(nimCompilerStackraceHints):
import std/stackframes
const
errExprXHasNoType = "expression '$1' has no type (or is ambiguous)"
errXExpectsTypeOrValue = "'$1' expects a type or value"
errVarForOutParamNeededX = "for a 'var' type a variable needs to be passed; but '$1' is immutable"
errXStackEscape = "address of '$1' may not escape its stack frame"
errExprHasNoAddress = "expression has no address"
errCannotInterpretNodeX = "cannot evaluate '$1'"
errNamedExprExpected = "named expression expected"
errNamedExprNotAllowed = "named expression not allowed here"
errFieldInitTwice = "field initialized twice: '$1'"
errUndeclaredFieldX = "undeclared field: '$1'"
proc semTemplateExpr(c: PContext, n: PNode, s: PSym,
flags: TExprFlags = {}): PNode =
let info = getCallLineInfo(n)
markUsed(c, info, s)
onUse(info, s)
# Note: This is n.info on purpose. It prevents template from creating an info
# context when called from an another template
pushInfoContext(c.config, n.info, s.detailedInfo)
result = evalTemplate(n, s, getCurrOwner(c), c.config, c.cache, c.templInstCounter, efFromHlo in flags)
if efNoSemCheck notin flags: result = semAfterMacroCall(c, n, result, s, flags)
popInfoContext(c.config)
# XXX: A more elaborate line info rewrite might be needed
result.info = info
proc semFieldAccess(c: PContext, n: PNode, flags: TExprFlags = {}): PNode
template rejectEmptyNode(n: PNode) =
# No matter what a nkEmpty node is not what we want here
if n.kind == nkEmpty: illFormedAst(n, c.config)
proc semOperand(c: PContext, n: PNode, flags: TExprFlags = {}): PNode =
rejectEmptyNode(n)
# same as 'semExprWithType' but doesn't check for proc vars
result = semExpr(c, n, flags + {efOperand})
if result.typ != nil:
# XXX tyGenericInst here?
if result.typ.kind == tyProc and tfUnresolved in result.typ.flags:
localError(c.config, n.info, errProcHasNoConcreteType % n.renderTree)
if result.typ.kind in {tyVar, tyLent}: result = newDeref(result)
elif {efWantStmt, efAllowStmt} * flags != {}:
result.typ = newTypeS(tyVoid, c)
else:
localError(c.config, n.info, errExprXHasNoType %
renderTree(result, {renderNoComments}))
result.typ = errorType(c)
proc semExprCheck(c: PContext, n: PNode, flags: TExprFlags): PNode =
rejectEmptyNode(n)
result = semExpr(c, n, flags+{efWantValue})
if result.kind == nkEmpty:
# bug #12741, redundant error messages are the lesser evil here:
localError(c.config, n.info, errExprXHasNoType %
renderTree(result, {renderNoComments}))
# do not produce another redundant error message:
result = errorNode(c, n)
proc semExprWithType(c: PContext, n: PNode, flags: TExprFlags = {}): PNode =
result = semExprCheck(c, n, flags)
if result.typ == nil or result.typ == c.enforceVoidContext:
localError(c.config, n.info, errExprXHasNoType %
renderTree(result, {renderNoComments}))
result.typ = errorType(c)
else:
if result.typ.kind in {tyVar, tyLent}: result = newDeref(result)
proc semExprNoDeref(c: PContext, n: PNode, flags: TExprFlags = {}): PNode =
result = semExprCheck(c, n, flags)
if result.typ == nil:
localError(c.config, n.info, errExprXHasNoType %
renderTree(result, {renderNoComments}))
result.typ = errorType(c)
proc semSymGenericInstantiation(c: PContext, n: PNode, s: PSym): PNode =
result = symChoice(c, n, s, scClosed)
proc inlineConst(c: PContext, n: PNode, s: PSym): PNode {.inline.} =
result = copyTree(s.ast)
if result.isNil:
localError(c.config, n.info, "constant of type '" & typeToString(s.typ) & "' has no value")
result = newSymNode(s)
else:
result.typ = s.typ
result.info = n.info
type
TConvStatus = enum
convOK,
convNotNeedeed,
convNotLegal,
convNotInRange
proc checkConversionBetweenObjects(castDest, src: PType; pointers: int): TConvStatus =
let diff = inheritanceDiff(castDest, src)
return if diff == high(int) or (pointers > 1 and diff != 0):
convNotLegal
else:
convOK
const
IntegralTypes = {tyBool, tyEnum, tyChar, tyInt..tyUInt64}
proc checkConvertible(c: PContext, targetTyp: PType, src: PNode): TConvStatus =
let srcTyp = src.typ.skipTypes({tyStatic})
result = convOK
if sameType(targetTyp, srcTyp) and targetTyp.sym == srcTyp.sym:
# don't annoy conversions that may be needed on another processor:
if targetTyp.kind notin IntegralTypes+{tyRange}:
result = convNotNeedeed
return
var d = skipTypes(targetTyp, abstractVar)
var s = srcTyp
if s.kind in tyUserTypeClasses and s.isResolvedUserTypeClass:
s = s.lastSon
s = skipTypes(s, abstractVar-{tyTypeDesc, tyOwned})
if s.kind == tyOwned and d.kind != tyOwned:
s = s.lastSon
var pointers = 0
while (d != nil) and (d.kind in {tyPtr, tyRef, tyOwned}):
if s.kind == tyOwned and d.kind != tyOwned:
s = s.lastSon
elif d.kind != s.kind:
break
else:
d = d.lastSon
s = s.lastSon
inc pointers
let targetBaseTyp = skipTypes(targetTyp, abstractVarRange)
let srcBaseTyp = skipTypes(srcTyp, abstractVarRange-{tyTypeDesc})
if d == nil:
result = convNotLegal
elif d.skipTypes(abstractInst).kind == tyObject and s.skipTypes(abstractInst).kind == tyObject:
result = checkConversionBetweenObjects(d.skipTypes(abstractInst), s.skipTypes(abstractInst), pointers)
elif (targetBaseTyp.kind in IntegralTypes) and
(srcBaseTyp.kind in IntegralTypes):
if targetTyp.kind == tyBool:
discard "convOk"
elif targetTyp.isOrdinalType:
if src.kind in nkCharLit..nkUInt64Lit and
src.getInt notin firstOrd(c.config, targetTyp)..lastOrd(c.config, targetTyp):
result = convNotInRange
elif src.kind in nkFloatLit..nkFloat64Lit and
(classify(src.floatVal) in {fcNan, fcNegInf, fcInf} or
src.floatVal.int64 notin firstOrd(c.config, targetTyp)..lastOrd(c.config, targetTyp)):
result = convNotInRange
elif targetBaseTyp.kind in tyFloat..tyFloat64:
if src.kind in nkFloatLit..nkFloat64Lit and
not floatRangeCheck(src.floatVal, targetTyp):
result = convNotInRange
elif src.kind in nkCharLit..nkUInt64Lit and
not floatRangeCheck(src.intVal.float, targetTyp):
result = convNotInRange
else:
# we use d, s here to speed up that operation a bit:
case cmpTypes(c, d, s)
of isNone, isGeneric:
if not compareTypes(targetTyp.skipTypes(abstractVar), srcTyp.skipTypes({tyOwned}), dcEqIgnoreDistinct):
result = convNotLegal
else:
discard
proc isCastable(c: PContext; dst, src: PType): bool =
## Checks whether the source type can be cast to the destination type.
## Casting is very unrestrictive; casts are allowed as long as
## castDest.size >= src.size, and typeAllowed(dst, skParam)
#const
# castableTypeKinds = {tyInt, tyPtr, tyRef, tyCstring, tyString,
# tySequence, tyPointer, tyNil, tyOpenArray,
# tyProc, tySet, tyEnum, tyBool, tyChar}
let src = src.skipTypes(tyUserTypeClasses)
if skipTypes(dst, abstractInst-{tyOpenArray}).kind == tyOpenArray:
return false
if skipTypes(src, abstractInst-{tyTypeDesc}).kind == tyTypeDesc:
return false
if skipTypes(dst, abstractInst).kind == tyBuiltInTypeClass:
return false
let conf = c.config
if conf.selectedGC in {gcArc, gcOrc}:
let d = skipTypes(dst, abstractInst)
let s = skipTypes(src, abstractInst)
if d.kind == tyRef and s.kind == tyRef and s[0].isFinal != d[0].isFinal:
return false
var dstSize, srcSize: BiggestInt
dstSize = computeSize(conf, dst)
srcSize = computeSize(conf, src)
if dstSize == -3 or srcSize == -3: # szUnknownSize
# The Nim compiler can't detect if it's legal or not.
# Just assume the programmer knows what he is doing.
return true
if dstSize < 0:
result = false
elif srcSize < 0:
result = false
elif typeAllowed(dst, skParam, c) != nil:
result = false
elif dst.kind == tyProc and dst.callConv == ccClosure:
result = src.kind == tyProc and src.callConv == ccClosure
else:
result = (dstSize >= srcSize) or
(skipTypes(dst, abstractInst).kind in IntegralTypes) or
(skipTypes(src, abstractInst-{tyTypeDesc}).kind in IntegralTypes)
if result and src.kind == tyNil:
result = dst.size <= conf.target.ptrSize
proc isSymChoice(n: PNode): bool {.inline.} =
result = n.kind in nkSymChoices
proc maybeLiftType(t: var PType, c: PContext, info: TLineInfo) =
# XXX: liftParamType started to perform addDecl
# we could do that instead in semTypeNode by snooping for added
# gnrc. params, then it won't be necessary to open a new scope here
openScope(c)
var lifted = liftParamType(c, skType, newNodeI(nkArgList, info),
t, ":anon", info)
closeScope(c)
if lifted != nil: t = lifted
proc isOwnedSym(c: PContext; n: PNode): bool =
let s = qualifiedLookUp(c, n, {})
result = s != nil and sfSystemModule in s.owner.flags and s.name.s == "owned"
proc semConv(c: PContext, n: PNode): PNode =
if n.len != 2:
localError(c.config, n.info, "a type conversion takes exactly one argument")
return n
result = newNodeI(nkConv, n.info)
var targetType = semTypeNode(c, n[0], nil)
case targetType.kind
of tyTypeDesc:
internalAssert c.config, targetType.len > 0
if targetType.base.kind == tyNone:
return semTypeOf(c, n)
else:
targetType = targetType.base
of tyStatic:
var evaluated = semStaticExpr(c, n[1])
if evaluated.kind == nkType or evaluated.typ.kind == tyTypeDesc:
result = n
result.typ = c.makeTypeDesc semStaticType(c, evaluated, nil)
return
elif targetType.base.kind == tyNone:
return evaluated
else:
targetType = targetType.base
else: discard
maybeLiftType(targetType, c, n[0].info)
if targetType.kind in {tySink, tyLent} or isOwnedSym(c, n[0]):
let baseType = semTypeNode(c, n[1], nil).skipTypes({tyTypeDesc})
let t = newTypeS(targetType.kind, c)
if targetType.kind == tyOwned:
t.flags.incl tfHasOwned
t.rawAddSonNoPropagationOfTypeFlags baseType
result = newNodeI(nkType, n.info)
result.typ = makeTypeDesc(c, t)
return
result.add copyTree(n[0])
# special case to make MyObject(x = 3) produce a nicer error message:
if n[1].kind == nkExprEqExpr and
targetType.skipTypes(abstractPtrs).kind == tyObject:
localError(c.config, n.info, "object construction uses ':', not '='")
var op = semExprWithType(c, n[1])
if targetType.kind != tyGenericParam and targetType.isMetaType:
let final = inferWithMetatype(c, targetType, op, true)
result.add final
result.typ = final.typ
return
result.typ = targetType
# XXX op is overwritten later on, this is likely added too early
# here or needs to be overwritten too then.
result.add op
if targetType.kind == tyGenericParam:
result.typ = makeTypeFromExpr(c, copyTree(result))
return result
if not isSymChoice(op):
let status = checkConvertible(c, result.typ, op)
case status
of convOK:
# handle SomeProcType(SomeGenericProc)
if op.kind == nkSym and op.sym.isGenericRoutine:
result[1] = fitNode(c, result.typ, result[1], result.info)
elif op.kind in {nkPar, nkTupleConstr} and targetType.kind == tyTuple:
op = fitNode(c, targetType, op, result.info)
of convNotNeedeed:
message(c.config, n.info, hintConvFromXtoItselfNotNeeded, result.typ.typeToString)
of convNotLegal:
result = fitNode(c, result.typ, result[1], result.info)
if result == nil:
localError(c.config, n.info, "illegal conversion from '$1' to '$2'" %
[op.typ.typeToString, result.typ.typeToString])
of convNotInRange:
let value =
if op.kind in {nkCharLit..nkUInt64Lit}: $op.getInt else: $op.getFloat
localError(c.config, n.info, errGenerated, value & " can't be converted to " &
result.typ.typeToString)
else:
for i in 0..<op.len:
let it = op[i]
let status = checkConvertible(c, result.typ, it)
if status in {convOK, convNotNeedeed}:
markUsed(c, n.info, it.sym)
onUse(n.info, it.sym)
markIndirect(c, it.sym)
return it
errorUseQualifier(c, n.info, op[0].sym)
proc semCast(c: PContext, n: PNode): PNode =
## Semantically analyze a casting ("cast[type](param)")
checkSonsLen(n, 2, c.config)
let targetType = semTypeNode(c, n[0], nil)
let castedExpr = semExprWithType(c, n[1])
if tfHasMeta in targetType.flags:
localError(c.config, n[0].info, "cannot cast to a non concrete type: '$1'" % $targetType)
if not isCastable(c, targetType, castedExpr.typ):
let tar = $targetType
let alt = typeToString(targetType, preferDesc)
let msg = if tar != alt: tar & "=" & alt else: tar
localError(c.config, n.info, "expression cannot be cast to " & msg)
result = newNodeI(nkCast, n.info)
result.typ = targetType
result.add copyTree(n[0])
result.add castedExpr
proc semLowHigh(c: PContext, n: PNode, m: TMagic): PNode =
const
opToStr: array[mLow..mHigh, string] = ["low", "high"]
if n.len != 2:
localError(c.config, n.info, errXExpectsTypeOrValue % opToStr[m])
else:
n[1] = semExprWithType(c, n[1], {efDetermineType})
var typ = skipTypes(n[1].typ, abstractVarRange + {tyTypeDesc, tyUserTypeClassInst})
case typ.kind
of tySequence, tyString, tyCString, tyOpenArray, tyVarargs:
n.typ = getSysType(c.graph, n.info, tyInt)
of tyArray:
n.typ = typ[0] # indextype
of tyInt..tyInt64, tyChar, tyBool, tyEnum, tyUInt..tyUInt64, tyFloat..tyFloat64:
n.typ = n[1].typ.skipTypes({tyTypeDesc})
of tyGenericParam:
# prepare this for resolving in semtypinst:
# we must use copyTree here in order to avoid creating a cycle
# that could easily turn into an infinite recursion in semtypinst
n.typ = makeTypeFromExpr(c, n.copyTree)
else:
localError(c.config, n.info, "invalid argument for: " & opToStr[m])
result = n
proc fixupStaticType(c: PContext, n: PNode) =
# This proc can be applied to evaluated expressions to assign
# them a static type.
#
# XXX: with implicit static, this should not be necessary,
# because the output type of operations such as `semConstExpr`
# should be a static type (as well as the type of any other
# expression that can be implicitly evaluated). For now, we
# apply this measure only in code that is enlightened to work
# with static types.
if n.typ.kind != tyStatic:
n.typ = newTypeWithSons(getCurrOwner(c), tyStatic, @[n.typ])
n.typ.n = n # XXX: cycles like the one here look dangerous.
# Consider using `n.copyTree`
proc isOpImpl(c: PContext, n: PNode, flags: TExprFlags): PNode =
internalAssert c.config,
n.len == 3 and
n[1].typ != nil and
n[2].kind in {nkStrLit..nkTripleStrLit, nkType}
var
res = false
t1 = n[1].typ
t2 = n[2].typ
if t1.kind == tyTypeDesc and t2.kind != tyTypeDesc:
t1 = t1.base
if n[2].kind in {nkStrLit..nkTripleStrLit}:
case n[2].strVal.normalize
of "closure":
let t = skipTypes(t1, abstractRange)
res = t.kind == tyProc and
t.callConv == ccClosure and
tfIterator notin t.flags
of "iterator":
let t = skipTypes(t1, abstractRange)
res = t.kind == tyProc and
t.callConv == ccClosure and
tfIterator in t.flags
else:
res = false
else:
if t1.skipTypes({tyGenericInst, tyAlias, tySink, tyDistinct}).kind != tyGenericBody:
maybeLiftType(t2, c, n.info)
else:
#[
for this case:
type Foo = object[T]
Foo is Foo
]#
discard
var m = newCandidate(c, t2)
if efExplain in flags:
m.diagnostics = @[]
m.diagnosticsEnabled = true
res = typeRel(m, t2, t1) >= isSubtype # isNone
# `res = sameType(t1, t2)` would be wrong, e.g. for `int is (int|float)`
result = newIntNode(nkIntLit, ord(res))
result.typ = n.typ
proc semIs(c: PContext, n: PNode, flags: TExprFlags): PNode =
if n.len != 3:
localError(c.config, n.info, "'is' operator takes 2 arguments")
let boolType = getSysType(c.graph, n.info, tyBool)
result = n
n.typ = boolType
var liftLhs = true
n[1] = semExprWithType(c, n[1], {efDetermineType, efWantIterator})
if n[2].kind notin {nkStrLit..nkTripleStrLit}:
let t2 = semTypeNode(c, n[2], nil)
n[2] = newNodeIT(nkType, n[2].info, t2)
if t2.kind == tyStatic:
let evaluated = tryConstExpr(c, n[1])
if evaluated != nil:
c.fixupStaticType(evaluated)
n[1] = evaluated
else:
result = newIntNode(nkIntLit, 0)
result.typ = boolType
return
elif t2.kind == tyTypeDesc and
(t2.base.kind == tyNone or tfExplicit in t2.flags):
# When the right-hand side is an explicit type, we must
# not allow regular values to be matched against the type:
liftLhs = false
else:
n[2] = semExpr(c, n[2])
var lhsType = n[1].typ
if lhsType.kind != tyTypeDesc:
if liftLhs:
n[1] = makeTypeSymNode(c, lhsType, n[1].info)
lhsType = n[1].typ
else:
if lhsType.base.kind == tyNone or
(c.inGenericContext > 0 and lhsType.base.containsGenericType):
# BUGFIX: don't evaluate this too early: ``T is void``
return
result = isOpImpl(c, n, flags)
proc semOpAux(c: PContext, n: PNode) =
const flags = {efDetermineType}
for i in 1..<n.len:
var a = n[i]
if a.kind == nkExprEqExpr and a.len == 2:
let info = a[0].info
a[0] = newIdentNode(considerQuotedIdent(c, a[0], a), info)
a[1] = semExprWithType(c, a[1], flags)
a.typ = a[1].typ
else:
n[i] = semExprWithType(c, a, flags)
proc overloadedCallOpr(c: PContext, n: PNode): PNode =
# quick check if there is *any* () operator overloaded:
var par = getIdent(c.cache, "()")
if searchInScopes(c, par) == nil:
result = nil
else:
result = newNodeI(nkCall, n.info)
result.add newIdentNode(par, n.info)
for i in 0..<n.len: result.add n[i]
result = semExpr(c, result)
proc changeType(c: PContext; n: PNode, newType: PType, check: bool) =
case n.kind
of nkCurly, nkBracket:
for i in 0..<n.len:
changeType(c, n[i], elemType(newType), check)
of nkPar, nkTupleConstr:
let tup = newType.skipTypes({tyGenericInst, tyAlias, tySink, tyDistinct})
if tup.kind != tyTuple:
if tup.kind == tyObject: return
globalError(c.config, n.info, "no tuple type for constructor")
elif n.len > 0 and n[0].kind == nkExprColonExpr:
# named tuple?
for i in 0..<n.len:
var m = n[i][0]
if m.kind != nkSym:
globalError(c.config, m.info, "invalid tuple constructor")
return
if tup.n != nil:
var f = getSymFromList(tup.n, m.sym.name)
if f == nil:
globalError(c.config, m.info, "unknown identifier: " & m.sym.name.s)
return
changeType(c, n[i][1], f.typ, check)
else:
changeType(c, n[i][1], tup[i], check)
else:
for i in 0..<n.len:
changeType(c, n[i], tup[i], check)
when false:
var m = n[i]
var a = newNodeIT(nkExprColonExpr, m.info, newType[i])
a.add newSymNode(newType.n[i].sym)
a.add m
changeType(m, tup[i], check)
of nkCharLit..nkUInt64Lit:
if check and n.kind != nkUInt64Lit and not sameType(n.typ, newType):
let value = n.intVal
if value < firstOrd(c.config, newType) or value > lastOrd(c.config, newType):
localError(c.config, n.info, "cannot convert " & $value &
" to " & typeToString(newType))
of nkFloatLit..nkFloat64Lit:
if check and not floatRangeCheck(n.floatVal, newType):
localError(c.config, n.info, errFloatToString % [$n.floatVal, typeToString(newType)])
else: discard
n.typ = newType
proc arrayConstrType(c: PContext, n: PNode): PType =
var typ = newTypeS(tyArray, c)
rawAddSon(typ, nil) # index type
if n.len == 0:
rawAddSon(typ, newTypeS(tyEmpty, c)) # needs an empty basetype!
else:
var t = skipTypes(n[0].typ, {tyGenericInst, tyVar, tyLent, tyOrdinal, tyAlias, tySink})
addSonSkipIntLit(typ, t)
typ[0] = makeRangeType(c, 0, n.len - 1, n.info)
result = typ
proc semArrayConstr(c: PContext, n: PNode, flags: TExprFlags): PNode =
result = newNodeI(nkBracket, n.info)
result.typ = newTypeS(tyArray, c)
rawAddSon(result.typ, nil) # index type
var
firstIndex, lastIndex: Int128
indexType = getSysType(c.graph, n.info, tyInt)
lastValidIndex = lastOrd(c.config, indexType)
if n.len == 0:
rawAddSon(result.typ, newTypeS(tyEmpty, c)) # needs an empty basetype!
lastIndex = toInt128(-1)
else:
var x = n[0]
if x.kind == nkExprColonExpr and x.len == 2:
var idx = semConstExpr(c, x[0])
if not isOrdinalType(idx.typ):
localError(c.config, idx.info, "expected ordinal value for array " &
"index, got '$1'" % renderTree(idx))
else:
firstIndex = getOrdValue(idx)
lastIndex = firstIndex
indexType = idx.typ
lastValidIndex = lastOrd(c.config, indexType)
x = x[1]
let yy = semExprWithType(c, x)
var typ = yy.typ
result.add yy
#var typ = skipTypes(result[0].typ, {tyGenericInst, tyVar, tyLent, tyOrdinal})
for i in 1..<n.len:
if lastIndex == lastValidIndex:
let validIndex = makeRangeType(c, toInt64(firstIndex), toInt64(lastValidIndex), n.info,
indexType)
localError(c.config, n.info, "size of array exceeds range of index " &
"type '$1' by $2 elements" % [typeToString(validIndex), $(n.len-i)])
x = n[i]
if x.kind == nkExprColonExpr and x.len == 2:
var idx = semConstExpr(c, x[0])
idx = fitNode(c, indexType, idx, x.info)
if lastIndex+1 != getOrdValue(idx):
localError(c.config, x.info, "invalid order in array constructor")
x = x[1]
let xx = semExprWithType(c, x, flags*{efAllowDestructor})
result.add xx
typ = commonType(typ, xx.typ)
#n[i] = semExprWithType(c, x, flags*{efAllowDestructor})
#result.add fitNode(c, typ, n[i])
inc(lastIndex)
addSonSkipIntLit(result.typ, typ)
for i in 0..<result.len:
result[i] = fitNode(c, typ, result[i], result[i].info)
result.typ[0] = makeRangeType(c, toInt64(firstIndex), toInt64(lastIndex), n.info,
indexType)
proc fixAbstractType(c: PContext, n: PNode) =
for i in 1..<n.len:
let it = n[i]
# do not get rid of nkHiddenSubConv for OpenArrays, the codegen needs it:
if it.kind == nkHiddenSubConv and
skipTypes(it.typ, abstractVar).kind notin {tyOpenArray, tyVarargs}:
if skipTypes(it[1].typ, abstractVar).kind in
{tyNil, tyTuple, tySet} or it[1].isArrayConstr:
var s = skipTypes(it.typ, abstractVar)
if s.kind != tyUntyped:
changeType(c, it[1], s, check=true)
n[i] = it[1]
proc isAssignable(c: PContext, n: PNode; isUnsafeAddr=false): TAssignableResult =
result = parampatterns.isAssignable(c.p.owner, n, isUnsafeAddr)
proc isUnresolvedSym(s: PSym): bool =
result = s.kind == skGenericParam
if not result and s.typ != nil:
result = tfInferrableStatic in s.typ.flags or
(s.kind == skParam and s.typ.isMetaType) or
(s.kind == skType and
s.typ.flags * {tfGenericTypeParam, tfImplicitTypeParam} != {})
proc hasUnresolvedArgs(c: PContext, n: PNode): bool =
# Checks whether an expression depends on generic parameters that
# don't have bound values yet. E.g. this could happen in situations
# such as:
# type Slot[T] = array[T.size, byte]
# proc foo[T](x: default(T))
#
# Both static parameter and type parameters can be unresolved.
case n.kind
of nkSym:
return isUnresolvedSym(n.sym)
of nkIdent, nkAccQuoted:
let ident = considerQuotedIdent(c, n)
let sym = searchInScopes(c, ident)
if sym != nil:
return isUnresolvedSym(sym)
else:
return false
else:
for i in 0..<n.safeLen:
if hasUnresolvedArgs(c, n[i]): return true
return false
proc newHiddenAddrTaken(c: PContext, n: PNode): PNode =
if n.kind == nkHiddenDeref and not (c.config.backend == backendCpp or
sfCompileToCpp in c.module.flags):
checkSonsLen(n, 1, c.config)
result = n[0]
else:
result = newNodeIT(nkHiddenAddr, n.info, makeVarType(c, n.typ))
result.add n
if isAssignable(c, n) notin {arLValue, arLocalLValue}:
localError(c.config, n.info, errVarForOutParamNeededX % renderNotLValue(n))
proc analyseIfAddressTaken(c: PContext, n: PNode): PNode =
result = n
case n.kind
of nkSym:
# n.sym.typ can be nil in 'check' mode ...
if n.sym.typ != nil and
skipTypes(n.sym.typ, abstractInst-{tyTypeDesc}).kind notin {tyVar, tyLent}:
incl(n.sym.flags, sfAddrTaken)
result = newHiddenAddrTaken(c, n)
of nkDotExpr:
checkSonsLen(n, 2, c.config)
if n[1].kind != nkSym:
internalError(c.config, n.info, "analyseIfAddressTaken")
return
if skipTypes(n[1].sym.typ, abstractInst-{tyTypeDesc}).kind notin {tyVar, tyLent}:
incl(n[1].sym.flags, sfAddrTaken)
result = newHiddenAddrTaken(c, n)
of nkBracketExpr:
checkMinSonsLen(n, 1, c.config)
if skipTypes(n[0].typ, abstractInst-{tyTypeDesc}).kind notin {tyVar, tyLent}:
if n[0].kind == nkSym: incl(n[0].sym.flags, sfAddrTaken)
result = newHiddenAddrTaken(c, n)
else:
result = newHiddenAddrTaken(c, n)
proc analyseIfAddressTakenInCall(c: PContext, n: PNode) =
checkMinSonsLen(n, 1, c.config)
const
FakeVarParams = {mNew, mNewFinalize, mInc, ast.mDec, mIncl, mExcl,
mSetLengthStr, mSetLengthSeq, mAppendStrCh, mAppendStrStr, mSwap,
mAppendSeqElem, mNewSeq, mReset, mShallowCopy, mDeepCopy, mMove,
mWasMoved}
# get the real type of the callee
# it may be a proc var with a generic alias type, so we skip over them
var t = n[0].typ.skipTypes({tyGenericInst, tyAlias, tySink})
if n[0].kind == nkSym and n[0].sym.magic in FakeVarParams:
# BUGFIX: check for L-Value still needs to be done for the arguments!
# note sometimes this is eval'ed twice so we check for nkHiddenAddr here:
for i in 1..<n.len:
if i < t.len and t[i] != nil and
skipTypes(t[i], abstractInst-{tyTypeDesc}).kind in {tyVar}:
let it = n[i]
if isAssignable(c, it) notin {arLValue, arLocalLValue}:
if it.kind != nkHiddenAddr:
localError(c.config, it.info, errVarForOutParamNeededX % $it)
# bug #5113: disallow newSeq(result) where result is a 'var T':
if n[0].sym.magic in {mNew, mNewFinalize, mNewSeq}:
var arg = n[1] #.skipAddr
if arg.kind == nkHiddenDeref: arg = arg[0]
if arg.kind == nkSym and arg.sym.kind == skResult and
arg.typ.skipTypes(abstractInst).kind in {tyVar, tyLent}:
localError(c.config, n.info, errXStackEscape % renderTree(n[1], {renderNoComments}))
return
for i in 1..<n.len:
let n = if n.kind == nkHiddenDeref: n[0] else: n
if n[i].kind == nkHiddenCallConv:
# we need to recurse explicitly here as converters can create nested
# calls and then they wouldn't be analysed otherwise
analyseIfAddressTakenInCall(c, n[i])
if i < t.len and
skipTypes(t[i], abstractInst-{tyTypeDesc}).kind in {tyVar}:
if n[i].kind != nkHiddenAddr:
n[i] = analyseIfAddressTaken(c, n[i])
include semmagic
proc evalAtCompileTime(c: PContext, n: PNode): PNode =
result = n
if n.kind notin nkCallKinds or n[0].kind != nkSym: return
var callee = n[0].sym
# workaround for bug #537 (overly aggressive inlining leading to
# wrong NimNode semantics):
if n.typ != nil and tfTriggersCompileTime in n.typ.flags: return
# constant folding that is necessary for correctness of semantic pass:
if callee.magic != mNone and callee.magic in ctfeWhitelist and n.typ != nil:
var call = newNodeIT(nkCall, n.info, n.typ)
call.add(n[0])
var allConst = true
for i in 1..<n.len:
var a = getConstExpr(c.module, n[i], c.graph)
if a == nil:
allConst = false
a = n[i]
if a.kind == nkHiddenStdConv: a = a[1]
call.add(a)
if allConst:
result = semfold.getConstExpr(c.module, call, c.graph)
if result.isNil: result = n
else: return result
block maybeLabelAsStatic:
# XXX: temporary work-around needed for tlateboundstatic.
# This is certainly not correct, but it will get the job
# done until we have a more robust infrastructure for
# implicit statics.
if n.len > 1:
for i in 1..<n.len:
# see bug #2113, it's possible that n[i].typ for errornous code:
if n[i].typ.isNil or n[i].typ.kind != tyStatic or
tfUnresolved notin n[i].typ.flags:
break maybeLabelAsStatic
n.typ = newTypeWithSons(c, tyStatic, @[n.typ])
n.typ.flags.incl tfUnresolved
# optimization pass: not necessary for correctness of the semantic pass
if callee.kind == skConst or
{sfNoSideEffect, sfCompileTime} * callee.flags != {} and
{sfForward, sfImportc} * callee.flags == {} and n.typ != nil:
if callee.kind != skConst and
sfCompileTime notin callee.flags and
optImplicitStatic notin c.config.options: return
if callee.magic notin ctfeWhitelist: return
if callee.kind notin {skProc, skFunc, skConverter, skConst} or callee.isGenericRoutine:
return
if n.typ != nil and typeAllowed(n.typ, skConst, c) != nil: return
var call = newNodeIT(nkCall, n.info, n.typ)
call.add(n[0])
for i in 1..<n.len:
let a = getConstExpr(c.module, n[i], c.graph)
if a == nil: return n
call.add(a)
#echo "NOW evaluating at compile time: ", call.renderTree
if c.inStaticContext == 0 or sfNoSideEffect in callee.flags:
if sfCompileTime in callee.flags:
result = evalStaticExpr(c.module, c.graph, call, c.p.owner)
if result.isNil:
localError(c.config, n.info, errCannotInterpretNodeX % renderTree(call))
else: result = fixupTypeAfterEval(c, result, n)
else:
result = evalConstExpr(c.module, c.graph, call)
if result.isNil: result = n
else: result = fixupTypeAfterEval(c, result, n)
else:
result = n
#if result != n:
# echo "SUCCESS evaluated at compile time: ", call.renderTree
proc semStaticExpr(c: PContext, n: PNode): PNode =
inc c.inStaticContext
openScope(c)
let a = semExprWithType(c, n)
closeScope(c)
dec c.inStaticContext
if a.findUnresolvedStatic != nil: return a
result = evalStaticExpr(c.module, c.graph, a, c.p.owner)
if result.isNil:
localError(c.config, n.info, errCannotInterpretNodeX % renderTree(n))
result = c.graph.emptyNode
else:
result = fixupTypeAfterEval(c, result, a)
proc semOverloadedCallAnalyseEffects(c: PContext, n: PNode, nOrig: PNode,
flags: TExprFlags): PNode =
if flags*{efInTypeof, efWantIterator} != {}:
# consider: 'for x in pReturningArray()' --> we don't want the restriction
# to 'skIterator' anymore; skIterator is preferred in sigmatch already
# for typeof support.
# for ``type(countup(1,3))``, see ``tests/ttoseq``.
result = semOverloadedCall(c, n, nOrig,
{skProc, skFunc, skMethod, skConverter, skMacro, skTemplate, skIterator}, flags)
else:
result = semOverloadedCall(c, n, nOrig,
{skProc, skFunc, skMethod, skConverter, skMacro, skTemplate}, flags)
if result != nil:
if result[0].kind != nkSym:
internalError(c.config, "semOverloadedCallAnalyseEffects")
return
let callee = result[0].sym
case callee.kind
of skMacro, skTemplate: discard
else:
if callee.kind == skIterator and callee.id == c.p.owner.id:
localError(c.config, n.info, errRecursiveDependencyIteratorX % callee.name.s)
# error correction, prevents endless for loop elimination in transf.
# See bug #2051:
result[0] = newSymNode(errorSym(c, n))
proc semObjConstr(c: PContext, n: PNode, flags: TExprFlags): PNode
proc resolveIndirectCall(c: PContext; n, nOrig: PNode;
t: PType): TCandidate =
initCandidate(c, result, t)
matches(c, n, nOrig, result)
if result.state != csMatch:
# try to deref the first argument:
if implicitDeref in c.features and canDeref(n):
n[1] = n[1].tryDeref
initCandidate(c, result, t)
matches(c, n, nOrig, result)
proc bracketedMacro(n: PNode): PSym =
if n.len >= 1 and n[0].kind == nkSym:
result = n[0].sym
if result.kind notin {skMacro, skTemplate}:
result = nil
proc setGenericParams(c: PContext, n: PNode) =
for i in 1..<n.len:
n[i].typ = semTypeNode(c, n[i], nil)
proc afterCallActions(c: PContext; n, orig: PNode, flags: TExprFlags): PNode =
result = n
let callee = result[0].sym
case callee.kind
of skMacro: result = semMacroExpr(c, result, orig, callee, flags)
of skTemplate: result = semTemplateExpr(c, result, callee, flags)
else:
semFinishOperands(c, result)
activate(c, result)
fixAbstractType(c, result)
analyseIfAddressTakenInCall(c, result)
if callee.magic != mNone:
result = magicsAfterOverloadResolution(c, result, flags)
when false:
if result.typ != nil and
not (result.typ.kind == tySequence and result.typ[0].kind == tyEmpty):
liftTypeBoundOps(c, result.typ, n.info)
#result = patchResolvedTypeBoundOp(c, result)
if c.matchedConcept == nil:
result = evalAtCompileTime(c, result)
proc semIndirectOp(c: PContext, n: PNode, flags: TExprFlags): PNode =
result = nil
checkMinSonsLen(n, 1, c.config)
var prc = n[0]
if n[0].kind == nkDotExpr:
checkSonsLen(n[0], 2, c.config)
let n0 = semFieldAccess(c, n[0])
if n0.kind == nkDotCall:
# it is a static call!
result = n0
result.transitionSonsKind(nkCall)
result.flags.incl nfExplicitCall
for i in 1..<n.len: result.add n[i]
return semExpr(c, result, flags)
else:
n[0] = n0
else:
n[0] = semExpr(c, n[0], {efInCall})
let t = n[0].typ
if t != nil and t.kind in {tyVar, tyLent}:
n[0] = newDeref(n[0])
elif n[0].kind == nkBracketExpr:
let s = bracketedMacro(n[0])
if s != nil:
setGenericParams(c, n[0])
return semDirectOp(c, n, flags)
let nOrig = n.copyTree
semOpAux(c, n)
var t: PType = nil
if n[0].typ != nil:
t = skipTypes(n[0].typ, abstractInst+{tyOwned}-{tyTypeDesc, tyDistinct})
if t != nil and t.kind == tyProc:
# This is a proc variable, apply normal overload resolution
let m = resolveIndirectCall(c, n, nOrig, t)
if m.state != csMatch:
if c.config.m.errorOutputs == {}:
# speed up error generation:
globalError(c.config, n.info, "type mismatch")
return c.graph.emptyNode
else:
var hasErrorType = false
var msg = "type mismatch: got <"
for i in 1..<n.len:
if i > 1: msg.add(", ")
let nt = n[i].typ
msg.add(typeToString(nt))
if nt.kind == tyError:
hasErrorType = true
break
if not hasErrorType:
let typ = n[0].typ
msg.add(">\nbut expected one of: \n" &
typeToString(typ))
# prefer notin preferToResolveSymbols
# t.sym != nil
# sfAnon notin t.sym.flags
# t.kind != tySequence(It is tyProc)
if typ.sym != nil and sfAnon notin typ.sym.flags and
typ.kind == tyProc:
msg.add(" = " &
typeToString(typ, preferDesc))
localError(c.config, n.info, msg)
return errorNode(c, n)
result = nil
else:
result = m.call
instGenericConvertersSons(c, result, m)
elif t != nil and t.kind == tyTypeDesc:
if n.len == 1: return semObjConstr(c, n, flags)
return semConv(c, n)
else:
result = overloadedCallOpr(c, n)
# Now that nkSym does not imply an iteration over the proc/iterator space,
# the old ``prc`` (which is likely an nkIdent) has to be restored:
if result == nil:
# XXX: hmm, what kind of symbols will end up here?
# do we really need to try the overload resolution?
n[0] = prc
nOrig[0] = prc
n.flags.incl nfExprCall
result = semOverloadedCallAnalyseEffects(c, n, nOrig, flags)
if result == nil: return errorNode(c, n)
elif result.kind notin nkCallKinds:
# the semExpr() in overloadedCallOpr can even break this condition!
# See bug #904 of how to trigger it:
return result
#result = afterCallActions(c, result, nOrig, flags)
if result[0].kind == nkSym:
result = afterCallActions(c, result, nOrig, flags)
else:
fixAbstractType(c, result)
analyseIfAddressTakenInCall(c, result)
proc semDirectOp(c: PContext, n: PNode, flags: TExprFlags): PNode =
# this seems to be a hotspot in the compiler!
let nOrig = n.copyTree
#semLazyOpAux(c, n)
result = semOverloadedCallAnalyseEffects(c, n, nOrig, flags)
if result != nil: result = afterCallActions(c, result, nOrig, flags)
else: result = errorNode(c, n)
proc buildEchoStmt(c: PContext, n: PNode): PNode =
# we MUST not check 'n' for semantics again here! But for now we give up:
result = newNodeI(nkCall, n.info)
var e = strTableGet(c.graph.systemModule.tab, getIdent(c.cache, "echo"))
if e != nil:
result.add(newSymNode(e))
else:
localError(c.config, n.info, "system needs: echo")
result.add(errorNode(c, n))
result.add(n)
result = semExpr(c, result)
proc semExprNoType(c: PContext, n: PNode): PNode =
let isPush = c.config.hasHint(hintExtendedContext)
if isPush: pushInfoContext(c.config, n.info)
result = semExpr(c, n, {efWantStmt})
discardCheck(c, result, {})
if isPush: popInfoContext(c.config)
proc isTypeExpr(n: PNode): bool =
case n.kind
of nkType, nkTypeOfExpr: result = true
of nkSym: result = n.sym.kind == skType
else: result = false
proc createSetType(c: PContext; baseType: PType): PType =
assert baseType != nil
result = newTypeS(tySet, c)
rawAddSon(result, baseType)
proc lookupInRecordAndBuildCheck(c: PContext, n, r: PNode, field: PIdent,
check: var PNode): PSym =
# transform in a node that contains the runtime check for the
# field, if it is in a case-part...
result = nil
case r.kind
of nkRecList:
for i in 0..<r.len:
result = lookupInRecordAndBuildCheck(c, n, r[i], field, check)
if result != nil: return
of nkRecCase:
checkMinSonsLen(r, 2, c.config)
if (r[0].kind != nkSym): illFormedAst(r, c.config)
result = lookupInRecordAndBuildCheck(c, n, r[0], field, check)
if result != nil: return
let setType = createSetType(c, r[0].typ)
var s = newNodeIT(nkCurly, r.info, setType)
for i in 1..<r.len:
var it = r[i]
case it.kind
of nkOfBranch:
result = lookupInRecordAndBuildCheck(c, n, lastSon(it), field, check)
if result == nil:
for j in 0..<it.len-1: s.add copyTree(it[j])
else:
if check == nil:
check = newNodeI(nkCheckedFieldExpr, n.info)
check.add c.graph.emptyNode # make space for access node
s = newNodeIT(nkCurly, n.info, setType)
for j in 0..<it.len - 1: s.add copyTree(it[j])
var inExpr = newNodeIT(nkCall, n.info, getSysType(c.graph, n.info, tyBool))
inExpr.add newSymNode(c.graph.opContains, n.info)
inExpr.add s
inExpr.add copyTree(r[0])
check.add inExpr
#check.add semExpr(c, inExpr)
return
of nkElse:
result = lookupInRecordAndBuildCheck(c, n, lastSon(it), field, check)
if result != nil:
if check == nil:
check = newNodeI(nkCheckedFieldExpr, n.info)
check.add c.graph.emptyNode # make space for access node
var inExpr = newNodeIT(nkCall, n.info, getSysType(c.graph, n.info, tyBool))
inExpr.add newSymNode(c.graph.opContains, n.info)
inExpr.add s
inExpr.add copyTree(r[0])
var notExpr = newNodeIT(nkCall, n.info, getSysType(c.graph, n.info, tyBool))
notExpr.add newSymNode(c.graph.opNot, n.info)
notExpr.add inExpr
check.add notExpr
return
else: illFormedAst(it, c.config)
of nkSym:
if r.sym.name.id == field.id: result = r.sym
else: illFormedAst(n, c.config)
const
tyTypeParamsHolders = {tyGenericInst, tyCompositeTypeClass}
tyDotOpTransparent = {tyVar, tyLent, tyPtr, tyRef, tyOwned, tyAlias, tySink}
proc readTypeParameter(c: PContext, typ: PType,
paramName: PIdent, info: TLineInfo): PNode =
# Note: This function will return emptyNode when attempting to read
# a static type parameter that is not yet resolved (e.g. this may
# happen in proc signatures such as `proc(x: T): array[T.sizeParam, U]`
if typ.kind in {tyUserTypeClass, tyUserTypeClassInst}:
for statement in typ.n:
case statement.kind
of nkTypeSection:
for def in statement:
if def[0].sym.name.id == paramName.id:
# XXX: Instead of lifting the section type to a typedesc
# here, we could try doing it earlier in semTypeSection.
# This seems semantically correct and then we'll be able
# to return the section symbol directly here
let foundType = makeTypeDesc(c, def[2].typ)
return newSymNode(copySym(def[0].sym).linkTo(foundType), info)
of nkConstSection:
for def in statement:
if def[0].sym.name.id == paramName.id:
return def[2]
else:
discard
if typ.kind != tyUserTypeClass:
let ty = if typ.kind == tyCompositeTypeClass: typ[1].skipGenericAlias
else: typ.skipGenericAlias
let tbody = ty[0]
for s in 0..<tbody.len-1:
let tParam = tbody[s]
if tParam.sym.name.id == paramName.id:
let rawTyp = ty[s + 1]
if rawTyp.kind == tyStatic:
if rawTyp.n != nil:
return rawTyp.n
else:
return c.graph.emptyNode
else:
let foundTyp = makeTypeDesc(c, rawTyp)
return newSymNode(copySym(tParam.sym).linkTo(foundTyp), info)
return nil
proc semSym(c: PContext, n: PNode, sym: PSym, flags: TExprFlags): PNode =
let s = getGenSym(c, sym)
case s.kind
of skConst:
markUsed(c, n.info, s)
onUse(n.info, s)
let typ = skipTypes(s.typ, abstractInst-{tyTypeDesc})
case typ.kind
of tyNil, tyChar, tyInt..tyInt64, tyFloat..tyFloat128,
tyTuple, tySet, tyUInt..tyUInt64:
if s.magic == mNone: result = inlineConst(c, n, s)
else: result = newSymNode(s, n.info)
of tyArray, tySequence:
# Consider::
# const x = []
# proc p(a: openarray[int])
# proc q(a: openarray[char])
# p(x)
# q(x)
#
# It is clear that ``[]`` means two totally different things. Thus, we
# copy `x`'s AST into each context, so that the type fixup phase can
# deal with two different ``[]``.
if s.ast.safeLen == 0: result = inlineConst(c, n, s)
else: result = newSymNode(s, n.info)
of tyStatic:
if typ.n != nil:
result = typ.n
result.typ = typ.base
else:
result = newSymNode(s, n.info)
else:
result = newSymNode(s, n.info)
of skMacro:
if efNoEvaluateGeneric in flags and s.ast[genericParamsPos].len > 0 or
(n.kind notin nkCallKinds and s.requiredParams > 0):
markUsed(c, n.info, s)
onUse(n.info, s)
result = symChoice(c, n, s, scClosed)
else:
result = semMacroExpr(c, n, n, s, flags)
of skTemplate:
if efNoEvaluateGeneric in flags and s.ast[genericParamsPos].len > 0 or
(n.kind notin nkCallKinds and s.requiredParams > 0) or
sfCustomPragma in sym.flags:
let info = getCallLineInfo(n)
markUsed(c, info, s)
onUse(info, s)
result = symChoice(c, n, s, scClosed)
else:
result = semTemplateExpr(c, n, s, flags)
of skParam:
markUsed(c, n.info, s)
onUse(n.info, s)
if s.typ != nil and s.typ.kind == tyStatic and s.typ.n != nil:
# XXX see the hack in sigmatch.nim ...
return s.typ.n
elif sfGenSym in s.flags:
# the owner should have been set by now by addParamOrResult
internalAssert c.config, s.owner != nil
result = newSymNode(s, n.info)
of skVar, skLet, skResult, skForVar:
if s.magic == mNimvm:
localError(c.config, n.info, "illegal context for 'nimvm' magic")
markUsed(c, n.info, s)
onUse(n.info, s)
result = newSymNode(s, n.info)
# We cannot check for access to outer vars for example because it's still
# not sure the symbol really ends up being used:
# var len = 0 # but won't be called
# genericThatUsesLen(x) # marked as taking a closure?
of skGenericParam:
onUse(n.info, s)
if s.typ.kind == tyStatic:
result = newSymNode(s, n.info)
result.typ = s.typ
elif s.ast != nil:
result = semExpr(c, s.ast)
else:
n.typ = s.typ
return n
of skType:
markUsed(c, n.info, s)
onUse(n.info, s)
if s.typ.kind == tyStatic and s.typ.base.kind != tyNone and s.typ.n != nil:
return s.typ.n
result = newSymNode(s, n.info)
result.typ = makeTypeDesc(c, s.typ)
of skField:
var p = c.p
while p != nil and p.selfSym == nil:
p = p.next
if p != nil and p.selfSym != nil:
var ty = skipTypes(p.selfSym.typ, {tyGenericInst, tyVar, tyLent, tyPtr, tyRef,
tyAlias, tySink, tyOwned})
while tfBorrowDot in ty.flags: ty = ty.skipTypes({tyDistinct})
var check: PNode = nil
if ty.kind == tyObject:
while true:
check = nil
let f = lookupInRecordAndBuildCheck(c, n, ty.n, s.name, check)
if f != nil and fieldVisible(c, f):
# is the access to a public field or in the same module or in a friend?
doAssert f == s
markUsed(c, n.info, f)
onUse(n.info, f)
result = newNodeIT(nkDotExpr, n.info, f.typ)
result.add makeDeref(newSymNode(p.selfSym))
result.add newSymNode(f) # we now have the correct field
if check != nil:
check[0] = result
check.typ = result.typ
result = check
return result
if ty[0] == nil: break
ty = skipTypes(ty[0], skipPtrs)
# old code, not sure if it's live code:
markUsed(c, n.info, s)
onUse(n.info, s)
result = newSymNode(s, n.info)
else:
let info = getCallLineInfo(n)
#if efInCall notin flags:
markUsed(c, info, s)
onUse(info, s)
result = newSymNode(s, info)
proc tryReadingGenericParam(c: PContext, n: PNode, i: PIdent, t: PType): PNode =
case t.kind
of tyTypeParamsHolders:
result = readTypeParameter(c, t, i, n.info)
if result == c.graph.emptyNode:
result = n
n.typ = makeTypeFromExpr(c, n.copyTree)
of tyUserTypeClasses:
if t.isResolvedUserTypeClass:
result = readTypeParameter(c, t, i, n.info)
else:
n.typ = makeTypeFromExpr(c, copyTree(n))
result = n
of tyGenericParam, tyAnything:
n.typ = makeTypeFromExpr(c, copyTree(n))
result = n
else:
discard
proc tryReadingTypeField(c: PContext, n: PNode, i: PIdent, ty: PType): PNode =
var ty = ty.skipTypes(tyDotOpTransparent)
case ty.kind
of tyEnum:
# look up if the identifier belongs to the enum:
var f = PSym(nil)
while ty != nil:
f = getSymFromList(ty.n, i)
if f != nil: break
ty = ty.sons[0] # enum inheritance
if f != nil:
result = newSymNode(f)
result.info = n.info
result.typ = ty
markUsed(c, n.info, f)
onUse(n.info, f)
of tyObject, tyTuple:
if ty.n != nil and ty.n.kind == nkRecList:
let field = lookupInRecord(ty.n, i)
if field != nil:
n.typ = makeTypeDesc(c, field.typ)
result = n
of tyGenericInst:
result = tryReadingTypeField(c, n, i, ty.lastSon)
if result == nil:
result = tryReadingGenericParam(c, n, i, ty)
else:
result = tryReadingGenericParam(c, n, i, ty)
proc builtinFieldAccess(c: PContext, n: PNode, flags: TExprFlags): PNode =
## returns nil if it's not a built-in field access
checkSonsLen(n, 2, c.config)
# tests/bind/tbindoverload.nim wants an early exit here, but seems to
# work without now. template/tsymchoicefield doesn't like an early exit
# here at all!
#if isSymChoice(n[1]): return
when defined(nimsuggest):
if c.config.cmd == cmdIdeTools:
suggestExpr(c, n)
if exactEquals(c.config.m.trackPos, n[1].info): suggestExprNoCheck(c, n)
var s = qualifiedLookUp(c, n, {checkAmbiguity, checkUndeclared, checkModule})
if s != nil:
if s.kind in OverloadableSyms:
result = symChoice(c, n, s, scClosed)
if result.kind == nkSym: result = semSym(c, n, s, flags)
else:
markUsed(c, n[1].info, s)
result = semSym(c, n, s, flags)
onUse(n[1].info, s)
return
n[0] = semExprWithType(c, n[0], flags+{efDetermineType})
#restoreOldStyleType(n[0])
var i = considerQuotedIdent(c, n[1], n)
var ty = n[0].typ
var f: PSym = nil
result = nil
if ty.kind == tyTypeDesc:
if ty.base.kind == tyNone:
# This is a still unresolved typedesc parameter.
# If this is a regular proc, then all bets are off and we must return
# tyFromExpr, but when this happen in a macro this is not a built-in
# field access and we leave the compiler to compile a normal call:
if getCurrOwner(c).kind != skMacro:
n.typ = makeTypeFromExpr(c, n.copyTree)
return n
else:
return nil
else:
return tryReadingTypeField(c, n, i, ty.base)
elif isTypeExpr(n.sons[0]):
return tryReadingTypeField(c, n, i, ty)
if ty.kind in tyUserTypeClasses and ty.isResolvedUserTypeClass:
ty = ty.lastSon
ty = skipTypes(ty, {tyGenericInst, tyVar, tyLent, tyPtr, tyRef, tyOwned, tyAlias, tySink})
while tfBorrowDot in ty.flags: ty = ty.skipTypes({tyDistinct})
var check: PNode = nil
if ty.kind == tyObject:
while true:
check = nil
f = lookupInRecordAndBuildCheck(c, n, ty.n, i, check)
if f != nil: break
if ty[0] == nil: break
ty = skipTypes(ty[0], skipPtrs)
if f != nil:
let visibilityCheckNeeded =
if n[1].kind == nkSym and n[1].sym == f:
false # field lookup was done already, likely by hygienic template or bindSym
else: true
if not visibilityCheckNeeded or fieldVisible(c, f):
# is the access to a public field or in the same module or in a friend?
markUsed(c, n[1].info, f)
onUse(n[1].info, f)
n[0] = makeDeref(n[0])
n[1] = newSymNode(f) # we now have the correct field
n.typ = f.typ
if check == nil:
result = n
else:
check[0] = n
check.typ = n.typ
result = check
elif ty.kind == tyTuple and ty.n != nil:
f = getSymFromList(ty.n, i)
if f != nil:
markUsed(c, n[1].info, f)
onUse(n[1].info, f)
n[0] = makeDeref(n[0])
n[1] = newSymNode(f)
n.typ = f.typ
result = n
# we didn't find any field, let's look for a generic param
if result == nil:
let t = n[0].typ.skipTypes(tyDotOpTransparent)
result = tryReadingGenericParam(c, n, i, t)
proc dotTransformation(c: PContext, n: PNode): PNode =
if isSymChoice(n[1]):
result = newNodeI(nkDotCall, n.info)
result.add n[1]
result.add copyTree(n[0])
else:
var i = considerQuotedIdent(c, n[1], n)
result = newNodeI(nkDotCall, n.info)
result.flags.incl nfDotField
result.add newIdentNode(i, n[1].info)
result.add copyTree(n[0])
proc semFieldAccess(c: PContext, n: PNode, flags: TExprFlags): PNode =
# this is difficult, because the '.' is used in many different contexts
# in Nim. We first allow types in the semantic checking.
result = builtinFieldAccess(c, n, flags)
if result == nil:
result = dotTransformation(c, n)
proc buildOverloadedSubscripts(n: PNode, ident: PIdent): PNode =
result = newNodeI(nkCall, n.info)
result.add(newIdentNode(ident, n.info))
for s in n: result.add s
proc semDeref(c: PContext, n: PNode): PNode =
checkSonsLen(n, 1, c.config)
n[0] = semExprWithType(c, n[0])
result = n
var t = skipTypes(n[0].typ, {tyGenericInst, tyVar, tyLent, tyAlias, tySink, tyOwned})
case t.kind
of tyRef, tyPtr: n.typ = t.lastSon
else: result = nil
#GlobalError(n[0].info, errCircumNeedsPointer)
proc semSubscript(c: PContext, n: PNode, flags: TExprFlags): PNode =
## returns nil if not a built-in subscript operator; also called for the
## checking of assignments
if n.len == 1:
let x = semDeref(c, n)
if x == nil: return nil
result = newNodeIT(nkDerefExpr, x.info, x.typ)
result.add(x[0])
return
checkMinSonsLen(n, 2, c.config)
# make sure we don't evaluate generic macros/templates
n[0] = semExprWithType(c, n[0],
{efNoEvaluateGeneric})
var arr = skipTypes(n[0].typ, {tyGenericInst, tyUserTypeClassInst, tyOwned,
tyVar, tyLent, tyPtr, tyRef, tyAlias, tySink})
if arr.kind == tyStatic:
if arr.base.kind == tyNone:
result = n
result.typ = semStaticType(c, n[1], nil)
return
elif arr.n != nil:
return semSubscript(c, arr.n, flags)
else:
arr = arr.base
case arr.kind
of tyArray, tyOpenArray, tyVarargs, tySequence, tyString, tyCString,
tyUncheckedArray:
if n.len != 2: return nil
n[0] = makeDeref(n[0])
for i in 1..<n.len:
n[i] = semExprWithType(c, n[i],
flags*{efInTypeof, efDetermineType})
# Arrays index type is dictated by the range's type
if arr.kind == tyArray:
var indexType = arr[0]
var arg = indexTypesMatch(c, indexType, n[1].typ, n[1])
if arg != nil:
n[1] = arg
result = n
result.typ = elemType(arr)
# Other types have a bit more of leeway
elif n[1].typ.skipTypes(abstractRange-{tyDistinct}).kind in
{tyInt..tyInt64, tyUInt..tyUInt64}:
result = n
result.typ = elemType(arr)
of tyTypeDesc:
# The result so far is a tyTypeDesc bound
# a tyGenericBody. The line below will substitute
# it with the instantiated type.
result = n
result.typ = makeTypeDesc(c, semTypeNode(c, n, nil))
#result = symNodeFromType(c, semTypeNode(c, n, nil), n.info)
of tyTuple:
if n.len != 2: return nil
n[0] = makeDeref(n[0])
# [] operator for tuples requires constant expression:
n[1] = semConstExpr(c, n[1])
if skipTypes(n[1].typ, {tyGenericInst, tyRange, tyOrdinal, tyAlias, tySink}).kind in
{tyInt..tyInt64}:
let idx = getOrdValue(n[1])
if idx >= 0 and idx < arr.len: n.typ = arr[toInt(idx)]
else: localError(c.config, n.info, "invalid index value for tuple subscript")
result = n
else:
result = nil
else:
let s = if n[0].kind == nkSym: n[0].sym
elif n[0].kind in nkSymChoices: n[0][0].sym
else: nil
if s != nil:
case s.kind
of skProc, skFunc, skMethod, skConverter, skIterator:
# type parameters: partial generic specialization
n[0] = semSymGenericInstantiation(c, n[0], s)
result = explicitGenericInstantiation(c, n, s)
if result == n:
n[0] = copyTree(result)
else:
n[0] = result
of skMacro, skTemplate:
if efInCall in flags:
# We are processing macroOrTmpl[] in macroOrTmpl[](...) call.
# Return as is, so it can be transformed into complete macro or
# template call in semIndirectOp caller.
result = n
else:
# We are processing macroOrTmpl[] not in call. Transform it to the
# macro or template call with generic arguments here.
n.transitionSonsKind(nkCall)
case s.kind
of skMacro: result = semMacroExpr(c, n, n, s, flags)
of skTemplate: result = semTemplateExpr(c, n, s, flags)
else: discard
of skType:
result = symNodeFromType(c, semTypeNode(c, n, nil), n.info)
else:
discard
proc semArrayAccess(c: PContext, n: PNode, flags: TExprFlags): PNode =
result = semSubscript(c, n, flags)
if result == nil:
# overloaded [] operator:
result = semExpr(c, buildOverloadedSubscripts(n, getIdent(c.cache, "[]")))
proc propertyWriteAccess(c: PContext, n, nOrig, a: PNode): PNode =
var id = considerQuotedIdent(c, a[1], a)
var setterId = newIdentNode(getIdent(c.cache, id.s & '='), n.info)
# a[0] is already checked for semantics, that does ``builtinFieldAccess``
# this is ugly. XXX Semantic checking should use the ``nfSem`` flag for
# nodes?
let aOrig = nOrig[0]
result = newTreeI(nkCall, n.info, setterId, a[0], semExprWithType(c, n[1]))
result.flags.incl nfDotSetter
let orig = newTreeI(nkCall, n.info, setterId, aOrig[0], nOrig[1])
result = semOverloadedCallAnalyseEffects(c, result, orig, {})
if result != nil:
result = afterCallActions(c, result, nOrig, {})
#fixAbstractType(c, result)
#analyseIfAddressTakenInCall(c, result)
proc takeImplicitAddr(c: PContext, n: PNode; isLent: bool): PNode =
# See RFC #7373, calls returning 'var T' are assumed to
# return a view into the first argument (if there is one):
let root = exprRoot(n)
if root != nil and root.owner == c.p.owner:
template url: string = "var_t_return.html".createDocLink
if root.kind in {skLet, skVar, skTemp} and sfGlobal notin root.flags:
localError(c.config, n.info, "'$1' escapes its stack frame; context: '$2'; see $3" % [
root.name.s, renderTree(n, {renderNoComments}), url])
elif root.kind == skParam and root.position != 0:
localError(c.config, n.info, "'$1' is not the first parameter; context: '$2'; see $3" % [
root.name.s, renderTree(n, {renderNoComments}), url])
case n.kind
of nkHiddenAddr, nkAddr: return n
of nkDerefExpr: return n[0]
of nkBracketExpr:
if n.len == 1: return n[0]
of nkHiddenDeref:
# issue #13848
# `proc fun(a: var int): var int = a`
discard
else: discard
let valid = isAssignable(c, n, isLent)
if valid != arLValue:
if valid == arLocalLValue:
localError(c.config, n.info, errXStackEscape % renderTree(n, {renderNoComments}))
else:
localError(c.config, n.info, errExprHasNoAddress)
result = newNodeIT(nkHiddenAddr, n.info, makePtrType(c, n.typ))
result.add(n)
proc asgnToResultVar(c: PContext, n, le, ri: PNode) {.inline.} =
if le.kind == nkHiddenDeref:
var x = le[0]
if (x.typ.kind in {tyVar, tyLent} or classifyViewType(x.typ) != noView) and x.kind == nkSym and x.sym.kind == skResult:
n[0] = x # 'result[]' --> 'result'
n[1] = takeImplicitAddr(c, ri, x.typ.kind == tyLent)
x.typ.flags.incl tfVarIsPtr
#echo x.info, " setting it for this type ", typeToString(x.typ), " ", n.info
proc borrowCheck(c: PContext, n, le, ri: PNode) =
const
PathKinds0 = {nkDotExpr, nkCheckedFieldExpr,
nkBracketExpr, nkAddr, nkHiddenAddr,
nkObjDownConv, nkObjUpConv}
PathKinds1 = {nkHiddenStdConv, nkHiddenSubConv}
proc getRoot(n: PNode; followDeref: bool): PNode =
result = n
while true:
case result.kind
of nkDerefExpr, nkHiddenDeref:
if followDeref: result = result[0]
else: break
of PathKinds0:
result = result[0]
of PathKinds1:
result = result[1]
else: break
proc scopedLifetime(c: PContext; ri: PNode): bool {.inline.} =
let n = getRoot(ri, followDeref = false)
result = (ri.kind in nkCallKinds+{nkObjConstr}) or
(n.kind == nkSym and n.sym.owner == c.p.owner and n.sym.kind != skResult)
proc escapes(c: PContext; le: PNode): bool {.inline.} =
# param[].foo[] = self definitely escapes, we don't need to
# care about pointer derefs:
let n = getRoot(le, followDeref = true)
result = n.kind == nkSym and n.sym.kind == skParam
# Special typing rule: do not allow to pass 'owned T' to 'T' in 'result = x':
const absInst = abstractInst - {tyOwned}
if ri.typ != nil and ri.typ.skipTypes(absInst).kind == tyOwned and
le.typ != nil and le.typ.skipTypes(absInst).kind != tyOwned and
scopedLifetime(c, ri):
if le.kind == nkSym and le.sym.kind == skResult:
localError(c.config, n.info, "cannot return an owned pointer as an unowned pointer; " &
"use 'owned(" & typeToString(le.typ) & ")' as the return type")
elif escapes(c, le):
localError(c.config, n.info,
"assignment produces a dangling ref: the unowned ref lives longer than the owned ref")
template resultTypeIsInferrable(typ: PType): untyped =
typ.isMetaType and typ.kind != tyTypeDesc
proc goodLineInfo(arg: PNode): TLineInfo =
if arg.kind == nkStmtListExpr and arg.len > 0:
goodLineInfo(arg[^1])
else:
arg.info
proc semAsgn(c: PContext, n: PNode; mode=asgnNormal): PNode =
checkSonsLen(n, 2, c.config)
var a = n[0]
case a.kind
of nkDotExpr:
# r.f = x
# --> `f=` (r, x)
let nOrig = n.copyTree
a = builtinFieldAccess(c, a, {efLValue})
if a == nil:
a = propertyWriteAccess(c, n, nOrig, n[0])
if a != nil: return a
# we try without the '='; proc that return 'var' or macros are still
# possible:
a = dotTransformation(c, n[0])
if a.kind == nkDotCall:
a.transitionSonsKind(nkCall)
a = semExprWithType(c, a, {efLValue})
of nkBracketExpr:
# a[i] = x
# --> `[]=`(a, i, x)
a = semSubscript(c, a, {efLValue})
if a == nil:
result = buildOverloadedSubscripts(n[0], getIdent(c.cache, "[]="))
result.add(n[1])
if mode == noOverloadedSubscript:
bracketNotFoundError(c, result)
return n
else:
result = semExprNoType(c, result)
return result
of nkCurlyExpr:
# a{i} = x --> `{}=`(a, i, x)
result = buildOverloadedSubscripts(n[0], getIdent(c.cache, "{}="))
result.add(n[1])
return semExprNoType(c, result)
of nkPar, nkTupleConstr:
if a.len >= 2:
# unfortunately we need to rewrite ``(x, y) = foo()`` already here so
# that overloading of the assignment operator still works. Usually we
# prefer to do these rewritings in transf.nim:
return semStmt(c, lowerTupleUnpackingForAsgn(c.graph, n, c.p.owner), {})
else:
a = semExprWithType(c, a, {efLValue})
else:
a = semExprWithType(c, a, {efLValue})
n[0] = a
# a = b # both are vars, means: a[] = b[]
# a = b # b no 'var T' means: a = addr(b)
var le = a.typ
if le == nil:
localError(c.config, a.info, "expression has no type")
elif (skipTypes(le, {tyGenericInst, tyAlias, tySink}).kind notin {tyVar} and
isAssignable(c, a) in {arNone, arLentValue}) or (
skipTypes(le, abstractVar).kind in {tyOpenArray, tyVarargs} and views notin c.features):
# Direct assignment to a discriminant is allowed!
localError(c.config, a.info, errXCannotBeAssignedTo %
renderTree(a, {renderNoComments}))
else:
let
lhs = n[0]
lhsIsResult = lhs.kind == nkSym and lhs.sym.kind == skResult
var
rhs = semExprWithType(c, n[1],
if lhsIsResult: {efAllowDestructor} else: {})
if lhsIsResult:
n.typ = c.enforceVoidContext
if c.p.owner.kind != skMacro and resultTypeIsInferrable(lhs.sym.typ):
var rhsTyp = rhs.typ
if rhsTyp.kind in tyUserTypeClasses and rhsTyp.isResolvedUserTypeClass:
rhsTyp = rhsTyp.lastSon
if cmpTypes(c, lhs.typ, rhsTyp) in {isGeneric, isEqual}:
internalAssert c.config, c.p.resultSym != nil
# Make sure the type is valid for the result variable
typeAllowedCheck(c, n.info, rhsTyp, skResult)
lhs.typ = rhsTyp
c.p.resultSym.typ = rhsTyp
c.p.owner.typ[0] = rhsTyp
else:
typeMismatch(c.config, n.info, lhs.typ, rhsTyp)
borrowCheck(c, n, lhs, rhs)
n[1] = fitNode(c, le, rhs, goodLineInfo(n[1]))
when false: liftTypeBoundOps(c, lhs.typ, lhs.info)
fixAbstractType(c, n)
asgnToResultVar(c, n, n[0], n[1])
result = n
proc semReturn(c: PContext, n: PNode): PNode =
result = n
checkSonsLen(n, 1, c.config)
if c.p.owner.kind in {skConverter, skMethod, skProc, skFunc, skMacro} or
(not c.p.owner.typ.isNil and isClosureIterator(c.p.owner.typ)):
if n[0].kind != nkEmpty:
if n[0].kind == nkAsgn and n[0][0].kind == nkSym and c.p.resultSym == n[0][0].sym:
discard "return is already transformed"
elif c.p.resultSym != nil:
# transform ``return expr`` to ``result = expr; return``
var a = newNodeI(nkAsgn, n[0].info)
a.add newSymNode(c.p.resultSym)
a.add n[0]
n[0] = a
else:
localError(c.config, n.info, errNoReturnTypeDeclared)
return
result[0] = semAsgn(c, n[0])
# optimize away ``result = result``:
if result[0][1].kind == nkSym and result[0][1].sym == c.p.resultSym:
result[0] = c.graph.emptyNode
else:
localError(c.config, n.info, "'return' not allowed here")
proc semProcBody(c: PContext, n: PNode): PNode =
openScope(c)
result = semExpr(c, n)
if c.p.resultSym != nil and not isEmptyType(result.typ):
if result.kind == nkNilLit:
# or ImplicitlyDiscardable(result):
# new semantic: 'result = x' triggers the void context
result.typ = nil
elif result.kind == nkStmtListExpr and result.typ.kind == tyNil:
# to keep backwards compatibility bodies like:
# nil
# # comment
# are not expressions:
fixNilType(c, result)
else:
var a = newNodeI(nkAsgn, n.info, 2)
a[0] = newSymNode(c.p.resultSym)
a[1] = result
result = semAsgn(c, a)
else:
discardCheck(c, result, {})
if c.p.owner.kind notin {skMacro, skTemplate} and
c.p.resultSym != nil and c.p.resultSym.typ.isMetaType:
if isEmptyType(result.typ):
# we inferred a 'void' return type:
c.p.resultSym.typ = errorType(c)
c.p.owner.typ[0] = nil
else:
localError(c.config, c.p.resultSym.info, errCannotInferReturnType %
c.p.owner.name.s)
if isInlineIterator(c.p.owner.typ) and c.p.owner.typ[0] != nil and
c.p.owner.typ[0].kind == tyUntyped:
localError(c.config, c.p.owner.info, errCannotInferReturnType %
c.p.owner.name.s)
closeScope(c)
proc semYieldVarResult(c: PContext, n: PNode, restype: PType) =
var t = skipTypes(restype, {tyGenericInst, tyAlias, tySink})
case t.kind
of tyVar, tyLent:
t.flags.incl tfVarIsPtr # bugfix for #4048, #4910, #6892
if n[0].kind in {nkHiddenStdConv, nkHiddenSubConv}:
n[0] = n[0][1]
n[0] = takeImplicitAddr(c, n[0], t.kind == tyLent)
of tyTuple:
for i in 0..<t.len:
let e = skipTypes(t[i], {tyGenericInst, tyAlias, tySink})
if e.kind in {tyVar, tyLent}:
e.flags.incl tfVarIsPtr # bugfix for #4048, #4910, #6892
let tupleConstr = if n[0].kind in {nkHiddenStdConv, nkHiddenSubConv}: n[0][1] else: n[0]
if tupleConstr.kind in {nkPar, nkTupleConstr}:
if tupleConstr[i].kind == nkExprColonExpr:
tupleConstr[i][1] = takeImplicitAddr(c, tupleConstr[i][1], e.kind == tyLent)
else:
tupleConstr[i] = takeImplicitAddr(c, tupleConstr[i], e.kind == tyLent)
else:
localError(c.config, n[0].info, errXExpected, "tuple constructor")
else:
when false:
# XXX investigate what we really need here.
if isViewType(t):
n[0] = takeImplicitAddr(c, n[0], false)
proc semYield(c: PContext, n: PNode): PNode =
result = n
checkSonsLen(n, 1, c.config)
if c.p.owner == nil or c.p.owner.kind != skIterator:
localError(c.config, n.info, errYieldNotAllowedHere)
elif n[0].kind != nkEmpty:
n[0] = semExprWithType(c, n[0]) # check for type compatibility:
var iterType = c.p.owner.typ
let restype = iterType[0]
if restype != nil:
if restype.kind != tyUntyped:
n[0] = fitNode(c, restype, n[0], n.info)
if n[0].typ == nil: internalError(c.config, n.info, "semYield")
if resultTypeIsInferrable(restype):
let inferred = n[0].typ
iterType[0] = inferred
if c.p.resultSym != nil:
c.p.resultSym.typ = inferred
semYieldVarResult(c, n, restype)
else:
localError(c.config, n.info, errCannotReturnExpr)
elif c.p.owner.typ[0] != nil:
localError(c.config, n.info, errGenerated, "yield statement must yield a value")
proc semDefined(c: PContext, n: PNode): PNode =
checkSonsLen(n, 2, c.config)
# we replace this node by a 'true' or 'false' node:
result = newIntNode(nkIntLit, 0)
result.intVal = ord isDefined(c.config, considerQuotedIdent(c, n[1], n).s)
result.info = n.info
result.typ = getSysType(c.graph, n.info, tyBool)
proc lookUpForDeclared(c: PContext, n: PNode, onlyCurrentScope: bool): PSym =
case n.kind
of nkIdent, nkAccQuoted:
result = if onlyCurrentScope:
localSearchInScope(c, considerQuotedIdent(c, n))
else:
searchInScopes(c, considerQuotedIdent(c, n))
of nkDotExpr:
result = nil
if onlyCurrentScope: return
checkSonsLen(n, 2, c.config)
var m = lookUpForDeclared(c, n[0], onlyCurrentScope)
if m != nil and m.kind == skModule:
let ident = considerQuotedIdent(c, n[1], n)
if m == c.module:
result = strTableGet(c.topLevelScope.symbols, ident)
else:
result = strTableGet(m.tab, ident)
of nkSym:
result = n.sym
of nkOpenSymChoice, nkClosedSymChoice:
result = n[0].sym
else:
localError(c.config, n.info, "identifier expected, but got: " & renderTree(n))
result = nil
proc semDeclared(c: PContext, n: PNode, onlyCurrentScope: bool): PNode =
checkSonsLen(n, 2, c.config)
# we replace this node by a 'true' or 'false' node:
result = newIntNode(nkIntLit, 0)
result.intVal = ord lookUpForDeclared(c, n[1], onlyCurrentScope) != nil
result.info = n.info
result.typ = getSysType(c.graph, n.info, tyBool)
proc expectMacroOrTemplateCall(c: PContext, n: PNode): PSym =
## The argument to the proc should be nkCall(...) or similar
## Returns the macro/template symbol
if isCallExpr(n):
var expandedSym = qualifiedLookUp(c, n[0], {checkUndeclared})
if expandedSym == nil:
errorUndeclaredIdentifier(c, n.info, n[0].renderTree)
return errorSym(c, n[0])
if expandedSym.kind notin {skMacro, skTemplate}:
localError(c.config, n.info, "'$1' is not a macro or template" % expandedSym.name.s)
return errorSym(c, n[0])
result = expandedSym
else:
localError(c.config, n.info, "'$1' is not a macro or template" % n.renderTree)
result = errorSym(c, n)
proc expectString(c: PContext, n: PNode): string =
var n = semConstExpr(c, n)
if n.kind in nkStrKinds:
return n.strVal
else:
localError(c.config, n.info, errStringLiteralExpected)
proc newAnonSym(c: PContext; kind: TSymKind, info: TLineInfo): PSym =
result = newSym(kind, c.cache.idAnon, getCurrOwner(c), info)
proc semExpandToAst(c: PContext, n: PNode): PNode =
let macroCall = n[1]
when false:
let expandedSym = expectMacroOrTemplateCall(c, macroCall)
if expandedSym.kind == skError: return n
macroCall[0] = newSymNode(expandedSym, macroCall.info)
markUsed(c, n.info, expandedSym)
onUse(n.info, expandedSym)
if isCallExpr(macroCall):
for i in 1..<macroCall.len:
#if macroCall[0].typ[i].kind != tyUntyped:
macroCall[i] = semExprWithType(c, macroCall[i], {})
# performing overloading resolution here produces too serious regressions:
let headSymbol = macroCall[0]
var cands = 0
var cand: PSym = nil
var o: TOverloadIter
var symx = initOverloadIter(o, c, headSymbol)
while symx != nil:
if symx.kind in {skTemplate, skMacro} and symx.typ.len == macroCall.len:
cand = symx
inc cands
symx = nextOverloadIter(o, c, headSymbol)
if cands == 0:
localError(c.config, n.info, "expected a template that takes " & $(macroCall.len-1) & " arguments")
elif cands >= 2:
localError(c.config, n.info, "ambiguous symbol in 'getAst' context: " & $macroCall)
else:
let info = macroCall[0].info
macroCall[0] = newSymNode(cand, info)
markUsed(c, info, cand)
onUse(info, cand)
# we just perform overloading resolution here:
#n[1] = semOverloadedCall(c, macroCall, macroCall, {skTemplate, skMacro})
else:
localError(c.config, n.info, "getAst takes a call, but got " & n.renderTree)
# Preserve the magic symbol in order to be handled in evals.nim
internalAssert c.config, n[0].sym.magic == mExpandToAst
#n.typ = getSysSym("NimNode").typ # expandedSym.getReturnType
if n.kind == nkStmtList and n.len == 1: result = n[0]
else: result = n
result.typ = sysTypeFromName(c.graph, n.info, "NimNode")
proc semExpandToAst(c: PContext, n: PNode, magicSym: PSym,
flags: TExprFlags = {}): PNode =
if n.len == 2:
n[0] = newSymNode(magicSym, n.info)
result = semExpandToAst(c, n)
else:
result = semDirectOp(c, n, flags)
proc processQuotations(c: PContext; n: var PNode, op: string,
quotes: var seq[PNode],
ids: var seq[PNode]) =
template returnQuote(q) =
quotes.add q
n = newIdentNode(getIdent(c.cache, $quotes.len), n.info)
ids.add n
return
if n.kind == nkPrefix:
checkSonsLen(n, 2, c.config)
if n[0].kind == nkIdent:
var examinedOp = n[0].ident.s
if examinedOp == op:
returnQuote n[1]
elif examinedOp.startsWith(op):
n[0] = newIdentNode(getIdent(c.cache, examinedOp.substr(op.len)), n.info)
elif n.kind == nkAccQuoted and op == "``":
returnQuote n[0]
elif n.kind == nkIdent:
if n.ident.s == "result":
n = ids[0]
for i in 0..<n.safeLen:
processQuotations(c, n[i], op, quotes, ids)
proc semQuoteAst(c: PContext, n: PNode): PNode =
if n.len != 2 and n.len != 3:
localError(c.config, n.info, "'quote' expects 1 or 2 arguments")
return n
# We transform the do block into a template with a param for
# each interpolation. We'll pass this template to getAst.
var
quotedBlock = n[^1]
op = if n.len == 3: expectString(c, n[1]) else: "``"
quotes = newSeq[PNode](2)
# the quotes will be added to a nkCall statement
# leave some room for the callee symbol and the result symbol
ids = newSeq[PNode](1)
# this will store the generated param names
# leave some room for the result symbol
if quotedBlock.kind != nkStmtList:
localError(c.config, n.info, errXExpected, "block")
# This adds a default first field to pass the result symbol
ids[0] = newAnonSym(c, skParam, n.info).newSymNode
processQuotations(c, quotedBlock, op, quotes, ids)
var dummyTemplate = newProcNode(
nkTemplateDef, quotedBlock.info, body = quotedBlock,
params = c.graph.emptyNode,
name = newAnonSym(c, skTemplate, n.info).newSymNode,
pattern = c.graph.emptyNode, genericParams = c.graph.emptyNode,
pragmas = c.graph.emptyNode, exceptions = c.graph.emptyNode)
if ids.len > 0:
dummyTemplate[paramsPos] = newNodeI(nkFormalParams, n.info)
dummyTemplate[paramsPos].add getSysSym(c.graph, n.info, "untyped").newSymNode # return type
ids.add getSysSym(c.graph, n.info, "untyped").newSymNode # params type
ids.add c.graph.emptyNode # no default value
dummyTemplate[paramsPos].add newTreeI(nkIdentDefs, n.info, ids)
var tmpl = semTemplateDef(c, dummyTemplate)
quotes[0] = tmpl[namePos]
# This adds a call to newIdentNode("result") as the first argument to the template call
let identNodeSym = getCompilerProc(c.graph, "newIdentNode")
# so that new Nim compilers can compile old macros.nim versions, we check for 'nil'
# here and provide the old fallback solution:
let identNode = if identNodeSym == nil:
newIdentNode(getIdent(c.cache, "newIdentNode"), n.info)
else:
identNodeSym.newSymNode
quotes[1] = newTreeI(nkCall, n.info, identNode, newStrNode(nkStrLit, "result"))
result = newTreeI(nkCall, n.info,
createMagic(c.graph, "getAst", mExpandToAst).newSymNode,
newTreeI(nkCall, n.info, quotes))
result = semExpandToAst(c, result)
proc tryExpr(c: PContext, n: PNode, flags: TExprFlags = {}): PNode =
# watch out, hacks ahead:
when defined(nimsuggest):
# Remove the error hook so nimsuggest doesn't report errors there
let tempHook = c.graph.config.structuredErrorHook
c.graph.config.structuredErrorHook = nil
let oldErrorCount = c.config.errorCounter
let oldErrorMax = c.config.errorMax
let oldCompilesId = c.compilesContextId
# if this is a nested 'when compiles', do not increase the ID so that
# generic instantiations can still be cached for this level.
if c.compilesContextId == 0:
inc c.compilesContextIdGenerator
c.compilesContextId = c.compilesContextIdGenerator
c.config.errorMax = high(int) # `setErrorMaxHighMaybe` not appropriate here
# open a scope for temporary symbol inclusions:
let oldScope = c.currentScope
openScope(c)
let oldOwnerLen = c.graph.owners.len
let oldGenerics = c.generics
let oldErrorOutputs = c.config.m.errorOutputs
if efExplain notin flags: c.config.m.errorOutputs = {}
let oldContextLen = msgs.getInfoContextLen(c.config)
let oldInGenericContext = c.inGenericContext
let oldInUnrolledContext = c.inUnrolledContext
let oldInGenericInst = c.inGenericInst
let oldInStaticContext = c.inStaticContext
let oldProcCon = c.p
c.generics = @[]
var err: string
try:
result = semExpr(c, n, flags)
if result != nil and efNoSem2Check notin flags:
trackStmt(c, c.module, result, isTopLevel = false)
if c.config.errorCounter != oldErrorCount:
result = nil
except ERecoverableError:
discard
# undo symbol table changes (as far as it's possible):
c.compilesContextId = oldCompilesId
c.generics = oldGenerics
c.inGenericContext = oldInGenericContext
c.inUnrolledContext = oldInUnrolledContext
c.inGenericInst = oldInGenericInst
c.inStaticContext = oldInStaticContext
c.p = oldProcCon
msgs.setInfoContextLen(c.config, oldContextLen)
setLen(c.graph.owners, oldOwnerLen)
c.currentScope = oldScope
c.config.m.errorOutputs = oldErrorOutputs
c.config.errorCounter = oldErrorCount
c.config.errorMax = oldErrorMax
when defined(nimsuggest):
# Restore the error hook
c.graph.config.structuredErrorHook = tempHook
proc semCompiles(c: PContext, n: PNode, flags: TExprFlags): PNode =
# we replace this node by a 'true' or 'false' node:
if n.len != 2: return semDirectOp(c, n, flags)
result = newIntNode(nkIntLit, ord(tryExpr(c, n[1], flags) != nil))
result.info = n.info
result.typ = getSysType(c.graph, n.info, tyBool)
proc semShallowCopy(c: PContext, n: PNode, flags: TExprFlags): PNode =
if n.len == 3:
# XXX ugh this is really a hack: shallowCopy() can be overloaded only
# with procs that take not 2 parameters:
result = newNodeI(nkFastAsgn, n.info)
result.add(n[1])
result.add(n[2])
result = semAsgn(c, result)
else:
result = semDirectOp(c, n, flags)
proc createFlowVar(c: PContext; t: PType; info: TLineInfo): PType =
result = newType(tyGenericInvocation, c.module)
addSonSkipIntLit(result, magicsys.getCompilerProc(c.graph, "FlowVar").typ)
addSonSkipIntLit(result, t)
result = instGenericContainer(c, info, result, allowMetaTypes = false)
proc instantiateCreateFlowVarCall(c: PContext; t: PType;
info: TLineInfo): PSym =
let sym = magicsys.getCompilerProc(c.graph, "nimCreateFlowVar")
if sym == nil:
localError(c.config, info, "system needs: nimCreateFlowVar")
var bindings: TIdTable
initIdTable(bindings)
bindings.idTablePut(sym.ast[genericParamsPos][0].typ, t)
result = c.semGenerateInstance(c, sym, bindings, info)
# since it's an instantiation, we unmark it as a compilerproc. Otherwise
# codegen would fail:
if sfCompilerProc in result.flags:
result.flags.excl {sfCompilerProc, sfExportc, sfImportc}
result.loc.r = nil
proc setMs(n: PNode, s: PSym): PNode =
result = n
n[0] = newSymNode(s)
n[0].info = n.info
proc semSizeof(c: PContext, n: PNode): PNode =
if n.len != 2:
localError(c.config, n.info, errXExpectsTypeOrValue % "sizeof")
else:
n[1] = semExprWithType(c, n[1], {efDetermineType})
#restoreOldStyleType(n[1])
n.typ = getSysType(c.graph, n.info, tyInt)
result = foldSizeOf(c.config, n, n)
proc semMagic(c: PContext, n: PNode, s: PSym, flags: TExprFlags): PNode =
# this is a hotspot in the compiler!
result = n
case s.magic # magics that need special treatment
of mAddr:
markUsed(c, n.info, s)
checkSonsLen(n, 2, c.config)
result[0] = newSymNode(s, n[0].info)
result[1] = semAddrArg(c, n[1], s.name.s == "unsafeAddr")
result.typ = makePtrType(c, result[1].typ)
of mTypeOf:
markUsed(c, n.info, s)
result = semTypeOf(c, n)
of mDefined:
markUsed(c, n.info, s)
result = semDefined(c, setMs(n, s))
of mDeclared:
markUsed(c, n.info, s)
result = semDeclared(c, setMs(n, s), false)
of mDeclaredInScope:
markUsed(c, n.info, s)
result = semDeclared(c, setMs(n, s), true)
of mCompiles:
markUsed(c, n.info, s)
result = semCompiles(c, setMs(n, s), flags)
of mIs:
markUsed(c, n.info, s)
result = semIs(c, setMs(n, s), flags)
of mShallowCopy:
markUsed(c, n.info, s)
result = semShallowCopy(c, n, flags)
of mExpandToAst:
markUsed(c, n.info, s)
result = semExpandToAst(c, n, s, flags)
of mQuoteAst:
markUsed(c, n.info, s)
result = semQuoteAst(c, n)
of mAstToStr:
markUsed(c, n.info, s)
checkSonsLen(n, 2, c.config)
result = newStrNodeT(renderTree(n[1], {renderNoComments}), n, c.graph)
result.typ = getSysType(c.graph, n.info, tyString)
of mParallel:
markUsed(c, n.info, s)
if parallel notin c.features:
localError(c.config, n.info, "use the {.experimental.} pragma to enable 'parallel'")
result = setMs(n, s)
var x = n.lastSon
if x.kind == nkDo: x = x[bodyPos]
inc c.inParallelStmt
result[1] = semStmt(c, x, {})
dec c.inParallelStmt
of mSpawn:
markUsed(c, n.info, s)
when defined(leanCompiler):
localError(c.config, n.info, "compiler was built without 'spawn' support")
result = n
else:
result = setMs(n, s)
for i in 1..<n.len:
result[i] = semExpr(c, n[i])
let typ = result[^1].typ
if not typ.isEmptyType:
if spawnResult(typ, c.inParallelStmt > 0) == srFlowVar:
result.typ = createFlowVar(c, typ, n.info)
else:
result.typ = typ
result.add instantiateCreateFlowVarCall(c, typ, n.info).newSymNode
else:
result.add c.graph.emptyNode
of mProcCall:
markUsed(c, n.info, s)
result = setMs(n, s)
result[1] = semExpr(c, n[1])
result.typ = n[1].typ
of mPlugin:
markUsed(c, n.info, s)
# semDirectOp with conditional 'afterCallActions':
let nOrig = n.copyTree
#semLazyOpAux(c, n)
result = semOverloadedCallAnalyseEffects(c, n, nOrig, flags)
if result == nil:
result = errorNode(c, n)
else:
let callee = result[0].sym
if callee.magic == mNone:
semFinishOperands(c, result)
activate(c, result)
fixAbstractType(c, result)
analyseIfAddressTakenInCall(c, result)
if callee.magic != mNone:
result = magicsAfterOverloadResolution(c, result, flags)
of mRunnableExamples:
markUsed(c, n.info, s)
if c.config.cmd == cmdDoc and n.len >= 2 and n.lastSon.kind == nkStmtList:
when false:
# some of this dead code was moved to `prepareExamples`
if sfMainModule in c.module.flags:
let inp = toFullPath(c.config, c.module.info)
if c.runnableExamples == nil:
c.runnableExamples = newTree(nkStmtList,
newTree(nkImportStmt, newStrNode(nkStrLit, expandFilename(inp))))
let imports = newTree(nkStmtList)
var savedLastSon = copyTree n.lastSon
extractImports(savedLastSon, imports)
for imp in imports: c.runnableExamples.add imp
c.runnableExamples.add newTree(nkBlockStmt, c.graph.emptyNode, copyTree savedLastSon)
result = setMs(n, s)
else:
result = c.graph.emptyNode
of mSizeOf:
markUsed(c, n.info, s)
result = semSizeof(c, setMs(n, s))
else:
result = semDirectOp(c, n, flags)
proc semWhen(c: PContext, n: PNode, semCheck = true): PNode =
# If semCheck is set to false, ``when`` will return the verbatim AST of
# the correct branch. Otherwise the AST will be passed through semStmt.
result = nil
template setResult(e: untyped) =
if semCheck: result = semExpr(c, e) # do not open a new scope!
else: result = e
# Check if the node is "when nimvm"
# when nimvm:
# ...
# else:
# ...
var whenNimvm = false
var typ = commonTypeBegin
if n.len == 2 and n[0].kind == nkElifBranch and
n[1].kind == nkElse:
let exprNode = n[0][0]
if exprNode.kind == nkIdent:
whenNimvm = lookUp(c, exprNode).magic == mNimvm
elif exprNode.kind == nkSym:
whenNimvm = exprNode.sym.magic == mNimvm
if whenNimvm: n.flags.incl nfLL
for i in 0..<n.len:
var it = n[i]
case it.kind
of nkElifBranch, nkElifExpr:
checkSonsLen(it, 2, c.config)
if whenNimvm:
if semCheck:
it[1] = semExpr(c, it[1])
typ = commonType(typ, it[1].typ)
result = n # when nimvm is not elimited until codegen
else:
let e = forceBool(c, semConstExpr(c, it[0]))
if e.kind != nkIntLit:
# can happen for cascading errors, assume false
# InternalError(n.info, "semWhen")
discard
elif e.intVal != 0 and result == nil:
setResult(it[1])
of nkElse, nkElseExpr:
checkSonsLen(it, 1, c.config)
if result == nil or whenNimvm:
if semCheck:
it[0] = semExpr(c, it[0])
typ = commonType(typ, it[0].typ)
if result == nil:
result = it[0]
else: illFormedAst(n, c.config)
if result == nil:
result = newNodeI(nkEmpty, n.info)
if whenNimvm: result.typ = typ
# The ``when`` statement implements the mechanism for platform dependent
# code. Thus we try to ensure here consistent ID allocation after the
# ``when`` statement.
idSynchronizationPoint(200)
proc semSetConstr(c: PContext, n: PNode): PNode =
result = newNodeI(nkCurly, n.info)
result.typ = newTypeS(tySet, c)
if n.len == 0:
rawAddSon(result.typ, newTypeS(tyEmpty, c))
else:
# only semantic checking for all elements, later type checking:
var typ: PType = nil
for i in 0..<n.len:
if isRange(n[i]):
checkSonsLen(n[i], 3, c.config)
n[i][1] = semExprWithType(c, n[i][1])
n[i][2] = semExprWithType(c, n[i][2])
if typ == nil:
typ = skipTypes(n[i][1].typ,
{tyGenericInst, tyVar, tyLent, tyOrdinal, tyAlias, tySink})
n[i].typ = n[i][2].typ # range node needs type too
elif n[i].kind == nkRange:
# already semchecked
if typ == nil:
typ = skipTypes(n[i][0].typ,
{tyGenericInst, tyVar, tyLent, tyOrdinal, tyAlias, tySink})
else:
n[i] = semExprWithType(c, n[i])
if typ == nil:
typ = skipTypes(n[i].typ, {tyGenericInst, tyVar, tyLent, tyOrdinal, tyAlias, tySink})
if not isOrdinalType(typ, allowEnumWithHoles=true):
localError(c.config, n.info, errOrdinalTypeExpected)
typ = makeRangeType(c, 0, MaxSetElements-1, n.info)
elif lengthOrd(c.config, typ) > MaxSetElements:
typ = makeRangeType(c, 0, MaxSetElements-1, n.info)
addSonSkipIntLit(result.typ, typ)
for i in 0..<n.len:
var m: PNode
let info = n[i].info
if isRange(n[i]):
m = newNodeI(nkRange, info)
m.add fitNode(c, typ, n[i][1], info)
m.add fitNode(c, typ, n[i][2], info)
elif n[i].kind == nkRange: m = n[i] # already semchecked
else:
m = fitNode(c, typ, n[i], info)
result.add m
proc semTableConstr(c: PContext, n: PNode): PNode =
# we simply transform ``{key: value, key2, key3: value}`` to
# ``[(key, value), (key2, value2), (key3, value2)]``
result = newNodeI(nkBracket, n.info)
var lastKey = 0
for i in 0..<n.len:
var x = n[i]
if x.kind == nkExprColonExpr and x.len == 2:
for j in lastKey..<i:
var pair = newNodeI(nkTupleConstr, x.info)
pair.add(n[j])
pair.add(x[1])
result.add(pair)
var pair = newNodeI(nkTupleConstr, x.info)
pair.add(x[0])
pair.add(x[1])
result.add(pair)
lastKey = i+1
if lastKey != n.len: illFormedAst(n, c.config)
result = semExpr(c, result)
type
TParKind = enum
paNone, paSingle, paTupleFields, paTuplePositions
proc checkPar(c: PContext; n: PNode): TParKind =
if n.len == 0:
result = paTuplePositions # ()
elif n.len == 1:
if n[0].kind == nkExprColonExpr: result = paTupleFields
elif n.kind == nkTupleConstr: result = paTuplePositions
else: result = paSingle # (expr)
else:
if n[0].kind == nkExprColonExpr: result = paTupleFields
else: result = paTuplePositions
for i in 0..<n.len:
if result == paTupleFields:
if (n[i].kind != nkExprColonExpr) or
n[i][0].kind notin {nkSym, nkIdent, nkAccQuoted}:
localError(c.config, n[i].info, errNamedExprExpected)
return paNone
else:
if n[i].kind == nkExprColonExpr:
localError(c.config, n[i].info, errNamedExprNotAllowed)
return paNone
proc semTupleFieldsConstr(c: PContext, n: PNode, flags: TExprFlags): PNode =
result = newNodeI(nkTupleConstr, n.info)
var typ = newTypeS(tyTuple, c)
typ.n = newNodeI(nkRecList, n.info) # nkIdentDefs
var ids = initIntSet()
for i in 0..<n.len:
if n[i].kind != nkExprColonExpr:
illFormedAst(n[i], c.config)
let id = considerQuotedIdent(c, n[i][0])
if containsOrIncl(ids, id.id):
localError(c.config, n[i].info, errFieldInitTwice % id.s)
n[i][1] = semExprWithType(c, n[i][1],
flags*{efAllowDestructor})
if n[i][1].typ.kind == tyTypeDesc:
localError(c.config, n[i][1].info, "typedesc not allowed as tuple field.")
n[i][1].typ = errorType(c)
var f = newSymS(skField, n[i][0], c)
f.typ = skipIntLit(n[i][1].typ)
f.position = i
rawAddSon(typ, f.typ)
typ.n.add newSymNode(f)
n[i][0] = newSymNode(f)
result.add n[i]
result.typ = typ
proc semTuplePositionsConstr(c: PContext, n: PNode, flags: TExprFlags): PNode =
result = n # we don't modify n, but compute the type:
result.transitionSonsKind(nkTupleConstr)
var typ = newTypeS(tyTuple, c) # leave typ.n nil!
for i in 0..<n.len:
n[i] = semExprWithType(c, n[i], flags*{efAllowDestructor})
addSonSkipIntLit(typ, n[i].typ)
result.typ = typ
include semobjconstr
proc semBlock(c: PContext, n: PNode; flags: TExprFlags): PNode =
result = n
inc(c.p.nestedBlockCounter)
checkSonsLen(n, 2, c.config)
openScope(c) # BUGFIX: label is in the scope of block!
if n[0].kind != nkEmpty:
var labl = newSymG(skLabel, n[0], c)
if sfGenSym notin labl.flags:
addDecl(c, labl)
elif labl.owner == nil:
labl.owner = c.p.owner
n[0] = newSymNode(labl, n[0].info)
suggestSym(c.config, n[0].info, labl, c.graph.usageSym)
styleCheckDef(c.config, labl)
onDef(n[0].info, labl)
n[1] = semExpr(c, n[1], flags)
n.typ = n[1].typ
if isEmptyType(n.typ): n.transitionSonsKind(nkBlockStmt)
else: n.transitionSonsKind(nkBlockExpr)
closeScope(c)
dec(c.p.nestedBlockCounter)
proc semExportExcept(c: PContext, n: PNode): PNode =
let moduleName = semExpr(c, n[0])
if moduleName.kind != nkSym or moduleName.sym.kind != skModule:
localError(c.config, n.info, "The export/except syntax expects a module name")
return n
let exceptSet = readExceptSet(c, n)
let exported = moduleName.sym
result = newNodeI(nkExportStmt, n.info)
strTableAdd(c.module.tab, exported)
var i: TTabIter
var s = initTabIter(i, exported.tab)
while s != nil:
if s.kind in ExportableSymKinds+{skModule} and
s.name.id notin exceptSet and sfError notin s.flags:
strTableAdd(c.module.tab, s)
result.add newSymNode(s, n.info)
s = nextIter(i, exported.tab)
markUsed(c, n.info, exported)
proc semExport(c: PContext, n: PNode): PNode =
result = newNodeI(nkExportStmt, n.info)
for i in 0..<n.len:
let a = n[i]
var o: TOverloadIter
var s = initOverloadIter(o, c, a)
if s == nil:
localError(c.config, a.info, errGenerated, "cannot export: " & renderTree(a))
elif s.kind == skModule:
# forward everything from that module:
strTableAdd(c.module.tab, s)
var ti: TTabIter
var it = initTabIter(ti, s.tab)
while it != nil:
if it.kind in ExportableSymKinds+{skModule}:
strTableAdd(c.module.tab, it)
result.add newSymNode(it, a.info)
it = nextIter(ti, s.tab)
markUsed(c, n.info, s)
else:
while s != nil:
if s.kind == skEnumField:
localError(c.config, a.info, errGenerated, "cannot export: " & renderTree(a) &
"; enum field cannot be exported individually")
if s.kind in ExportableSymKinds+{skModule} and sfError notin s.flags:
result.add(newSymNode(s, a.info))
strTableAdd(c.module.tab, s)
markUsed(c, n.info, s)
s = nextOverloadIter(o, c, a)
proc semTupleConstr(c: PContext, n: PNode, flags: TExprFlags): PNode =
var tupexp = semTuplePositionsConstr(c, n, flags)
var isTupleType: bool
if tupexp.len > 0: # don't interpret () as type
isTupleType = tupexp[0].typ.kind == tyTypeDesc
# check if either everything or nothing is tyTypeDesc
for i in 1..<tupexp.len:
if isTupleType != (tupexp[i].typ.kind == tyTypeDesc):
localError(c.config, tupexp[i].info, "Mixing types and values in tuples is not allowed.")
return(errorNode(c,n))
if isTupleType: # expressions as ``(int, string)`` are reinterpret as type expressions
result = n
var typ = semTypeNode(c, n, nil).skipTypes({tyTypeDesc})
result.typ = makeTypeDesc(c, typ)
else:
result = tupexp
proc shouldBeBracketExpr(n: PNode): bool =
assert n.kind in nkCallKinds
let a = n[0]
if a.kind in nkCallKinds:
let b = a[0]
if b.kind in nkSymChoices:
for i in 0..<b.len:
if b[i].kind == nkSym and b[i].sym.magic == mArrGet:
let be = newNodeI(nkBracketExpr, n.info)
for i in 1..<a.len: be.add(a[i])
n[0] = be
return true
proc hoistParamsUsedInDefault(c: PContext, call, letSection, defExpr: var PNode) =
# This takes care of complicated signatures such as:
# proc foo(a: int, b = a)
# proc bar(a: int, b: int, c = a + b)
#
# The recursion may confuse you. It performs two duties:
#
# 1) extracting all referenced params from default expressions
# into a let section preceding the call
#
# 2) replacing the "references" within the default expression
# with these extracted skLet symbols.
#
# The first duty is carried out directly in the code here, while the second
# duty is activated by returning a non-nil value. The caller is responsible
# for replacing the input to the function with the returned non-nil value.
# (which is the hoisted symbol)
if defExpr.kind == nkSym and defExpr.sym.kind == skParam and defExpr.sym.owner == call[0].sym:
let paramPos = defExpr.sym.position + 1
if call[paramPos].kind != nkSym:
let hoistedVarSym = newSym(skLet, getIdent(c.graph.cache, genPrefix), c.p.owner, letSection.info, c.p.owner.options)
hoistedVarSym.typ = call[paramPos].typ
letSection.add newTreeI(nkIdentDefs, letSection.info,
newSymNode(hoistedVarSym),
newNodeI(nkEmpty, letSection.info),
call[paramPos])
call[paramPos] = newSymNode(hoistedVarSym) # Refer the original arg to its hoisted sym
# arg we refer to is a sym, wether introduced by hoisting or not doesn't matter, we simply reuse it
defExpr = call[paramPos]
else:
for i in 0..<defExpr.safeLen:
hoistParamsUsedInDefault(c, call, letSection, defExpr[i])
proc semExpr(c: PContext, n: PNode, flags: TExprFlags = {}): PNode =
when defined(nimCompilerStackraceHints):
setFrameMsg c.config$n.info & " " & $n.kind
result = n
if c.config.cmd == cmdIdeTools: suggestExpr(c, n)
if nfSem in n.flags: return
case n.kind
of nkIdent, nkAccQuoted:
let checks = if efNoEvaluateGeneric in flags:
{checkUndeclared, checkPureEnumFields}
elif efInCall in flags:
{checkUndeclared, checkModule, checkPureEnumFields}
else:
{checkUndeclared, checkModule, checkAmbiguity, checkPureEnumFields}
var s = qualifiedLookUp(c, n, checks)
if c.matchedConcept == nil: semCaptureSym(s, c.p.owner)
if s.kind in {skProc, skFunc, skMethod, skConverter, skIterator}:
#performProcvarCheck(c, n, s)
result = symChoice(c, n, s, scClosed)
if result.kind == nkSym:
markIndirect(c, result.sym)
# if isGenericRoutine(result.sym):
# localError(c.config, n.info, errInstantiateXExplicitly, s.name.s)
# "procs literals" are 'owned'
if optOwnedRefs in c.config.globalOptions:
result.typ = makeVarType(c, result.typ, tyOwned)
else:
result = semSym(c, n, s, flags)
of nkSym:
# because of the changed symbol binding, this does not mean that we
# don't have to check the symbol for semantics here again!
result = semSym(c, n, n.sym, flags)
of nkEmpty, nkNone, nkCommentStmt, nkType:
discard
of nkNilLit:
if result.typ == nil: result.typ = getSysType(c.graph, n.info, tyNil)
of nkIntLit:
if result.typ == nil: setIntLitType(c.graph, result)
of nkInt8Lit:
if result.typ == nil: result.typ = getSysType(c.graph, n.info, tyInt8)
of nkInt16Lit:
if result.typ == nil: result.typ = getSysType(c.graph, n.info, tyInt16)
of nkInt32Lit:
if result.typ == nil: result.typ = getSysType(c.graph, n.info, tyInt32)
of nkInt64Lit:
if result.typ == nil: result.typ = getSysType(c.graph, n.info, tyInt64)
of nkUIntLit:
if result.typ == nil: result.typ = getSysType(c.graph, n.info, tyUInt)
of nkUInt8Lit:
if result.typ == nil: result.typ = getSysType(c.graph, n.info, tyUInt8)
of nkUInt16Lit:
if result.typ == nil: result.typ = getSysType(c.graph, n.info, tyUInt16)
of nkUInt32Lit:
if result.typ == nil: result.typ = getSysType(c.graph, n.info, tyUInt32)
of nkUInt64Lit:
if result.typ == nil: result.typ = getSysType(c.graph, n.info, tyUInt64)
#of nkFloatLit:
# if result.typ == nil: result.typ = getFloatLitType(result)
of nkFloat32Lit:
if result.typ == nil: result.typ = getSysType(c.graph, n.info, tyFloat32)
of nkFloat64Lit, nkFloatLit:
if result.typ == nil: result.typ = getSysType(c.graph, n.info, tyFloat64)
of nkFloat128Lit:
if result.typ == nil: result.typ = getSysType(c.graph, n.info, tyFloat128)
of nkStrLit..nkTripleStrLit:
if result.typ == nil: result.typ = getSysType(c.graph, n.info, tyString)
of nkCharLit:
if result.typ == nil: result.typ = getSysType(c.graph, n.info, tyChar)
of nkDotExpr:
result = semFieldAccess(c, n, flags)
if result.kind == nkDotCall:
result.transitionSonsKind(nkCall)
result = semExpr(c, result, flags)
of nkBind:
message(c.config, n.info, warnDeprecated, "bind is deprecated")
result = semExpr(c, n[0], flags)
of nkTypeOfExpr, nkTupleTy, nkTupleClassTy, nkRefTy..nkEnumTy, nkStaticTy:
if c.matchedConcept != nil and n.len == 1:
let modifier = n.modifierTypeKindOfNode
if modifier != tyNone:
var baseType = semExpr(c, n[0]).typ.skipTypes({tyTypeDesc})
result.typ = c.makeTypeDesc(c.newTypeWithSons(modifier, @[baseType]))
return
var typ = semTypeNode(c, n, nil).skipTypes({tyTypeDesc})
result.typ = makeTypeDesc(c, typ)
of nkStmtListType:
let typ = semTypeNode(c, n, nil)
result.typ = makeTypeDesc(c, typ)
of nkCall, nkInfix, nkPrefix, nkPostfix, nkCommand, nkCallStrLit:
# check if it is an expression macro:
checkMinSonsLen(n, 1, c.config)
#when defined(nimsuggest):
# if gIdeCmd == ideCon and c.config.m.trackPos == n.info: suggestExprNoCheck(c, n)
let mode = if nfDotField in n.flags: {} else: {checkUndeclared}
var s = qualifiedLookUp(c, n[0], mode)
if s != nil:
#if c.config.cmd == cmdPretty and n[0].kind == nkDotExpr:
# pretty.checkUse(n[0][1].info, s)
case s.kind
of skMacro, skTemplate:
result = semDirectOp(c, n, flags)
of skType:
# XXX think about this more (``set`` procs)
let ambig = contains(c.ambiguousSymbols, s.id)
if not (n[0].kind in {nkClosedSymChoice, nkOpenSymChoice, nkIdent} and ambig) and n.len == 2:
result = semConv(c, n)
elif ambig and n.len == 1:
errorUseQualifier(c, n.info, s)
elif n.len == 1:
result = semObjConstr(c, n, flags)
elif s.magic == mNone: result = semDirectOp(c, n, flags)
else: result = semMagic(c, n, s, flags)
of skProc, skFunc, skMethod, skConverter, skIterator:
if s.magic == mNone: result = semDirectOp(c, n, flags)
else: result = semMagic(c, n, s, flags)
else:
#liMessage(n.info, warnUser, renderTree(n));
result = semIndirectOp(c, n, flags)
elif (n[0].kind == nkBracketExpr or shouldBeBracketExpr(n)) and
isSymChoice(n[0][0]):
# indirectOp can deal with explicit instantiations; the fixes
# the 'newSeq[T](x)' bug
setGenericParams(c, n[0])
result = semDirectOp(c, n, flags)
elif isSymChoice(n[0]) or nfDotField in n.flags:
result = semDirectOp(c, n, flags)
else:
result = semIndirectOp(c, n, flags)
if nfDefaultRefsParam in result.flags:
result = result.copyTree #XXX: Figure out what causes default param nodes to be shared.. (sigmatch bug?)
# We've found a default value that references another param.
# See the notes in `hoistParamsUsedInDefault` for more details.
var hoistedParams = newNodeI(nkLetSection, result.info)
for i in 1..<result.len:
hoistParamsUsedInDefault(c, result, hoistedParams, result[i])
result = newTreeIT(nkStmtListExpr, result.info, result.typ, hoistedParams, result)
of nkWhen:
if efWantStmt in flags:
result = semWhen(c, n, true)
else:
result = semWhen(c, n, false)
if result == n:
# This is a "when nimvm" stmt.
result = semWhen(c, n, true)
else:
result = semExpr(c, result, flags)
of nkBracketExpr:
checkMinSonsLen(n, 1, c.config)
result = semArrayAccess(c, n, flags)
of nkCurlyExpr:
result = semExpr(c, buildOverloadedSubscripts(n, getIdent(c.cache, "{}")), flags)
of nkPragmaExpr:
var
pragma = n[1]
pragmaName = considerQuotedIdent(c, pragma[0])
flags = flags
finalNodeFlags: TNodeFlags = {}
case whichKeyword(pragmaName)
of wExplain:
flags.incl efExplain
of wExecuteOnReload:
finalNodeFlags.incl nfExecuteOnReload
else:
# what other pragmas are allowed for expressions? `likely`, `unlikely`
invalidPragma(c, n)
result = semExpr(c, n[0], flags)
result.flags.incl finalNodeFlags
of nkPar, nkTupleConstr:
case checkPar(c, n)
of paNone: result = errorNode(c, n)
of paTuplePositions: result = semTupleConstr(c, n, flags)
of paTupleFields: result = semTupleFieldsConstr(c, n, flags)
of paSingle: result = semExpr(c, n[0], flags)
of nkCurly: result = semSetConstr(c, n)
of nkBracket: result = semArrayConstr(c, n, flags)
of nkObjConstr: result = semObjConstr(c, n, flags)
of nkLambdaKinds: result = semLambda(c, n, flags)
of nkDerefExpr: result = semDeref(c, n)
of nkAddr:
result = n
checkSonsLen(n, 1, c.config)
result[0] = semAddrArg(c, n[0])
result.typ = makePtrType(c, result[0].typ)
of nkHiddenAddr, nkHiddenDeref:
checkSonsLen(n, 1, c.config)
n[0] = semExpr(c, n[0], flags)
of nkCast: result = semCast(c, n)
of nkIfExpr, nkIfStmt: result = semIf(c, n, flags)
of nkHiddenStdConv, nkHiddenSubConv, nkConv, nkHiddenCallConv:
checkSonsLen(n, 2, c.config)
considerGenSyms(c, n)
of nkStringToCString, nkCStringToString, nkObjDownConv, nkObjUpConv:
checkSonsLen(n, 1, c.config)
considerGenSyms(c, n)
of nkChckRangeF, nkChckRange64, nkChckRange:
checkSonsLen(n, 3, c.config)
considerGenSyms(c, n)
of nkCheckedFieldExpr:
checkMinSonsLen(n, 2, c.config)
considerGenSyms(c, n)
of nkTableConstr:
result = semTableConstr(c, n)
of nkClosedSymChoice, nkOpenSymChoice:
# handling of sym choices is context dependent
# the node is left intact for now
discard
of nkStaticExpr: result = semStaticExpr(c, n[0])
of nkAsgn: result = semAsgn(c, n)
of nkBlockStmt, nkBlockExpr: result = semBlock(c, n, flags)
of nkStmtList, nkStmtListExpr: result = semStmtList(c, n, flags)
of nkRaiseStmt: result = semRaise(c, n)
of nkVarSection: result = semVarOrLet(c, n, skVar)
of nkLetSection: result = semVarOrLet(c, n, skLet)
of nkConstSection: result = semConst(c, n)
of nkTypeSection: result = semTypeSection(c, n)
of nkDiscardStmt: result = semDiscard(c, n)
of nkWhileStmt: result = semWhile(c, n, flags)
of nkTryStmt, nkHiddenTryStmt: result = semTry(c, n, flags)
of nkBreakStmt, nkContinueStmt: result = semBreakOrContinue(c, n)
of nkForStmt, nkParForStmt: result = semFor(c, n, flags)
of nkCaseStmt: result = semCase(c, n, flags)
of nkReturnStmt: result = semReturn(c, n)
of nkUsingStmt: result = semUsing(c, n)
of nkAsmStmt: result = semAsm(c, n)
of nkYieldStmt: result = semYield(c, n)
of nkPragma: pragma(c, c.p.owner, n, stmtPragmas, true)
of nkIteratorDef: result = semIterator(c, n)
of nkProcDef: result = semProc(c, n)
of nkFuncDef: result = semFunc(c, n)
of nkMethodDef: result = semMethod(c, n)
of nkConverterDef: result = semConverterDef(c, n)
of nkMacroDef: result = semMacroDef(c, n)
of nkTemplateDef: result = semTemplateDef(c, n)
of nkImportStmt:
# this particular way allows 'import' in a 'compiles' context so that
# template canImport(x): bool =
# compiles:
# import x
#
# works:
if c.currentScope.depthLevel > 2 + c.compilesContextId:
localError(c.config, n.info, errXOnlyAtModuleScope % "import")
result = evalImport(c, n)
of nkImportExceptStmt:
if not isTopLevel(c): localError(c.config, n.info, errXOnlyAtModuleScope % "import")
result = evalImportExcept(c, n)
of nkFromStmt:
if not isTopLevel(c): localError(c.config, n.info, errXOnlyAtModuleScope % "from")
result = evalFrom(c, n)
of nkIncludeStmt:
#if not isTopLevel(c): localError(c.config, n.info, errXOnlyAtModuleScope % "include")
result = evalInclude(c, n)
of nkExportStmt:
if not isTopLevel(c): localError(c.config, n.info, errXOnlyAtModuleScope % "export")
result = semExport(c, n)
of nkExportExceptStmt:
if not isTopLevel(c): localError(c.config, n.info, errXOnlyAtModuleScope % "export")
result = semExportExcept(c, n)
of nkPragmaBlock:
result = semPragmaBlock(c, n)
of nkStaticStmt:
result = semStaticStmt(c, n)
of nkDefer:
if c.currentScope == c.topLevelScope:
localError(c.config, n.info, "defer statement not supported at top level")
n[0] = semExpr(c, n[0])
if not n[0].typ.isEmptyType and not implicitlyDiscardable(n[0]):
localError(c.config, n.info, "'defer' takes a 'void' expression")
#localError(c.config, n.info, errGenerated, "'defer' not allowed in this context")
of nkGotoState, nkState:
if n.len != 1 and n.len != 2: illFormedAst(n, c.config)
for i in 0..<n.len:
n[i] = semExpr(c, n[i])
of nkComesFrom: discard "ignore the comes from information for now"
else:
localError(c.config, n.info, "invalid expression: " &
renderTree(n, {renderNoComments}))
if result != nil: incl(result.flags, nfSem)
|